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A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating
NUT–(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background
represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of
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such a field cannot be consistently solved.
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I. INTRODUCTION

In recent years people have become interested in higher-
dimensional spacetimes with motivation, among others,
coming from string theories. One of the important classes
of exact solutions of the Einstein equations are the space-
times representing black holes. In past years various gen-
eralizations of black-hole solutions to the higher-
dimensional gravity have been discovered. Starting with
nonrotating and rotating black holes [1,2] and following
with the metric describing the rotating black hole with the
cosmological constant in five dimensions [3], the generally
rotating black hole in arbitrary dimension with the cosmo-
logical constant was found in [4,5]. In 2006 this solution
was rewritten [6] in much more convenient coordinates
which allowed one to add Newman-Unti-Tamburino
(NUT) parameters and compute the curvature tensors ex-
plicitly [7].

Recently, the properties of this solution have been dis-
cussed in various papers. It has been shown that the space-
time possesses hidden symmetries which can be described
by the principal Killing-Yano tensor [8], the properties of
which have been thoroughly discussed in [9]. One of the
main consequences of these hidden symmetries is a possi-
bility to find a complete set of integration constants for a
geodesic motion which are in involution [9–11]. This
result is related to the separability of the Hamilton-Jacobi
equation which, together with the separability of the Klein-
Gordon equation, was demonstrated in [12].

It seems that a generalization of the black-hole solution
to include an electromagnetic field is not straightforward.
Some partial results are know [13–18], however a solution
representing a rotating black hole with electromagnetic
field parametrized by full number of black-hole parameters
and electric/magnetic charges is not known.

In this work we present the test electromagnetic field on
the background described by the metric with the structure
of black-hole solution [6], however, we do not enforce the
specific form of the metric function X� which is needed to
satisfy the vacuum Einstein equations. The electromag-

netic field is described by n � bD=2c electric and magnetic
charges and it is adjusted to the explicit as well as hidden
symmetries of the spacetime. In even dimensions our field
is equivalent to the harmonic forms independently found in
[19], our results supply the proof that these forms are
harmonic in all even dimensions.

We also show that our field is a generalization of the
electromagnetic field known from the Carter [20] and
Plebański–Demiański [21] form of the black-hole solution
inD � 4. In this special case, however, the metric function
can be modified in such a way that the metric and the
electromagnetic field satisfy the full coupled Einstein–
Maxwell equations. Unfortunately, the same is not true in
the higher-dimensional case.

The plan of the paper is the following. We discuss
separately even and odd spacetime dimensions—although
our procedure is very similar in both cases, the resulting
expressions are slightly different and it would be artificial
to try to ‘‘squeeze’’ them into the same equations. We
discuss the case of even dimensions in detail and then
sketch the corresponding results for the odd dimensions.
First we review the metric and the symmetries of the black-
hole spacetime, next we find the test electromagnetic field
‘‘adjusted’’ to the symmetries of the spacetime. For even
dimensions we also discuss the case of the physical dimen-
sion D � 4, in the odd dimension case we study the
Chern–Simons modification of the electromagnetic field.
Finally, we discuss a possibility to generalize our fields to a
solution of the coupled Einstein–Maxwell equations. The
results are recapitulated in the Sec. IV and the paper is
concluded by the technical appendix.

II. EVEN DIMENSIONS, D � 2n

A. The metric

We start with a simpler case of even spacetime dimen-
sion D � 2n. The spacetime of generally rotating black
hole with NUT charges can be described by the metric

 g �
Xn
��1

�U�

X�
dx�2 �

X�
U�

�Xn�1

k�0

A�k�� d k

�
2
�
: (2.1)
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Here x�, � � 1; . . . ; n, correspond to radial1 and latitudi-
nal directions, while  j, j � 0; . . . ; n� 1, to temporal and

longitudinal directions. The functions U� and A�k�� [to-
gether with U and A�k� used below] are defined as

 U� �
Yn
��1
���

�x2
� � x

2
��; U �

Yn
�;��1
�<�

�x2
� � x

2
��; (2.2)

