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Introduction

� Motivation: contribution to EMRI GW phase coming from

environment

� There are several environmental effects potentially affecting EMRIs

(accretion, tidal resonances, dynamical friction,...)

� Presence of matter alters the background which may no longer be a

Petrov type D vacuum spacetime (no Killing-Yano tensor)

� Consequently GW fluxes are affected as well

� A common approach is to utilise PN expansion or just modify the

geodesics but not the fluxes

We aim for a fully relativistic, self-consistent treatment

⇒ calculation of GW fluxes and EMRIs using a modified Teukolsky

equation

1
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Modified Teukolsky equation



Perturbations in type D spacetimes

� Perturbative expansion of our metric

gµν = g (0)
µν + εh(1)µν +O(ε2)

� The first order field equations

δGµν(h
(1)) = T (1)

µν

� If g
(0)
µν is of the vacuum type D −→ h

(1)
µν ⇔ Ψ

(1)
4

� From Bianchi+Ricci identities in NP formalism we can derive

(Teukolsky (1973) )

Teukolsky equation for Ψ
(1)
4

O(0)Ψ
(1)
4 = T (1)

O(0), T(0)ab are constructed from g
(0)
µν , T (1) = T(0)abT

(1)
ab

� Ψ
(1)
4 → GW fluxes and waveforms

3
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Extending the Teukolsky equation

Past extensions

� Second order perturbation theory Campanelli and Lousto (1999)

� Perturbations in theories beyond GR and type D (QNMs) Li et al. (2023)

� Another formulation by Cano et al. (2023)

Our approach

� Inspired by the work of Li et al. (2023):

� We assume that we have the explicit form of h(1,0)µν and know how to reconstruct h(0,1)µν from

Ψ
(0,1)
4

� Using the same Bianchi and Ricci identities in NP formalism we obtain the modified

Teukolsky equation for the variable Ψ
(1,1)
4

4
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The underlining formalism

NP formalism

� NP tetrad eµa = {lµ, nµ,mµ, m̄µ} satisfying lµnµ = −1, mµm̄µ = 1

� NP derivatives:

D = lµ∇µ, ∆ = nµ∇µ, δ = mµ∇µ, δ̄ = m̄µ∇µ

� Connection: spin coefficients γcba = {κ, τ, σ, ρ, π, ν, µ, λ, ϵ, γ, β, α}

� Curvature : Rabcd = {ΨA,ΦAB , Λ}
Ψ0, Ψ4 ⇔ gravitational waves {ΦAB , Λ} ⇔ Tab

GHP formalism

� concept of GHP weight

� derivatives þ, þ′, ð, ð′

� more compact form of expressions
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The unperturbed NP equations

Operators and Identities

E3 ≡ δ̄ + 3α + β̄ + π − τ̄ ,

E4 ≡ ∆ + µ + µ̄ + 3γ − γ̄ ,

F3 ≡ δ + 4β − τ , F4 ≡ D + 4ε − ρ ,

J3 = ∆ + 2γ + 4µ , J4 = ¯δ + 4π + 2α ,

E3ν − E4λ − Ψ4 = 0 ,

F3Ψ4 − J3Ψ3 + 3νΨ2 = S3 ,

F4Ψ4 − J4Ψ3 + 3λΨ2 = S4,

The universal Teukolsky equation

OΨ4 +KΨ3 = T

� First order expansion gµν = g (0)
µν + εh(1)µν + .. gives

O(0)Ψ
(1)
4 = T (1)

� Expanding in Two parameters {ε, ζ} gives us the (1, 1) modified Teukolsky equation
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The resulting equation

� Instead of (1, 1) Einstein equations

δGµν(h
(1,1)) + δ

2Gµν(h
(1,0)

, h(0,1)) = κT (1,1)
µν

we have

Modified Teukolsky equation for Ψ
(1,1)
4

O(0,0)Ψ
(1,1)
4 + G(1,1) = T (1,1)

G(1,1) = O(1,0)Ψ
(0,1)
4 +O(0,1)Ψ

(1,0)
4 +K(1,1)(Ψ

(0,1)
3 ,Ψ

(1,0)
3 )

