18 #include <gsl/gsl_math.h>
19 #include <gsl/gsl_sf.h>
22 #define fac(n) gsl_sf_fact(n)
25 #define sqr(x) (gsl_sf_pow_int((x),2))
32 #define ALPHA_PLUS(n,l) (sqrt(((n)-(l))*((n)+(l)+1)))
33 #define ALPHA_MINUS(n,l) (sqrt(((n)-(l)-1)*((n)+(l))))
36 #define DELTA(a,b) ((a) == (b) ? 1 : 0)
46 const double pi = M_PI;
60 const double ln2 = M_LN2;
61 const double ln10 = M_LN10;
62 const double lnpi = M_LNPI;
67 const double Inf = std::numeric_limits<double>::infinity();
68 const double Nan = std::numeric_limits<double>::quiet_NaN();
91 for (
unsigned i = 1; i < x.
size(); i++)
92 sum += 0.5 * (y[i] + y[i-1]) * (x[i] - x[i-1]);
102 if (y.
size() % 2 != 0)
103 throw exception (
"You need to use even number of grid points for Simpson integration.");
105 T sum1 = 0, sum2 = 0;
107 for (
int i = 1; i < y.
size(); i += 2)
109 for (
int i = 2; i < y.
size() - 1; i += 2)
112 return h * (y.
front() + 4. * sum1 + 2. * sum2 + y.
back()) / 3.;
141 template <
class T> T
pow_exp_hyperg1F1 (T a, T b, T c, T u, T v, T x,
double epsrel = 1
e-10,
unsigned maxiter = 1000)
144 T term = 1. / (a + 1.);
155 T iterm = 1, isum = 0;
156 for (
unsigned k = 0; k <= n; k++)
162 iterm *= (u + T(k)) / (v + T(k)) * ((n - k) / (k + 1.)) * c_over_b;
166 bfactor *= b * x / T(n);
167 term = bfactor * isum / (a + T(n + 1));
175 "Maximal number of iterations (%d) reached in pow_exp_hyperg1F1.",
191 unsigned N = y.
size();
194 for (
unsigned log4scale = 1; log4scale < N; log4scale++)
197 for (
unsigned j = log4scale; j < N; j++)
199 z[j] = (scale * z[j] - z[j-1]) / (scale - T(1));
219 int coulomb_zeros (
double eta,
int L,
int nzeros,
double * zeros,
double epsrel = 1
e-8);
291 template <
class T,
class OuterFunctionDerivative,
class InnerFunctionDerivative> T
chain_rule
293 OuterFunctionDerivative Df,
294 InnerFunctionDerivative Dg,
301 return Df(0,Dg(0,x));
304 T suma = 0, term = 0;
308 if ((term = Df(std::accumulate(counts.begin(), counts.end(), 0),Dg(0,x))) == 0)
312 for (
int j = 1; j <= n; j++)
314 term *=
std::pow(Dg(j,x) / gsl_sf_fact(j), counts[j-1]) / gsl_sf_fact(counts[j-1]);
323 return gsl_sf_fact(n) * suma;
401 inline double ric_j (
int n,
double x)
403 return x * gsl_sf_bessel_jl(n,x);
411 inline double ric_n (
int n,
double x)
413 return x * gsl_sf_bessel_yl(n,x);
427 return gsl_sf_bessel_il_scaled(n,x);
437 return x * gsl_sf_bessel_il_scaled(n,x);
445 inline double sph_i (
int n,
double x)
455 inline double ric_i (
int n,
double x)
472 return gsl_sf_bessel_kl_scaled(n,x) * M_2_PI;
490 inline double sph_k (
int n,
double x)
500 inline double ric_k (
int n,
double x)
526 Complex sphY(
int l,
int m,
double theta,
double phi);
531 Complex sphBiY(
int l1,
int l2,
int L,
int M,
double theta1,
double phi1,
double theta2,
double phi2);
552 return gsl_sf_bessel_jl(n,x) + (n *
ric_j(n-1,x) - (n+1) *
ric_j(n+1,x)) / (2*n+1);
563 return gsl_sf_bessel_yl(n,x) + (n *
ric_n(n-1,x) - (n+1) *
ric_n(n+1,x)) / (2*n+1);
632 int coul_F_michel(
int l,
double k,
double r,
double&
F,
double& Fp);
642 int coul_F (
int l,
double k,
double r,
double &
F,
double & Fp);
681 double logdelta (
int two_j1,
int two_j2,
int two_j3);
707 double Wigner3j_2 (
int two_j1,
int two_j2,
int two_j3,
int two_m1,
int two_m2,
int two_m3);
708 #define Wigner3j(a,b,c,d,e,f) Wigner3j_2(2*(a),2*(b),2*(c),2*(d),2*(e),2*(f))
732 double Wigner6j_2 (
int two_j1,
int two_j2,
int two_j3,
int two_j4,
int two_j5,
int two_j6);
733 #define Wigner6j(a,b,c,d,e,f) Wigner6j_2(2*(a),2*(b),2*(c),2*(d),2*(e),2*(f))
739 double computef (
int lambda,
int l1,
int l2,
int l1p,
int l2p,
int L);
748 double ClebschGordan(
int l1,
int m1,
int l2,
int m2,
int L,
int M);
758 double Gaunt(
int l1,
int m1,
int l2,
int m2,
int l,
int m);
780 double Hyper2F1 (
double a,
double b,
double c,
double x);
cArray dric_jv(int lmax, Complex z)
Definition: special.cpp:175
Array view.
