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1. Introduction

The study of the separability of the Hamilton-Jacobi and the corresponding scalar field

equations in a curved spacetime has a long history. Robertson [1] and Eisenhart [2] dis-

cussed general conditions for such a separability in spaces which admit a complete set of

mutually orthogonal families of hypersurfaces. An important class of 4-dimensional sepa-

rable spacetimes, including several type D metrics, was found by Carter [3]. Carter also

proved the separability of the Hamilton-Jacobi and the scalar field equation in the Kerr

metric [4]. It was demonstrated in [5] that this separability follows from the existence of

a Killing tensor. This result was generalized later, namely, it was shown that Killing and

Killing-Yano tensors play an important role in the separability theory (see, e.g., [6 – 10]).

In the present paper we prove the separability of the Hamilton-Jacobi and scalar field

equations in the general (D ≥ 4) Kerr-NUT-AdS spacetimes [11]. These solutions were

obtained as a generalization of the metrics for the rotating higher dimensional black holes

with a cosmological constant [12 – 14], which, in their turn, are generalizations of the Myers-

Perry solution [15]. There are several publications devoted to the separation of variables

for this class of metrics. However, all the results obtained up to now assume either a

restriction on the number of dimensions [16 – 18] or special properties of the parameters

which characterize the solution [14, 19 – 24]. The separation of variables which we prove in

this paper is valid in the general Kerr-NUT-AdS spacetime in any number of dimensions

and without any restriction on the parameters of the metric. We also discuss the relation

of the separation constants with the conserved quantities connected with the Killing-Yano

and Killing tensors recently discovered for this class of the metrics [25 – 28].
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2. Kerr-NUT-AdS metrics and their properties

Our starting point is the general higher dimensional Kerr-NUT-AdS metric obtained in [11].

The metric can be written using D coordinates xa which naturally splits into two groups.

Radial and latitude coordinates are denoted as xµ and labelled by the Greek indices

µ, ν = 1, . . . , n, n = [D/2], i.e., xµ = xµ. Time and azimuthal coordinates ψk = xn+1+k are

indexed by the Latin indices from the middle of the alphabet, k, l = 0, . . . ,m, m = D − n − 1.

We use the Einstein summation convention only for the indices a, b, . . . running over all

coordinates. For the convenience we also introduce ε = D − 2n. In these coordinates the

metric and its inverse read1

ds2=

n
∑

µ=1

[

dx2
µ

Qµ

+ Qµ

(n−1
∑

k=0

A(k)
µ dψk

)2]

−
εc

A(n)

( n
∑

k=0

A(k)dψk

)2

, (2.1)

and

(∂s)
2 =

n
∑

µ=1

[

Qµ(∂µ)2 +
1

QµU2
µ

( m
∑

k=0

(−x2
µ)n−1−k∂k

)2]

−
ε

cA(n)
(∂n)2 . (2.2)

Here,

Qµ =
Xµ

Uµ

, Uµ =
n

∏

ν=1
ν 6=µ

(x2
ν − x2

µ), c =
m
∏

k=1

a2
k,

Xµ = (−1)1−ε
1 + λx2

µ

x2ε
µ

m
∏

k=1

(a2
k − x2

µ) + 2Mµ(−xµ)1−ε,

A(k)
µ =

∑

ν1<···<νk

νi 6=µ

x2
ν1

. . . x2
νk

, A(k) =
∑

ν1<···<νk

x2
ν1

. . . x2
νk

. (2.3)

The parameters (Mµ, ak) are related to the mass, NUT parameters, and angular momenta,

λ is proportional to the cosmological constant.

The metric (2.1) is an Einstein space obeying the equation

Rab = (D − 1)λgab. (2.4)

It possesses m + 1 = D − n Killing vectors ∂k, as well as the principal Killing-Yano tensor

of rank (D − 2) which generates a full set of Killing-Yano and Killing tensors, making the

geodesic motion completely integrable [26 – 28].