� O(0,0) = Ô is the original Teukolsky operator

� O(1,0) = O(1,0)(Ψ
(1,0)
2 ,Ψ

(1,0)
3 ,T

(1,0)
ab )

� K (1,1) = K (1,1)(Ψ
(1,0)
3 ,Ψ

(0,1)
3 ,T

(1,0)
ab ,T

(0,1)
ab ),

using gauge freedom one can impose Ψ
(1,0)
3 = 0 = Ψ

(0,1)
3 ⇒ K (1,1) = 0

� T (1,1) = T (1,1)(T
(1,0)
ab ,T

(0,1)
ab ,T

(1,1)
ab )

� O(0,1), K (1,1) and T (1,1) require reconstruction of h(0,1)µν
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Modified Teukolsky equation: a detailed look

� The original operator reads

O(0,0) = E(0,0)
4 F

(0,0)
4 − E(0,0)

3 F
(0,0)
3 − 3Ψ

(0,0)
2

� and its perturbation

O(1,0) = O(1,0)
D-vac + O(1,0)

corr

O(1,0)
D-vac = E(1,0)

4 F
(0,0)
4 + E(0,0)

4 F
(1,0)
4 − E(1,0)

3 F
(0,0)
3 − E(0,0)

3 F
(1,0)
3 − 3Ψ

(1,0)
2

O(1,0)
corr =

(
Ψ

(0,0)
2

)−1 (
G

(0,0)
3 (Ψ

(1,0)
3 )F

(0,0)
3 − G

(0,0)
4 (Ψ

(1,0)
3 )F

(0,0)
4 + S

(1,0)
5 F
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EMRI and modified Teukolsky equation: general strategy

Modified Teukolsky equation ⇔ construction of the effective

source

O(0,0)Ψ
(1,1)
4 = S(1,1)

eff

� S(1,1)
eff = T (1,1) − O(1,0)Ψ

(0,1)
4 − O(0,1)Ψ

(1,0)
4 − K(1,1)(Ψ

(0,1)
3 ,Ψ

(1,0)
3 )

� 2 parts of stress-energy

Tµν = Tµν
particle + Tµν

matter

Tµν
particle = εT (0,1)µν + εζT

(1,1)µν
particle

Tµν
matter = ζT (1,0)µν + εζT (1,1)µν

matter

O(0,0)Ψ
(0,1)
4

= T (0,1)
reconstruction

of h
(0,1)
µν

NP quantities{
(e
µ
a )(0,1),Ψ

(0,1)
A

, γ
(0,1)
abc

}
S(1,1)
eff

{
T
(0,1)
µν , T

(1,0)
µν

}
+h

(1,0)
µν

T
(1,1)
µν from

∇µTµν = 0

Ψ
(1,1)
4

9



Application: blackhole

surrounded by a ring



The ideal model

� Kerr black hole surrounded by a rotating disc

10



Our simplified model

� g (0,0)
µν : Kerr → Schwarzschild (or linearised Kerr)

� Disc → ring located at r = rs

� The perturbed Schwarzschild metric can be written as

ds2 = −
(
1 −

2M

r

)
(1 + 2νr )dt

2 +
1 + 2ξr − 2νr

1 − 2M/r
dr2

+(1 − 2νr )r
2
[
(1 + 2ξr )dθ

2 + sin2 θdϕ2
]
− 2ωr2 sin2 θdtdϕ

with ω = ωK + ωr , ωK = Ma
r3

� The ring perturbation is described by functions νr and ωr
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[
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2 + sin2 θdϕ2
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− 2ωr2 sin2 θdtdϕ

with ω = ωK + ωr , ωK = Ma
r3

� We can simplify the spacetime further by adopting a pole-dipole approximation
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The pole-dipole approximation

� The background metric is gBG
µν = g (0,0)

µν + ζh(1,0)µν

The pole-dipole approximation of the ring

The metric gBG
µν is equivalent to two linearised Kerr spacetimes matched at the sphere r = rs