 A�k�� �
Xn

�1 ;...;�k�1
�1<...<�k;�i��

x2
�1

. . . x2
�k ; A�k� �

Xn
�1 ;...;�k�1
�1<...<�k

x2
�1

. . . x2
�k :

(2.3)

We call the remaining functions X� the metric functions.
In the following we consider a broader class of space-

times than merely the black-hole spacetime, namely, we
just assume that the metric functions X� depend arbitrarily
on a single coordinate, X� � X��x��. For the black-hole
spacetime they acquire a specific from [see (2.10) below]
determined by the vacuum Einstein equations.

The metric can be diagonalized

 g �
Xn
��1

�U�

X�
���� �

X�
U�
��̂��̂

�
�
XD
a�1

eaea (2.4)

introducing the unnormalized frame �a and normalized
frame ea of 1-forms

 � � � dx�; e� �

�U�

X�

�
1=2
��;

��̂ �
Xn�1

k�0

A�k�� d k; e�̂ �

�X�
U�

�
1=2
��̂:

(2.5)

The dual frames of vectors are given by

 �� � @x� ; e� �

�X�
U�

�
1=2
��;

��̂ �
Xn�1

k�0

��x2
��
n�1�k

U�
@ k; e�̂ �

�U�

X�

�
1=2
��̂:

(2.6)

Here we use the convention �̂ � �� n and Greek indices
run from 1 to n. The inverse relations can be easily ob-
tained with help of the relations (A1) in the appendix.

Let us note that the definition of unnormalized 1-forms
�a and vectors �a does not depend on the metric functions
X�.

It was shown in [7] that the Ricci curvature for such a
metric is

 Ric � �
Xn
��1

r��e
�e� � e�̂e�̂�; (2.7)

where
 

r� �
1

2

X00�
U�
�
Xn
��1
���

1

U�

x�X
0
� � x�X

0
�

x2
� � x

2
�

�
Xn
��1
���

1

U�

X� � X�
x2
� � x

2
�

�
@

@x2
�

�Xn
��1

x2
��x�1

� X��;�
U�

�
: (2.8)

The scalar curvature simplifies to

 R � �
Xn
��1

X00�
U�

: (2.9)

Here, the primes denote the differentiation with respect to
the single argument of the metric function X0� � X�;�.

The requirement that the metric (2.1) satisfies the
Einstein equations with the cosmological constant implies
that the metric functions have the form

 X� � b�x� �
Xn
k�0

ckx2k
� ; (2.10)

see [6,7] or (A6) in the appendix. The constants ck and b�
are then related to the cosmological constants, angular
momenta, mass, and NUT charges, see, e.g., [6] for details.
For b� � 0 we obtain [7] the constant curvature spacetime
with the scalar curvature R � �2n�2n� 1�c2n.

The spacetime with the metric (2.1) possesses the ex-
plicit symmetries given by the Killing vectors @ j and
hidden symmetries which are related to the principal
Killing-Yano tensor discovered in [8] and discussed in
detail in [9]. The principal Killing-Yano tensor is dual to
the rank-2 closed conformal Killing-Yano tensor which has
a very simple form in the frames �a and ea:

 h �
Xn
��1

x��
� ^ ��̂ �

Xn
��1

x�e
� ^ e�̂: (2.11)

It has been demonstrated in [9] that it is possible to gen-
erate a series of higher-rank Killing–Yano tensors and a
series of rank-2 Killing tensors from h. The conformal
Killing–Yano tensor also identifies eigenspaces spanned
on the pairs fe�; e�̂g and coordinates x� as corresponding
eigenvalues.