The aim of this paper is to demonstrate that in the coordinates xµ, ψk, both the

Hamilton-Jacobi and Klein-Gordon equations separate. To prove this we shall need a set

of algebraic relations which are valid for quantities which enter the metric (2.1). It is useful

to introduce quantities

U ≡

n
∏

µ,ν=1
µ<ν

(x2
µ − x2

ν) ,

U

µ ≡
U

Uµ

, (2.5)

1The form (2.1) of the metric is actually an analytical continuation related to the physical metric by a

simple Wick rotation, see [11].
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which satisfy the important identities

n
∑

µ=1

x2(n−1)
µ

U

µ = (−1)n−1U , (2.6a)

n
∑

µ=1

x2k
µ

U

µ = 0 for k = 0, . . . , n − 2 , (2.6b)

n
∑

µ=1

1

x2
µ

U

µ =
U

A(n)
, (2.6c)

n
∑

µ=1

A
(k)
µ

x2
µ

U

µ =
A(k)

A(n)
U for k = 0, . . . , n − 1 , (2.6d)

and

∂µ

U

µ = 0 . (2.7)

The first two identities follow from the fact that the matrix B µ

(k) = (−x2
µ)n−1−k/Uµ is the

inverse of A
(k)
µ ,

n−1
∑

k=0

(−x2
µ)n−1−k

Uµ

A(k)
ν = δν

µ ,

n
∑

µ=1

(−x2
µ)n−1−k

Uµ

A(l)
µ = δl

k (2.8)

(set l = 0 in the last expression), (2.6c) follows from (2.6a) by substitution xµ → 1/xµ,

and (2.6d) can be verified using (2.6c), (2.8) and A
(k)
µ = A(k) − x2

µA
(k−1)
µ . The identity (2.7)

is obvious.

The function U is simply related to the determinant of the metric

g = det(gab) =
(

−cA(n)
)ε

U2 . (2.9)

3. Separability of the Hamilton-Jacobi equation

The Hamilton-Jacobi equation for geodesic motion on a manifold with metric gab has the

form
∂S

∂λ
+ gab ∂aS ∂bS = 0 . (3.1)

Here λ denotes an ‘external’ time which turns out to be an affine parameter of the cor-

responding geodesic motion. We want to demonstrate that in the background (2.1) the

classical action S allows a separation of variables

S = −wλ +

n
∑

µ=1

Sµ(xµ) +

m
∑

k=0

Ψkψk (3.2)

with functions Sµ(xµ) of a single argument xµ.

Substituting (3.2) into the Hamilton-Jacobi equation (3.1) and multiplying by U in-

troduced in (2.5), we obtain

n
∑

µ=1

U

µFµ = wU + ε
Ψ2

n

c

U

A(n)
, (3.3)
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where Fµ is a function of xµ only,

Fµ = XµS′2
µ +

1

Xµ

( m
∑

k=0

(

−x2
µ

)n−1−k
Ψk

)2

. (3.4)

Here, the prime denotes the derivative of Sµ with respect to its single argument xµ. Thanks

to the identities (2.6), the equation (3.3) is satisfied if the functions Fµ have the form

Fµ =
m

∑

k=0

ck (−x2
µ)n−1−k , (3.5)

where ck, k = 1, . . . , n − 1 are arbitrary constants, c0 = w, and the constant cn, which is

present only in odd number of dimensions, is related to Ψn as

cn = −
Ψ2

n

c
. (3.6)

The condition (3.5) leads to equations for S′
µ

S′2
µ = −

1

X2
µ

( m
∑

k=0

(

−x2
µ

)n−1−k
Ψk

)2

+
1

Xµ

m
∑

k=0

ck (−x2
µ)n−1−k, (3.7)

which can be solved by quadratures. Notice that in odd dimensions there is an additional

term in which cn is not an independent constant, cf. eq. (3.6).

Thus we have shown that Hamilton-Jacobi equation (3.1) in the gravitational back-

ground (2.1) can be solved by the classical action S in the separated form (3.2) with Sµ

satisfying (3.7). The solution contains D constants, namely c0 = w, c1, . . . , cn−1, and

Ψ0, . . . , Ψm.

