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1. Introduction

Shock pp -wave geometries describe the spacetime surrounding very fast moving objects,

and are thus relevant to the study of planckian scattering [1]. They are also of interest in

string theory, since strings may be exactly solved in such backgrounds [2, 3]. The prototype

of shock wave solutions is the Aichelburg-Sexl spacetime, which represents the gravitational

field of a massless point particle. It was originally obtained by boosting the Schwarzschild

black hole to the speed of light, while rescaling the mass to zero in an appropriate way [4].

According to recent extra-dimension scenarios, the fundamental Planck scale of (higher

dimensional) gravity could be as low as a few TeV. This has stimulated renewed interest in

the study of gravitational effects in high energy collisions, especially in view of the possible

observation of microscopic black holes at near future colliders [5 – 8] (see, e.g., [9] for a

recent review and for further references). It has been shown that closed trapped surfaces do

indeed form in the ultrarelativistic collision of Aichelburg-Sexl point particles [10, 11] and

of finite-size beams [12], which can more accurately model string-size effects. Nevertheless,

it is desirable to understand how other effects could influence high energy scattering. A

first step in this direction is to investigate more general shock wave solutions of higher

dimensional gravity, which can naturally be obtained by applying the boosting technique

of [4] to black hole spacetimes. This has been done in any D ≥ 4 for static black holes with
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electric charge [13] or immersed in an external magnetic field [14, 15]. The ultrarelativistic

limit of the Myers-Perry rotating black holes [16] has been studied in [17] (for the case

of one non-vanishing spin). However, a striking feature of General Relativity in D > 4

is the non-uniqueness of the spherical black holes of [16]. In five-dimensional vacuum

gravity, there exist also asymptotically flat rotating black rings with an event horizon of

topology S1×S2 [18]. In the present contribution, we aim at studying the gravitational field

generated by such rings in the Aichelburg-Sexl limit. As we will see in detail, this results

in shock waves generated by extended lightlike sources (with a characteristic length-scale)

which are remnants of the ring singularity of the original spacetime [18]. Our recent results

on boosted non-rotating black rings [19] will be recovered as a special subcase. In general,

the presence of spin is important because it allows black rings to be in equilibrium [18]

without introducing “unphysical” membranes via conical singularities [20]. This will be

reflected also in the shock geometry resulting from the boost. From a supergravity and

string theory point of view, it is remarkable that supersymmetric black rings have been

also constructed [21 – 24]. We will conclude this article with a brief comment on the boost

of such solutions. In the Appendix, we compare our results with those obtained for the

ultrarelativistic limit of Myers-Perry black holes [17] in D = 5.

2. The black ring solution

In this section we briefly summarize the basic properties of the black ring, referring to [18,

25] for details. In the coordinates of [25],1 the line element reads

ds2 = −F (y)

F (x)

(

dt + C(ν, λ)L
1 + y

F (y)
dψ

)2

+

+
L2

(x − y)2
F (x)

[

−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

F (x)
dφ2

]

, (2.1)

where

F (ζ) =
1 + λζ

1 − λ
, G(ζ) = (1 − ζ2)

1 + νζ

1 − ν
, C(ν, λ) =

√

λ(λ − ν)(1 + λ)

(1 − ν)(1 − λ)3
. (2.2)

The dimensionless parameters λ and ν satisfy 0 ≤ ν ≤ λ < 1, and for λ = 0 = ν the

spacetime (2.1) is flat. The constant L > 0 represents a length related to the radius of the

“central circle” of the ring. For a physical interpretation of the spacetime (2.1) we take

y ∈ (−∞,−1], x ∈ [−1,+1] (see a discussion in [26] for other possible choices) and ψ and φ

as periodic angular coordinates (see below). Surfaces of constant y have topology S1 ×S2.