B. Algebraically special test electromagnetic field

Now we turn to the task to find an algebraically special
test electromagnetic field on the background given by
the metric (2.1). By algebraically special we mean
that the Maxwell tensor F shares the explicit symmetry
of the metric (it is independent of  j’s) and it is aligned
with the hidden symmetry of the spacetime, namely, it
has the same eigenspaces as the principal conformal

1The radial coordinate (and some other related quantities) are
actually rescaled by the imaginary unit i in order to put the
metric to a more symmetric and compact form—cf., e.g., [6].
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Killing-Yano tensor h. We thus require

 F �
Xn
��1

f��
� ^ ��̂; f� � f��x1; . . . ; xn�: (2.12)

The Maxwell tensor is generated by the vector potential,
F � dA. We assume the vector potential

 A �
Xn
��1

�A��
� � A�̂�

�̂� (2.13)

with the components A� and A�̂ independent of  j.
Comparing dAwith (2.12) we find that A� terms are gauge
trivial and A�̂ must satisfy ��x2

� � x
2
��A�̂�;� � 0, from

which follows that the vector potential can be written as

 A �
Xn
��1

g�x�
U�

��̂; (2.14)

where g� are functions of a single variable only, g� �
g��x��. Evaluating the Maxwell tensor we get the compo-
nents f�:

 f� �
g�
U�
�
x�g

0
�

U�
� 2x�

Xn
��1
���

1

U�

x�g� � x�g�
x2
� � x

2
�

: (2.15)

Alternatively, we could apply directly the first Maxwell
equation dF � 0 to the Maxwell tensor (2.12). With help
of identity (A5) we find that f� are generated by an
auxiliary potential �,

 f� � �;�; (2.16)

which satisfies the equation

 �;�� � 2
x��;� � x��;�

x2
� � x2

�
for � � �: (2.17)

The field (2.14) found above is generated by the potential

 � �
Xn
��1

g�x�
U�

: (2.18)

Next we proceed to calculate the source J of the elec-
tromagnetic field using the second Maxwell equation J �
�r � F. Expressing the Maxwell tensor in coordinates
fx�;  jg, using Fna;n � g�1=2P

��g
1=2F�a�;�, the fact that

the determinant g of the metric in these coordinates is
g � U2, identities (A1) and (A2), and relations (2.12)
and (2.16) we obtain

 J �
Xn
��1

j���̂; (2.19)

with

 j� � �2
@

@x2
�

�
�� x2

�

Xn
��1

x�1
� �;�

�
: (2.20)

Substituting (2.18) we finally obtain

 j� � 2
@

@x2
�

�Xn
��1

x2
�g0�
U�

�
: (2.21)

It is worth mentioning that the expression for the source J
does not contain any reference to the metric functions X�.

We are interested in the electromagnetic field without
sources, so we require J � 0. Integrating (2.21) we find
that the sum in the square brackets has to be a constant.
However, this sum has a special form discussed in the
appendix. Using (A6) we find that g0� are given by a single
polynomial of the �n� 1�th order in variable x2

�.
Integrating once more we find

 g�x� � e�x� �
Xn�1

k�0

ak��x2
��
n�1�k: (2.22)

Substituting into the vector potential (2.14) or the scalar
potential (2.18) we find with help of the relations (A1) that
the terms containing the constants ak are gauge trivial (they
contribute by

Pn�1
k�0 akd k intoA or by just the constant a0

into �) and they can be ignored.
We thus have found that the algebraically special elec-

tromagnetic field [i.e., the field of the form (2.12)] satisfies
the Maxwell equations on the background described by the
metric (2.1) if and only if it is generated by the vector
potential

 A �
Xn
��1

e�x�
U�

��̂: (2.23)

The components f� of the Maxwell tensor are easily
determined by (2.16) from the auxiliary potential

 � �
Xn
��1

e�x�
U�

; (2.24)

and they are

 f� �
e�
U�
� 2x�

Xn
��1
���

1

U�

x�e� � x�e�
x2
� � x

2
�

: (2.25)

Here, e� are constants which can be related using the
Gauss and Stokes theorems to the electric and magnetic
charges of the field.