� The spacetime is type D vacuum everywhere but on the matter shell r = rs

� We define operators O− = O(0,0) + ζO(1,0)|r<rs , O+ = O(0,0) + ζO(1,0)|r>rs

� Then outside of the particle and r = rs we have two Teukolsky equations in linearised Kerr

spacetimes

O±

(
Ψ

(0,1)
4 + ζΨ

(1,1)
4

)
= 0

� One can solve these equations to find Ψ
(1,1)
4+ and Ψ

(1,1)
4−

� On the sphere r = rs the source can be written as

S(1,1)
rS

=
3∑

i=0

S(1,1)

rS(i)
δ
(i)(r − rS)
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Our strategy

Separating the solution into two parts

Ψ
(1,1)
4 = Ψ

(1,1)

4(sm)
+ Ψ

(1,1)

4(rS)

� By imposing the matching conditions

Ψ
(1,1)
4+

∣∣∣∣
r=rs

= Ψ
(1,1)
4−

∣∣∣∣
r=rs

and
(
∂µΨ

(1,1)
4+

) ∣∣∣
r=rs

=
(
∂µΨ

(1,1)
4−

) ∣∣∣
r=rs

� we get the smooth part

Ψ
(1,1)

4(sm)
=

{
Ψ

(1,1)
4− r ≤ rs

Ψ
(1,1)
4+ r > rs

� The other part is sourced by the terms living on the matter shell r = rs

Ô(0,0)Ψ
(1,1)δ
4 = S(1,1)

rS
=

3∑
i=0

S(1,1)

rS(i)
δ
(i)(r − rS).
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Ψ
(1,1)
4(sm): matching Ψ

(±)
4

Mode-decomposition

Ψ
(−)
4 =

1

r4

∑
lmω(in)

R
(−)

lmω(in)
(r)Ylm(θ)e

i(mϕ(in)−ω(in)t(in))

Ψ
(+)
4 =

1

(r − ia cos θ)4

∑
lmω

R
(+)
lmω(r)Slm(θ)e

i(mϕ−ωt)

� Expanding R
(±)
l (M + ms , as ) ≈ R(Schw)l + ms∂mR

(±)
l + as∂aR

(±)
l

� Slow rotation: Slm(aω, θ) ≈ Ylm(θ) + aω[b−
lmYl−1m(θ) + b+

lmYl+1m(θ)]

New radial functions

∂aR
(−)
l (r) = ∂aR

(−)
l (r)

∂aR
(+)
l (r) = ∂aR

(+)
l (r) +

j=l+1∑
j=l−1

dj (r)R(Schw)j(r).
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The source for Ψ(1,1)
4(rS)

� The source living on the r = rS S(1,1)
rS

=
3∑

i=0

S(1,1)

rS(i)
δ
(i)(r − rS).

S(1,1)
rS

= T
(0,1)abT

(1,0)
ab + T

(0,0)abT
(1,1)

ab(matter)

−
[(

O(1,0)(rS)

D-vac + O(1,0)
corr

)
Ψ

(0,1)
4 + K(1,1)(Ψ

(0,1)
3 ,Ψ

(1,0)
3 )

]
.

Metric reconstruction using the ORG Hertz potential

� h(0,1)µν =
(

S
(0,0)†
4 Ψ

(0,1)
Hz

)
µν

� where Ψ
(0,1)
Hz satisfies

O(0,0)†
(
Ψ

(0,1)
Hz

)
= 0,

1

2
(þ′)4Ψ

(0,1)
Hz = Ψ

(0,1)
4

� Ψ
(0,1)
Hz and Ψ

(0,1)
4 satisfy Teukolsky equation with spin weight ±2

CHz
lmnk = (−1)l+m+k 2

ω4
mnk

−2C
(H)

(Schw)lmnk
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� The source living on the r = rS S(1,1)
rS

=
3∑

i=0

S(1,1)

rS(i)
δ
(i)(r − rS).

S(1,1)
rS

= T
(0,1)abT

(1,0)
ab + T

(0,0)abT
(1,1)

ab(matter)

−
[(

O(1,0)(rS)

D-vac + O(1,0)
corr

)
Ψ

(0,1)
4 + K(1,1)(Ψ

(0,1)
3 ,Ψ

(1,0)
3 )

]
.