The coordinate ψ runs along the S1 factor, whereas (x, φ) parametrize S2 (see [20, 25, 22]

for illustrative pictures). Within the above range, y parametrizes “distances” from the ring

circle. At y → −∞ the spacetime has a inner spacelike curvature singularity, y = −1/ν

1Up to simple constant rescalings of F (ζ), G(ζ), C(λ, ν), ψ and φ, cf. eqs. (2.2) and (2.4) with the

corresponding ones in [25]. In addition, multiply our L2 by (1 − ν)/(1 − λ) to obtain the parameter used

in [25].
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is a horizon and y = −1/λ an ergosurface, both with topology S1 × S2. The black ring

solution (2.1) is asymptotically flat near spatial infinity x, y → −1, where it tends to

Minkowski spacetime in the form

ds2
0 = −dt2 +

L2

(x − y)2

[

(y2 − 1)dψ2 +
dy2

y2 − 1
+

dx2

1 − x2
+ (1 − x2)dφ2

]

. (2.3)

To avoid conical singularities at the axes x = −1 and y = −1, the angular coordinates

must have the standard periodicity

∆φ = 2π = ∆ψ . (2.4)

Centrifugal repulsion and gravitational self-attraction of the ring are in balance if conical

singularities are absent also at x = +1, which requires

λ =
2ν

1 + ν2
. (2.5)

When this equilibrium condition holds, the metric (2.1) is a vacuum solution (of D = 5

General Relativity) everywhere. With different choices (e.g., in the static limit ν = λ [20]),

the conical singularity at x = +1 describes a disk-shaped membrane inside the ring.

The mass, angular momentum and angular velocity (at the horizon) of the black ring

are

M =
3πL2

4

λ

1 − λ
, J =

πL3

2

√

λ(λ − ν)(1 + λ)

(1 − ν)(1 − λ)3
, Ω =

1

L

√

(λ − ν)(1 − λ)

λ(1 + λ)(1 − ν)
. (2.6)

The algebraic type of the Weyl tensor of the ring spacetime is Ii [26].

3. General boost

For our purposes, it is convenient to decompose the line element (2.1) as

ds2 = ds2
0 + ∆ , (3.1)

in which ds2
0 is Minkowski spacetime (2.3) and

∆ = λ
x − y

1 + λx
dt2 − 2(1 − λ)C(λ, ν)L

1 + y

1 + λx
dt dψ

+
λ − ν

1 − ν

L2

1 + λy

[

−λ
1 + λ

1 − λ

(1 + y)2

1 + λx
+

y2 − 1

x − y

]

dψ2 +

+
L2

(x − y)2

[

ν
x + 1

1 − ν
(y2 − 1)dψ2 +

λ(1 − ν)(x − y) + (λ − ν)(1 + y)

(1 − λ)(1 + νy)

dy2

y2 − 1
+

+
λ − ν

1 − λ

dx2

(1 − x)(1 + νx)
+ ν

x + 1

1 − ν
(1 − x2)dφ2

]

. (3.2)

The above splitting is such that near infinity (x, y → −1) one has ds2 → ds2
0, while ∆

becomes “negligible” (in the sense of the “background” metric ds2
0). This enables us to

define a notion of Lorentz boost using the symmetries of the asymptotic minkowskian
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background ds2
0. Cartesian coordinates will visualize it most naturally. These can be

introduced in two steps. First, we replace the coordinates (y, x) with new coordinates

(ξ, η) via the substitution

y = −ξ2 + η2 + L2

Σ
, x = −ξ2 + η2 − L2

Σ
, (3.3)

where

Σ =
√

(η2 + ξ2 − L2)2 + 4L2η2 . (3.4)

The flat term ds2
0 in eq. (3.1) now takes the form ds2

0 = −dt2 + dη2 + η2dφ2 + dξ2 + ξ2dψ2.

Then, cartesian coordinates adapted to the Killing vectors ∂φ and ∂ψ are given by

x1 = η cos φ , x2 = η sin φ , y1 = ξ cos ψ , y2 = ξ sin ψ , (3.5)

so that η =
√

x2
1 + x2

2, ξ =
√

y2
1 + y2

2, and ds2
0 = −dt2 + dx2

1 + dx2
2 + dy2

1 + dy2
2. This

enables us to study a boost along a general direction. Since the original spacetime (2.1) is

symmetric under (separate) rotations in the (x1, x2) and (y1, y2) planes, such a direction

can be specified by a single parameter α, namely introducing rotated axes z1 and z2

x1 = z1 cos α − z2 sin α , y1 = z1 sinα + z2 cos α . (3.6)

Defining now suitable double null coordinates (u′, v′) by

t =
−u′ + v′√

2
, z1 =

u′ + v′√
2

, (3.7)

a Lorentz boost along z1 takes the simple form

u′ = ε−1u , v′ = εv . (3.8)