Definition: arrays.h:186
T simpson(double h, NumberArray< T > const &y)
Uniform Simpson integration.
Definition: special.h:100
double dric_k(int n, double x)
Derivative of the modified Ricatti-Bessel function of the second kind, .
Definition: special.h:580
Complex ric_j(int l, Complex z)
Definition: special.cpp:170
double ric_n(int n, double x)
Ricatti-Bessel function of the second kind, .
Definition: special.h:411
virtual T operator()(double x) const =0
Evaluate the function.
double ric_k(int n, double x)
Modified Ricatti-Bessel function of the second kind, .
Definition: special.h:500
Complex dric_h_plus(int n, double x)
Derivative of Ricatti-Hankel function of the first kind, .
Definition: special.h:613
double computef(int lambda, int l1, int l2, int l1p, int l2p, int L)
Definition: special.cpp:670
bool makes_triangle(int two_j1, int two_j2, int two_j3)
Check triangle inequality.
Definition: special.cpp:519
T trapz(double h, NumberArray< T > const &y)
Uniform trapezoidal integration.
Definition: special.h:78
Complex ric_h_plus(int n, double x)
Ricatti-Hankel function of the first kind, .
Definition: special.h:514
const double sqrt_half
Definition: special.h:56
T & front(int i=0)
Definition: arrays.h:777
const double ln2
Definition: special.h:60
const double lnpi
Definition: special.h:62
Complex sphBiY(int l1, int l2, int L, int M, double theta1, double phi1, double theta2, double phi2)
Bi-polar spherical harmonic function.
Definition: special.cpp:384
const double pi_two_inv
Definition: special.h:51
Complex dric_j(int l, Complex z)
Definition: special.cpp:200
NumberArray< T > romberg(const ArrayView< T > y)
Romberg integration.
Definition: special.h:188
NumberArray< T > cos(NumberArray< T > const &A)
Return per-element cosine.
Definition: arrays.h:1747
double Wigner6j_2(int two_j1, int two_j2, int two_j3, int two_j4, int two_j5, int two_j6)
Wigner 6j coefficient.
Definition: special.cpp:610
double sph_i(int n, double x)
Modified spherical Bessel function of the first kind, .
Definition: special.h:445
A comfortable number array class.
Definition: arrays.h:171
double F(double k, int l, double r, double sigma)
Definition: hydrogen.cpp:163
const double ln10
Definition: special.h:61
T pow_exp_hyperg1F1(T a, T b, T c, T u, T v, T x, double epsrel=1e-10, unsigned maxiter=1000)
Compute integral of the confluent hypergeometric function.
Definition: special.h:141
const double sqrt_two
Definition: special.h:54
const double log2e
Definition: special.h:58
const double pi_inv
Definition: special.h:50
T & back(int i=0)
Definition: arrays.h:779
double sph_k_scaled(int n, double x)
Scaled modified spherical Bessel function of the second kind, .
Definition: special.h:470
const double e
Definition: special.h:44
int triangle_count(int L, int maxl)
Definition: special.cpp:772
const double euler
Definition: special.h:64
double dric_k_scaled(int n, double x)
Scaled derivative of modified Ricatti-Bessel function of the second kind, .