The gradient of S gives the momentum pa = ∂aS. Substituting our expression for S

we obtain pa in terms of the constants ck and Ψk. These relations can be inverted. Clearly,

Ψk = pk are constants linear in the momentum generated by Killing vectors. To evaluate

ck we rewrite (3.5) as

Fµ

Uµ

− ε
p2

n

cUµx2
µ

=

n−1
∑

k=0

ck

(−x2
µ)n−1−k

Uµ

. (3.8)

It can be inverted using (2.8). Employing the expression for cn with Ψn = pn and the

identity (2.6d) we obtain

ck =
n

∑

µ=1

A(k)
µ

Fµ

Uµ

− εp2
n

A(k)

cA(n)
, (3.9)

where Fµ is given by (3.4) with pµ and pk substituted for S′
µ and Ψk, respectively.

We thus found that the constants ck are quadratic in the momenta pa (for example, for

k = 0 we get w = c0 = gabpapb). It can be shown that they are the same as the constants

introduced recently using the Killing-Yano tensor and that they are generated by second

rank Killing tensors [28].

– 4 –



J
H
E
P
0
2
(
2
0
0
7
)
0
0
5

4. Separability of the Klein-Gordon equation

The behavior of a massive scalar field Φ in the gravitational background gab is governed

by the Klein-Gordon equation

¤Φ =
1

√

|g|
∂a(

√

|g|gab∂bΦ) = m2Φ. (4.1)

This equation remains valid for the non-minimal coupling case as well. The term ξR is

constant in the Einstein spaces and can be included into the definition of m2.

Now, we demonstrate that the Klein-Gordon equation (4.1) in the background (2.1)

allows a multiplicative separation of variables

Φ =

n
∏

µ=1

Rµ(xµ)

m
∏

k=0

eiΨkψk . (4.2)

This equation has the following explicit form

√

|g|m2Φ =
n

∑

µ=1

∂µ

(

√

|g|

Uµ

Xµ∂µΦ

)

+
n

∑

µ=1

√

|g|

UµXµ

( m
∑

k=1

(−x2
µ)n−1−k∂k

)2

Φ − ε

√

|g|

cA(n)
∂2

nΦ .

(4.3)

Here we used the quasidiagonal property of the inverse metric gab and the fact that ∂k are

Killing vectors. We further notice that

√

|g| ∝ UP ε, P ≡

n
∏

µ=1

xµ, (4.4)

where “∝” means equality up to a constant factor (which can be ignored in eq. (4.3)).

Using the identities (2.6a), (2.6c), (2.7) and the definition of

U

µ we find that (4.3) gives

n
∑

µ=1

U

µ

[

(−1)nm2x2(n−1)
µ Φ + ∂µ(P εXµ∂µΦ)/P ε

]

(4.5)

+

n
∑

µ=1

[ U

µ

Xµ

( m
∑

k=1

(−x2
µ)n−1−k∂k

)2

Φ −
ε

U

µ

cx2
µ

∂2
nΦ

]

= 0 .

Using the ansatz (4.2) we find

∂kΦ = iΨkΦ, ∂µΦ =
R′

µ

Rµ

Φ, ∂2
µ Φ =

R′′
µ

Rµ

Φ, (4.6)

and the Klein-Gordon equation (4.5) takes the form

n
∑

µ=1

U

µGµΦ = 0, (4.7)

– 5 –
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where Gµ is function of xµ only,

Gµ = (−1)nm2x2(n−1)
µ +

R′
µ

Rµ

(

X ′
µ + ε

Xµ

xµ

)

+ Xµ

R′′
µ

Rµ

−
1

Xµ

( m
∑

k=1

(−x2
µ)n−1−kΨk

)2

+
εΨ2

n

cx2
µ

. (4.8)

As earlier, the prime means the derivative of functions Rµ and Xµ with respect to their

single argument xµ. Employing the identity (2.6b) we realize that (4.7) is automatically

satisfied when

Gµ =
n−1
∑

k=1

bk(−x2
µ)n−1−k , (4.9)

where bk are arbitrary constants.