The parameter ε > 0 is related to the standard Lorentz factor via γ = (ε + ε−1)/2. We are

interested in “ultrarelativistic” boosts to the speed of light, i.e. in taking the limit ε → 0 in

the transformation (3.8). While ε → 0, we will rescale the mass as M = γ−1pM ≈ 2εpM [4],

which physically means that the total energy remains finite in the limit (pM > 0 is a

constant). Moreover, during the ultrarelativistic limit we wish to keep the angular velocity

Ω finite (a similar condition was imposed in [17]), and to allow for the possibility of black

rings in equilibrium (when the condition (2.5) holds). From eq. (2.6), these requirements

imply the rescalings2

λ = εpλ , ν = εpν , (3.9)

where pλ = 8pM/(3πL2) and pν is another positive constant such that pλ ≥ pν. In terms

of these parameters, for ε → 0 the equilibrium condition (2.5) becomes

pλ = 2pν . (3.10)

2This appears to be physically the most interesting and simple choice. See Footnote 3 for a subtler,

slightly more general comment.
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Values pν ≤ pλ < 2pν correspond to black rings (2.1) which are “underspinning” before

the boost (and therefore balanced by a membrane of negative energy density), values

pλ > 2pν to “overspinning” black rings (with a membrane of positive energy density).

Notice, however, that under the limit ε → 0 the angular momentum J will tend to zero

(as ∼ ε).

We can now evaluate how the black ring metric (2.1) (that is, eq. (3.1) with eqs. (2.3)

and (3.2)) transforms under the boost (3.8). We have first to substitute eq. (3.3) into

eqs. (2.3) and (3.2). Then, we apply the sequence of substitutions (3.5)–(3.7) into the

thus obtained expressions for ds2
0 and for ∆. Finally, we perform the boost (3.8) with the

rescalings (3.9), which make ∆ = ∆ε dependent on ε. The ds2
0 is invariant under the boost

and at the end it reads

ds2
0 = 2dudv + dx2

2 + dy2
2 + dz2

2 . (3.11)

The next step is to take the ultrarelativistic limit ds2 = ds2
0 + limε→0 ∆ε. This is deli-

cate because the expansion of ∆ε in ε has a different structure in different regions of the

spacetime (even away from the singularity y = −∞). In particular, a peculiar behaviour

is obtained for u = 0, because ∆ε depends on u through the combination

zε =
1√
2
(ε−1u + εv) . (3.12)

In order to have control over the exact distributional structure of the limit, it is conve-

nient to isolate such dependence on ε−1u by performing first an expansion of ∆ε with zε

unexpanded. This leads to an expression

∆ε =
1

ε
h(zε)du2 + [k1(zε)dx2 + k2(zε)dy2 + k3(zε)dz2 + k4(zε)du] du + · · · , (3.13)

where the dots denote terms proportional to higher powers of ε, which are negligible in the

limit. We have emphasized here the dependence of the functions h and ki (i = 1, . . . , 4)

on zε (and thus on ε), because this is essential in our limit, but they depend also on

x2, y2 and z2. The quantities ki are rather involved, but it suffices to observe here that

limε→0 ki(zε) = 0. We can thus also drop all the terms of order ε0 in (3.13).3 For h, after

all the steps described above, we obtain explicitly

h(zε) = pλ
L2

Σ
+ pν

L2

Σ3

[

(ξ2 − η2 − L2)
y1

ξ
sin α + 2ξx1 cos α

]2

+

+
1

2
(2pν − pλ)

(

1 − ξ2 + η2 − L2

Σ

)(

y2
2

ξ2
sin2 α +

x2
2

η2
cos α

)

+

+
√

pλ(pλ − pν)
Ly2 sinα

ξ2

(

−1 +
ξ2 + η2 + L2

Σ

)

+ (pλ − pν)
L2y2

2

ξ2Σ
sin2 α +

+
1

2
(pλ − pν)

(

1 − ξ2 + η2 − L2

Σ

)

. (3.14)

3A remark on the “triviality” of the ε0 terms is in order, since they could be non-vanishing for certain

more general scalings of the original metric parameters. While with higher order (in ε) corrections in

eq. (3.9) limε→0 ki(zε) = 0 would still hold, we could introduce a non-vanishing contribution by allowing

an ε-dependence in the ring “radius” via Lε = L + c1ε + c2ε
2 + . . .. The convergence of the integral (3.17)

would then require c1 = 0, but the quantity c2ε
2 would affect the limit of (3.13) via limε→0 k4(zε) = c2.