Definition: special.h:602
double dric_i_scaled(int n, double x)
Derivative of scaled modified Ricatti-Bessel function of the second kind, .
Definition: special.h:591
const double pi_sqrt
Definition: special.h:49
const double log10e
Definition: special.h:59
size_t size() const
Length of the array (number of elements).
Definition: arrays.h:276
class NodeIntegrator exception
const double Inf
Definition: special.h:67
double ClebschGordan(int __j1, int __m1, int __j2, int __m2, int __J, int __M)
Clebsch-Gordan coefficient.
Definition: special.cpp:702
int coul_F_michel(int l, double k, double r, double &F, double &Fp)
Uniform approximation to the Coulomb wave function.
Definition: special.cpp:403
T sum(const ArrayView< T > v)
Sum elements in array.
Definition: arrays.h:1770
double dric_n(int n, double x)
Derivative of Ricatti-Bessel function of the second kind, .
Definition: special.h:558
double Hyper2F1(double a, double b, double c, double x)
The hypergeometric function .
Definition: special.cpp:784
const double sqrt_three
Definition: special.h:55
Complex dhydro_P(unsigned n, unsigned l, Complex z)
Definition: special.cpp:338
NumberArray< T > sin(NumberArray< T > const &A)
Return per-element sine.
Definition: arrays.h:1723
double Gaunt(int l1, int m1, int l2, int m2, int l, int m)
Gaunt's integral.
Definition: special.cpp:753
double coul_F_asy(int l, double k, double r, double sigma)
Asymptotic form of the regular Coulomb wave.
Definition: special.cpp:511
NumberArray< T > pow(NumberArray< T > const &u, double e)
Return per-element power.
Definition: arrays.h:1683
double dric_i(int n, double x)
Derivative of the modified Ricatti-Bessel function of the second kind, .
Definition: special.h:569
std::vector< std::vector< int > > FdB_partition(int n)
Faa di Bruno partitioning.
Definition: special.cpp:821
double coul_F_sigma(int l, double k)
Coulomb phase shift.
Definition: special.cpp:498
int coulomb_zeros(double eta, int L, int nzeros, double *zeros, double epsrel=1e-8)
Get zeros of the Coulomb wave function .
Definition: special.cpp:60
double ric_i_scaled(int n, double x)
Scaled modified Ricatti-Bessel function of the first kind, .
Definition: special.h:435
double sph_i_scaled(int n, double x)
Scaled modified spherical Bessel function of the first kind, .
Definition: special.h:425
const double pi_two_invsqrt
Definition: special.h:52
T chain_rule(OuterFunctionDerivative Df, InnerFunctionDerivative Dg, int n, double x)
Chain rule for n-th derivative.
Definition: special.h:292
const double pi_quart
Definition: special.h:48
Exception class.
Definition: misc.h:39
double logdelta(int two_j1, int two_j2, int two_j3)
Auxiliary function used in coupling coefficient computations.
Definition: special.cpp:526
cArray ric_jv(int lmax, Complex z)
Definition: special.cpp:107
rArray abs(const cArrayView u)
Definition: arrays.cpp:19
std::complex< double > Complex
Definition: complex.h:20
double ric_k_scaled(int n, double x)
Scaled modified Ricatti-Bessel function of the second kind, .
Definition: special.h:480
double ric_i(int n, double x)
Modified Ricatti-Bessel function of the first kind, .
Definition: special.h:455
Base class for radial functions.
Definition: special.h:536
const double pi
Definition: special.h:46
const double Nan
Definition: special.h:68
Complex sphY(int l, int m, double theta, double phi)
Spherical harmonic function.
Definition: special.cpp:352
Complex hydro_P(unsigned n, unsigned l, Complex z)
Definition: special.cpp:319
size_t size() const
Item count.
Definition: arrays.h:673
double sph_k(int n, double x)
Modified spherical Bessel function of the second kind, .
Definition: special.h:490
int coul_F(int l, double k, double r, double &F, double &Fp)
Evaluate Coulomb wave function (and its derivative).
Definition: special.cpp:448
double Wigner3j_2(int two_j1, int two_j2, int two_j3, int two_m1, int two_m2, int two_m3)
Wigner 3j coefficient.
Definition: special.cpp:536
const double pi_half
Definition: special.h:47