If we set all charges except one, say e�, to zero, the
Maxwell tensor F corresponds to the harmonic form G���

�2�

recently found and verified for particular cases in [19].
The surprising property of our field is that it satisfies the

Maxwell equations independently of a specific form of the
metric functions X�. Moreover, as we will see in (2.30), the
stress-energy tensor corresponding to the field (2.12) has
the form consistent with the structure of the Ricci (and the
Einstein) tensor (2.7). These facts open a possibility that
we could solve the full Einstein–Maxwell equations: mod-
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ifying the metric functions X� we could construct the
spacetime in which the stress-energy tensor T would be a
source for the Einstein equations, and the electromagnetic
field would remain the solution of the Maxwell equations.

First, we will show that this goal can be achieved in
D � 4 dimensions. Unfortunately, next we will demon-
strate that this procedure does not work in higher
dimensions.

C. Case D � 4

The metric (2.1) is a generalization of the D � 4 black-
hole solution in the form found by Carter [20] and elabo-
rated by Plebański and Demiański [21]. The full class of
Plebański–Demiański solutions includes accelerated rotat-
ing NUT and electromagnetically charged black holes. The
meaning of all parameters of the solutions was recently
discussed in the series of papers [22–26]. We use the
charged Plebański–Demiański metric with the acceleration
set to zero2:

 g � �
Q

r2 � p2 �dt� p
2d��2 �

r2 � p2

Q
dr2

�
r2 � p2

P
dp2 �

P

r2 � p2 �dt� r
2d��2; (2.26)

where
 

Q � e2 � 2mr� k� "r2 � �r4

� X��r2� � 2mr� e2;

P � �g2 � 2np� k� "p2 � �p4

� X�p2� � 2np� g2: (2.27)

The electromagnetic field is given by

 A � �
1

r2 � p2 �er�dt� p
2d�� � gp�dt� r2d���:

(2.28)

Here t, r, p, � are temporal, radial, latitudinal, and longi-
tudinal coordinates, m, n, ", � are parameters related to
mass, NUT charge, angular momentum, and cosmological
constant, and e, g are electric and magnetic charges.

This metric and the electromagnetic field satisfy coupled
Einstein–Maxwell equations. For e, g � 0 the metric
(2.26) satisfies the vacuum Einstein equations, however,
even in this case the electromagnetic field (2.28) (with
nonzero charges) satisfies the Maxwell equations and it is
thus a valid test electromagnetic field on the given vacuum
background.

Now, we can easily identify the Plebański–Demiański g
and A with our general metric (2.1) and field (2.23) using
the dictionary

 

 0 � t; x1 � ir; X1 � Q;

U1 � r2 � p2; e1 � ie;

 1 � �; x2 � p; X2 � P;

U2 � �r2 � p2; e2 � g: (2.29)

Clearly, if the charges e, g are missing in the metric
functions Q and P, these functions corresponds exactly
to X1 and X2 given by (2.10) and the electromagnetic field
(2.28) corresponds to the test field given by (2.23).
However, it is possible to modify P and Q by adding e2

and �g2 respectively (i.e., changing the vacuum X�’s by
adding �e2

�), and we obtain the metric and the electro-
magnetic field satisfying the coupled Einstein–Maxwell
equations.

D. Einstein–Maxwell equations in even D � 4

In a generic dimension we first evaluate the stress-
energy tensor T of the electromagnetic field (2.12). A
straightforward calculation leads to

 8�T �
Xn
��1

�2f2
� � f2��e�e� � e�̂e�̂�; (2.30)

with the trace

 8�T � 2�2� n�f2; (2.31)

where the function f2 is defined as

 f2 �
Xn
��1

f2
�: (2.32)

We explicitly see that the trace of the stress energy is
nonvanishing for D � 4 which is related to the fact that
the electromagnetic field is not conformally invariant in a
general dimension.