Metric reconstruction using the ORG Hertz potential

� h(0,1)µν =
(

S
(0,0)†
4 Ψ

(0,1)
Hz

)
µν

� where Ψ
(0,1)
Hz satisfies

O(0,0)†
(
Ψ

(0,1)
Hz

)
= 0,

1

2
(þ′)4Ψ
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Hz = Ψ

(0,1)
4
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Constructing the source

� S(1,1)
rS

= −
(
O(1,0)(rS)

D-vac + O(1,0)
corr

)
Ψ

(0,1)
4 + S(1,1)

reconst

� The part needing metric reconstruction is

S(1,1)
reconst = Σ(1,0)Ψ

(0,1)
Hz + T

(1,1)
dynamical

� The last term requires solving equations for matter T
(1,1)
dynamical ⇔ T (1,1)

µν

� The desired result is the decomposition of the form

S(1,1)
rS

=
∑
lmω

R
[
S(1,1)
rS

]
lmω

−2Ylm(θ)e
i(mϕ−ωt)

� The radial part can be written as

R
[
S(1,1)
rS

]
lmω

=
3∑

i=0

R
[
S(1,1)

]
(i)lmω

(r)δ(i)(r − rs )

� So that we can get ODEs for Ψ
(1,1)

4(rS)

−2DlmωR
(1,1)

(rS)lmω
(r) =

3∑
i=0

S(1,1)

(i)lmω
(r)δ(i)(r − rs )
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An example of a source term

T(0,1)abT
(1,0)
ab

where

T(0,1)ab = E (0,0)
4 S(0,1)ab

4 + E (0,1)
4 S(0,0)ab

4 − E (0,0)
3 S(0,1)ab

3 − E (0,1)
3 S(0,0)ab

3
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Expressed using the metric perturbation
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Inserting the Hertz potential
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Decomposing into spherical harmonics
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And the resulting radial expression in coordinates
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Interaction between radiation and matter

� The stress energy tensor expansion Tµν
matter = ζT (1,0)µν + εζT

(1,1)µν
matter

� εζT
(1,1)µν
matter comes form interaction between εζT (1,0)µν and h(1,0)µν :

∇(0,0)
µ T

(1,1)µν
shell + Γ

µ(0,1)
µλ T

(1,0)λν
shell + Γ

ν(0,1)
µλ T

(1,0)µλ
shell = 0

� T
(1,1)µν
matter determines T

(1,1)
dynamical := T(0,0)ab(eµa )(0,0)(eνb )

(0,0)T (1,1)matter
µν and thus

contributes to Ψ
(1,1)
4

Our ring is made of dust: Tµν = ρuµuν

� Perturbed equations of motion:

[
uµ∇µ(u

ν)
](1,1) = 0,

[
∇µ(ρu

µ)
](1,1) = 0

� Density of the ring: ρ(1,0) = ρ0δ(r − rs )δ(θ − π/2)

� Perturbed density

ρ(1,1) = δρ0δ(r − rs )δ(θ − π/2) + ρ0δ
′(r − rs )δ(θ − π/2)δr + ρ0δ

′(r − rs )δ
′(θ − π/2)δθ

� The ring absorbs gravitation waves ⇒ it oscillates:

rring = rs + εδr(t, ϕ), θring = π/2 + εδθ(t, ϕ)
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The ring oscillations
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Conclusion

Summary

� Modified Teukolsky equation for a perturbed type D background

� A black hole surrounded by a ring in a pole-dipole approximation

� Two separate parts of the solution Ψ
(1,1)
4 = Ψ

(1,1)smooth
4 + Ψ

(1,1)δ
4

� We derived all the source terms for Ψ
(1,1)δ
4 and did solved the matching conditions for

Ψ
(1,1)smooth
4

� But we have yet to calculate the fluxes, inspirals and waveforms in our model

A more complex model?

� Include higher multipoles of the ring/disc?

� g (0,0)
µν : Schwarzschild/linearised Kerr ⇒ Kerr?

� To get h(0,1)µν most models require: CKK reconstruction ⇒ GHZ reconstruction

Other applications involving modified Teukolsky equation

� Inspirals in theories beyond GR ?

� QNM spectrum in perturbed type D spacetimes ?
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