33 template <
class Functor,
typename FType> FType
lim (Functor
F,
double x,
int * n =
nullptr)
37 if (x > 0.) x0 = std::isfinite(x) ? 0.5 * x : 1.;
38 if (x < 0.) x0 = std::isfinite(x) ? 0.5 * x : -1.;
45 for (i = 0; n ==
nullptr or i <= *n; i++)
66 if (n !=
nullptr) *n = i;
80 virtual double scale (
double x)
const = 0;
81 virtual double unscale (
double t)
const = 0;
82 virtual double Jacobian (
double t)
const = 0;
111 ) : F(f), A(a), B(b), M(0.5*(b+a)), D(0.5*(b-a))
113 if (not std::isfinite(a) or not std::isfinite(b))
114 throw exception(
"[CompactificationF] Interval has to be finite!");
120 assert(A <= x and x <= B);
179 ) : F(f), B(b), L(L), Limit(limit) {}
185 return std::isfinite(x) ? (x - B + L) / (x - B - L) : 1.;
199 return -2 * L / ((1. - t) * (1. - t));
217 return F(B - L * (1. + t) / (1. - t));
255 ) : F(f), A(a), L(L), Limit(limit) {}
261 return std::isfinite(x) ? (x - A - L) / (x - A + L) : 1.;
275 return 2 * L / ((1. - t) * (1. - t));
293 return F(A + L * (1. + t) / (1. - t));
326 ) : Compactification(nullptr) {
327 if (std::isfinite(a) and std::isfinite(b))
329 else if (std::isfinite(a) and not std::isfinite(b))
331 else if (not std::isfinite(a) and std::isfinite(b))
334 throw exception(
"[CompactIntegrand] Compactification of (-∞,∞) interval is not implemeted.");
339 delete Compactification;
352 FType ft = Compactification->operator()(t);
362 return ft * Compactification->Jacobian(t);
367 inline double scale (
double x)
const
369 return Compactification->scale(x);
375 return Compactification->unscale(t);
double scale(double x) const
Scale value from the original interval [a,b] into compactified interval [-1,1].
Definition: compact.h:258
FType operator()(double t) const
Evaluate the compactified function.
Definition: compact.h:142
FType operator()(double t) const
Definition: compact.h:282
Compactification of a function from (-∞,b] to (-1,1].
Definition: compact.h:166
CompactificationL(Functor f, double b=0., bool limit=true, double L=1.0)
Definition: compact.h:174
virtual double unscale(double t) const =0
double scale(double x) const
Scale value from the original interval [a,b] into compactified interval [-1,1].
Definition: compact.h:182
virtual FType operator()(double t) const =0
double F(double k, int l, double r, double sigma)
Definition: hydrogen.cpp:163
double unscale(double t) const
Unscale value from the compactified interval [-1,1] into the original interval [a,b].
Definition: compact.h:189
virtual ~ICompactification()
Definition: compact.h:79
CompactificationR(Functor f, double a=0., bool limit=true, double L=1.0)
Definition: compact.h:250
Compactification of a function from finite interval.
Definition: compact.h:99
CompactificationF(Functor f, double a, double b)
Constructor of the class. The parameters "a" and "b" specify original definition interval [a...
Definition: compact.h:107
double unscale(double t) const
Unscale value from the compactified interval [-1,1] into the original interval [a,b].
Definition: compact.h:373
~CompactIntegrand()
Definition: compact.h:337
Compactification of a function from [a,+∞) to [-1,1).
Definition: compact.h:242
FType operator()(double t) const
Definition: compact.h:349
Compactification.
Definition: compact.h:76
double Jacobian(double t) const
Evaluate Jacobian of the transformation.
Definition: compact.h:196
class NodeIntegrator exception
const double Inf
Definition: special.h:67
double unscale(double t) const
Unscale value from the compactified interval [-1,1] into the original interval [a,b].
Definition: compact.h:265
double Jacobian(double t) const
Evaluate Jacobian of the transformation.
Definition: compact.h:272
double scale(double x) const
Scale value from the original interval [a,b] into compactified interval [-1,1].
Definition: compact.h:118
virtual double scale(double x) const =0
CompactIntegrand(Functor f, double a=0., double b=special::constant::Inf, bool limit=true, double L=1.0)
Definition: compact.h:320
FType lim(Functor F, double x, int *n=nullptr)
Compute limit.
Definition: compact.h:33
virtual double Jacobian(double t) const =0
rArray abs(const cArrayView u)
Definition: arrays.cpp:19
double Jacobian(double t) const
Evaluate Jacobian of the transformation.
Definition: compact.h:132
FType operator()(double t) const
Definition: compact.h:206
Compactification multiplied by its jacobian.
Definition: compact.h:311
double scale(double x) const
Scale value from the original interval [a,b] into compactified interval [-1,1].
Definition: compact.h:367
double unscale(double t) const
Unscale value from the compactified interval [-1,1] into the original interval [a,b].
Definition: compact.h:125