Now we would like to solve the Einstein equations
Ric� 1

2Rg��g � 8�T. The trace gives the condition

 R � 2
D

D� 2
�� 2

D� 4

D� 2
f2: (2.33)

However, the scalar curvature has the form (2.9) and it
immediately follows that

 

@2n�2

@x2n�2
�
�U�R� � �X

�2n�
� ; (2.34)

which is a function of x� only. Applying this to the right-
hand-side of (2.33) we obtain the condition

 

@2n�2

@x2n�2
�
�U�f

2� must be a function of x� only:

(2.35)

It was checked by Mathematica that this conditions does
not hold for the electromagnetic field given by (2.25), at
least for the lowest nontrivial values of n. It seems that the

2See, e.g., Eqs. (5) and (6) of [24] with acceleration � � 0.
Here we also used the gauge freedom to set ! � 1 and redefined
k.
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main problem is that R behaves as
P
h�=U� while f2 as a

square of such sums.
We thus may conclude that in a generic even dimension

the electromagnetic field of the form (2.12) and (2.25)
cannot couple to the metric given by (2.1).

III. ODD DIMENSIONS, D � 2n� 1

A. The metric

Let us briefly review modifications which appear in the
odd dimensional case. We have an additional coordinate  n
which labels an ‘‘unpaired’’ angular direction. The metric
contains an additional term,

 

g �
Xn
��1

�U�

X�
dx�

2 �
X�
U�

�Xn�1

k�0

A�k�� d k

�
2
�

�
c

A�n�

�Xn
k�0

A�k�d k

�
2
: (3.1)

Here c is a conventional constant.3 We can again introduce
the frames of 1-forms given by (2.5) completed with
1-forms which we label by the index 0̂ 	 2n� 1

 � 0̂ �
Xn
k�0

A�k�d k; e0̂ �

�
c

A�n�

�
1=2
�0̂: (3.2)

The dual frames then become

 

��̂ �
Xn
k�0

��x2
��
n�1�k

U�
@ k ; e�̂ �

�U�

X�

�
1=2
��̂;

�0̂ �
1

A�n�
@ n ; e0̂ �

�
A�n�

c

�
1=2
�0̂: (3.3)

The metric diagonalizes

 g �
Xn
��1

�U�

X�
���� �

X�
U�
��̂��̂

�
�

c

A�n�
�0̂�0̂ �

XD
a�1

eaea;

(3.4)

as well as the Ricci tensor [7]

 Ric � �
Xn
��1

r��e
�e� � e�̂e�̂� � r0e

0̂e0̂: (3.5)

Here

 r� �
1

2

�X00�
U�
�

1

2x�

�X0�
U�
�
Xn
��1
���

1

U�

x� �X0� � x� �X0�
x2
� � x

2
�

�
@

@x2
�

�Xn
��1

x� �X0�
U�

�
;

r0 �
Xn
��1

�X0�
x�U�

;

(3.6)

and we used shifted metric functions

 

�X � � X� �
c

x2
�
: (3.7)

The scalar curvature becomes

 R � �
Xn
��1

�X00�
U�
� 2

Xn
��1

1

x�

�X0�
U�

: (3.8)

Finally, the vacuum Einstein equations require

 X� � �
c

x2
�
� b� �

Xn�1

k�0

ckx
2k
� : (3.9)

The spacetime has n� 1 Killing vectors @ j and there
exists the principal Killing–Yano tensor dual to the con-
formal Killing–Yano tensor which is given again by (2.11).

B. Algebraically special test electromagnetic field

As in the even dimensions we look for the electromag-
netic field with the structure given by (2.12). One could ask
if in the odd dimension could not be this ansatz extended
by an additional term related to the ‘‘unpaired’’ direction,
i.e., by the term of the form f0dx ^ �0̂ with functions f0

and x independent of the coordinates  j. However, we do
not consider such terms since they lead to some unwanted
consequences (e.g., they lead to a nondiagonal stress-
energy tensor).