Therefore we have demonstrated that the Klein-Gordon equation (4.1) in the back-

ground (2.1) allows a multiplicative separation of variables (4.2), where functions Rµ(xµ)

satisfy the ordinary second order differential equations

(

XµR′
µ

)′
+ ε

Xµ

xµ

R′
µ −

Rµ

Xµ

( m
∑

k=0

(−x2
µ)n−1−kΨk

)2

−

m
∑

k=0

bk(−x2
µ)n−1−kRµ = 0 . (4.10)

Here b0 = m2, b1, . . . , bn−1 are arbitrary separation constants. The constant bn is present

only in an odd number of spacetime dimensions and is related to the constants Ψn and c

through

bn =
Ψ2

n

c
. (4.11)

We expect that the separation constants are related to the Killing tensors obtained in [28].

5. Discussion

We demonstrated the separability of the Hamilton-Jacobi and the scalar field equations

in the general (higher-dimensional) Kerr-NUT-AdS spacetime. For particle motion the

separability implies that the corresponding equations of motion can be written in the first

order form (3.7). In the Klein-Gordon case we obtained a set of ordinary second order

differential equations (4.10). The problem to solve them is usually much simpler. Even

when some of these equations cannot be solved in terms of known elementary or special

functions, one can always use numerical methods. The numerical integration of ordinary

differential equations can be performed very effectively.

In the present paper we established the separability property by ‘brute force’ — by

writing the corresponding equations in a special coordinate system. As we already men-

tioned, the constants of separation are directly related to the existing complete set of the

second rank Killing tensors [28]. It would be interesting to derive the separability property

by starting with the general symmetry properties of the considered spacetime, using, for

example, the results of [9].

– 6 –
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The separation of variables in the scalar field equation can be used for the study of

different interesting problems. One of them is the calculation of the bulk Hawking radiation

of higher dimensional rotating black holes. As it was shown by Teukolsky [29, 30] in the

4D Kerr metric, not only the scalar field equation allows separation of variables, but the

equations of the other (massless) fields with non vanishing spin can also be decoupled and

separated. An interesting question is whether the existing symmetry connected with a

complete set of the Killing tensors in the general Kerr-NUT-AdS spacetime makes such a

decoupling and separation of the higher spin fields equations possible.
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202/06/0041 and appreciates the hospitality of the University of Alberta. D.K. is grateful

to the Golden Bell Jar Graduate Scholarship in Physics at the University of Alberta. The

authors also thank Don N. Page and Muraari Vasudevan for reading the manuscript.

References

[1] H.P. Robertson, Bemerkung uber separierbare Sys-teme in der Wellenmechanik, Math. Ann.

98 (1927) 749.

[2] L.P. Eisenhart, Separable systems of Stackel, Ann. Math. 35 (1934) 284.

[3] B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations,

Commun. Math. Phys. 10 (1968) 280.

[4] B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174 (1968)

1559.

[5] M. Walker and R. Penrose, On quadratic first integrals of the geodesic equations for type [22]

spacetimes, Commun. Math. Phys. 18 (1970) 265.

[6] R. Penrose, Naked singularities, Ann. N.Y. Acad. Sci. 224 (1973) 125;

R. Floyd, The dynamics of Kerr fields, PhD Thesis, London (1973).

[7] L.P. Hughston and P. Sommers, Spacetimes with Killing tensors, Comm. Math. Phys. 32

(1973) 147.

[8] N.M.J. Woodhouse, Killing tensors and the separation of the Hamilton-Jacobi equation,

Comm. Math. Phys. 44 (1975) 9.

[9] S. Benenti and M. Francaviglia, Remarks on certain separability structures and their

applications to general relativity, Gen. Rel. Grav. 10 (1979) 79.

[10] S. Benenti and M. Francaviglia, The theory of separability of the Hamilton-Jacobi equation

and its applications to General Relativityr, in Einstein Centennial Volume, A. Held ed.

Plenum Press, New York (1980).
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