It follows from the first Maxwell equations that the
vector potential can be written as

 A �
g0

A�n�
�0̂ �

Xn
��1

g�
U�
��̂; (3.10)

where g� is a function of x� only and g0 is a constant. The
components of the Maxwell tensor can be again generated
by (2.16) from the auxiliary potential

 � �
g0

A�n�
�
Xn
��1

g�
U�

; (3.11)

and in terms of g’s they take the form

 f� �
g0�
U�
� 2x�

Xn
��1
���

1

U�

g� � g�
x2
� � x2

�
�

2g0

x�A�n�
: (3.12)

The electromagnetic current becomes
3The constant c could be eliminated by a appropriate rescaling

of the coordinates and other parameters.
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 J � �2
Xn
��1

@

@x2
�

�
x2
�

Xn
��1

x�1
� ��

�
��̂ � 2

Xn
��1

1

x�
�;��0̂:

(3.13)

Solving the second Maxwell equation without sources (i.e.,
J � 0) we obtain

 g� � e� �
g0

x2
�
�
Xn�2

k�0

ak��x
2
��
n�1�k: (3.14)

The last two terms are gauge trivial and the vector potential
can thus be written as

 A �
Xn
��1

e�
U�
��̂; (3.15)

and the auxiliary potential � as

 � �
Xn
��1

e�
U�

: (3.16)

Finally, for the components of the Maxwell tensor we find

 f� � 2x�
Xn
��1

1

U�

e� � e�
x2
� � x2

�
: (3.17)

C. The Chern–Simons term

In an odd number of dimensions we can consider
Chern–Simons modification of the electromagnetic field.
Since the Chern-Simons term in the action does not refer to
the metric, it does not change the Einstein equation and the
stress-energy tensor of the electromagnetic field. However,
it modifies the divergence �r � F in the second Maxwell
equation by adding a nonlinear term JChS proportional
(with a constant coefficient) to the Hodge dual of the nth
wedge power of F,

 J ChS / 
�F ^ � � � ^ F|��������{z��������}n times
�: (3.18)

Since the Levi-Civita tensor " used in the Hodge dual is
given by the product e1 ^ � � � ^ e2n�1 we find that the
Chern–Simons term JChS for the field (2.12) is aligned
with the ‘‘unpaired’’ direction

 J ChS /

�Yn
��1

f�

�
e0̂: (3.19)

We thus have to solve the Maxwell equation J � JChS with
J given by (3.13). The condition that J vanishes in e�̂,
� � 1; . . . ; n, directions is only slightly weaker than that
we solved in the previous section. We find that the vector
potential A, the auxiliary potential �, and the components
of the electromagnetic field are

 

A �
Xn
��1

e� � a logx2
�

U�
��̂;

� �
Xn
��1

e� � a logx2
�

U�
;

f� � 2x�
Xn
��1

1

U�

e� � e�
x2
� � x

2
�

� 2a
�

1

x�
� x�

Xn
��1
���

1

U�

logx2
� � logx2

�

x2
� � x

2
�

�
;

(3.20)

where a is a constant parameter. Moreover, the source term
J must be

 J �
4a

A�n�
e0̂: (3.21)

Although we did not prove it rigorously it seems evident
that this component cannot be equal to (3.19) with f� given
by (3.20). We thus conclude that the Chern–Simons modi-
fication of the algebraically special electromagnetic field is
not possible.

D. Einstein-Maxwell equations in odd D

The stress-energy tensor for the field (2.12) in odd
dimensions is also diagonal (with the additional compo-
nent 8�T0̂ 0̂ � �f

2). The condition for the scalar curvature
following from the Einstein equations is again given by
(2.33), and by the same argument as in the even dimensions
[now with help of (3.8)] we conclude that the algebraically
special electromagnetic field (2.12) and (3.17) cannot
couple to the metric given by (3.1).

IV. SUMMARY

We have found explicitly the test electromagnetic field
on the background of the high-dimensional rotating NUT
charged black hole [6]. The field solves the Maxwell
equations even in a broader class of spacetimes since the
specific form of the metric functions X� is not needed. The
common feature of these spacetimes is the presence of
dD=2e Killing vectors and the existence of the principal
Killing–Yano tensor [9]. The constructed electromagnetic
field is adjusted to this structure—it shares the explicit
symmetries and it has the same eigenspaces as the principal
conformal Killing–Yano tensor.

The electromagnetic field depends on n � bD=2c con-
stants e� related to the global electric and magnetic
charges. It generalizes the field known on the background
of the Plebański–Demiański spacetime in D � 4 dimen-
sions. In this case the metric functions can be modified in
such a way that the field and the metric solve the full
Einstein–Maxwell equations. Unfortunately, an analogous
modification is not possible in a generic dimension.
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Finally, we have shown that the Chern–Simons general-
ization in an odd dimension is also not permitted for the
electromagnetic field of this form.
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APPENDIX

The functions A�k�� and U� defined in (2.2) satisfy the
following useful identities:

 

Xn
��1

A�i��
��x2

��
n�1�j

U�
� �ij;

Xn�1

j�0

A�j��
��x2

��
n�1�j

U�
� ���;

Xn
��1

A�i��
��x2

��
n

U�
��A�j�1�;

Xn
��1

A�j��
x2
�U�

�
A�j�

A�n�
;

(A1)

 Xn
j�0

�n� j�A�j�
��x2

��
n�1�j

U�
� 1;

Xn�1

j�0

�n� 1� j�A�j��
��x2

��
n�1�j

U�
�
Xn
��1
���

x2
�

x2
� � x

2
�
;

Xn�1

j�0

�n� 1� j�A�j��
��x2

��
n�1�j

U�
�

x2
�

x2
� � x

2
�

for � � �;

(A2)

and

 

1

U�

Xn
��1
���

1

x2
� � x

2
�
� �

Xn
��1
���

1

U�

1

x2
� � x

2
�
: (A3)

We list also external derivatives of the function 1=U�

and of the 1-form ��̂ which have been used repeatedly in
the computations:

 d
1

U�
� �

1

U�

Xn
��1
���

2

x2
� � x2

�
�x��� � x����; (A4)

 d��̂ �
Xn
��1
���

2

x2
� � x

2
�
�x��

� ^ ��̂ � x��
� ^ ��̂�: (A5)

Finally, let us formulate explicitly an important lemma
(which has been already used implicitly in [7]) concerning
properties of the sums

P
�h�=U�. Let us consider the

equation

 

Xn
��1

h�
U�
� 0; (A6a)

where h� are functions of a single variable x� only. Then
these functions are given by a single polynomial

 h� �
Xn�2

k�0

ckx
2k
� (A6b)

with arbitrary coefficients ck, k � 0; . . . ; n� 2.
The fact that the polynomial functions (A6b) solve

Eq. (A6a) follows from (A1). The opposite implication is
less trivial—first one has to show that h� must be poly-
nomials of the order n� 2 (by differentiating repeatedly
U�

P
�h�=U�). Next, a more intricate task is to prove that

the polynomials for different � are the same. It can be
achieved by an induction in n.

The solution of the functional Eq. (A6a) with a non-
trivial right-hand-side is then given by the sum of a par-
ticular solution with the homogeneous solution (A6b). We
mention three important particular solutions for simple
right-hand-side terms:
 Xn

��1

��x2
��
n�1

U�
� 1;

Xn
��1

��x2
��
n

U�
� �A�1�;

Xn
��1

1

x2
�U�

�
1

A�n�
;

(A6c)

all following from the relations (A1).
The property (A6) has been used, for example, to derive

the specific forms (2.10) and (3.9) of the metric functions
X� starting from the condition R � constant with the
scalar curvature given by (2.9) or (3.8). It has been used
also to find the components (2.22) and (3.14) of the vector
potential.

[1] F. R. Tangherlini, Nuovo Cimento 27, 636 (1963).
[2] R. C. Myers and M. J. Perry, Ann. Phys. (N.Y.) 172, 304

(1986).

[3] S. W. Hawking, C. J. Hunter, and M. M. Taylor-Robinson,
Phys. Rev. D 59, 064005 (1999).
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23, 555 (2006).
[24] J. B. Griffiths and J. Podolský, Int. J. Mod. Phys. D 15, 335
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PAVEL KRTOUŠ PHYSICAL REVIEW D 76, 084035 (2007)

084035-8