The resulting term c2du2 is, however, obviously removable with a coordinate transformation.
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Recall that the dependence of h on ε is contained in x1 and y1 via eqs. (3.6)–(3.8), in η

and ξ via eq. (3.5) and in Σ via eq. (3.4). In taking the limit ε → 0 of eq. (3.13), we apply

the distributional identity

lim
ε→0

1

ε
f (zε) =

√
2 δ(u)

∫ +∞

−∞

f(z)dz . (3.15)

The final metric is thus (cf. eqs. (3.11) and (3.13))

ds2 = 2dudv + dx2
2 + dy2

2 + dz2
2 + H(x2, y2, z2)δ(u)du2 , (3.16)

with a profile function given by

H(x2, y2, z2) =
√

2

∫ +∞

−∞

h(z)dz . (3.17)

A black ring boosted to the speed of light in a general direction z1 is thus described by

the metric (3.16) with eq. (3.17). This is evidently a D = 5 impulsive pp -wave with wave

vector ∂v. Such a spacetime is flat everywhere except on the null hyperplane u = 0, which

represents the impulsive wave front. Note that the equilibrium condition (3.10) has not

yet been enforced in the above expression for h (in particular, in the static limit pν = pλ

we recover the result of [19]). In order to write the solutions in a completely explicit

form, it only remains to perform the integration in eq. (3.17), with h given by eq. (3.14)

with eqs. (3.4)–(3.8) and (3.12). For any α, this integral is always convergent and can

in principle be expressed using elliptic integrals (because Σ is a square root of a fourth

order polynomial in z, see [19] for related comments). Therefore, no singular coordinate

transformation of the type of [4] has to be performed. In the following, we will explicitly

calculate the integral, and study the corresponding solution in the case of two different

boosts of the black ring along the privileged axes x1 (α = 0) and y1 (α = π/2), which are

respectively “orthogonal” and “parallel” to the 2-plane (y1, y2) (i.e., (ξ, ψ)) in which the

ring rotates.

4. Orthogonal boost: α = 0

For the orthogonal boost α = 0, from eq. (3.6) one has z1 = x1 and z2 = y1, so that the

general pp -wave (3.16) reduces to

ds2 = 2dudv + dx2
2 + dy2

1 + dy2
2 + H

⊥
(x2, y1, y2)δ(u)du2 . (4.1)

Also, it is now convenient to rewrite h in eq. (3.14) as

h
⊥
(zε) =

[

3pλL2 − (pλ − pν)ξ
2 − pν(x

2
2 + L2)

] 1

2Σ
+ pν

4L2ξ2z2
ε

Σ3
+

+
1

2
(2pν − pλ)

[

x2
2(L

2 − ξ2)

(z2
ε + x2

2)Σ
+

x2
2

z2
ε + x2

2

]

+
1

2
(pλ − pν)

(

1 − z2
ε

Σ

)

, (4.2)

and Σ (from eq. (3.4)) as

Σ =
√

[

z2
ε + x2

2 + (ξ + L)2
] [

z2
ε + x2

2 + (ξ − L)2
]

. (4.3)
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Hereafter, it is understood that ξ =
√

y2
1 + y2

2. In the orthogonal boost there is no contri-

bution to h
⊥

from the off-diagonal term gtψ in the metric (2.1). Performing the integra-

tion (3.17) with h given by eqs. (4.2) and (4.3), we find

H
⊥
(x2, y1, y2) =

√
2

3pλL2 + (2pν − pλ)ξ2

√

(ξ + L)2 + x2
2

K(k) +
√

2(2pν − pλ) ×

×
[

−
√

(ξ + L)2 + x2
2 E(k) +

ξ − L

ξ + L

x2
2

√

(ξ + L)2 + x2
2

Π(ρ, k) +

+ π|x2|Θ(L − ξ)

]

, (4.4)

where

k =

√

4ξL

(ξ + L)2 + x2
2

, ρ =
4ξL

(ξ + L)2
, (4.5)

and Θ(L − ξ) denotes the step function. In the above calculation, we have used the

standard elliptic integrals and their properties summarized in the Appendix of [19], and

the additional integral (Σ given by eq. (4.3) with zε replaced by z)
∫ ∞

0

(

1 − z2

Σ

)

dz =
√

(ξ + L)2 + x2
2 E(k) . (4.6)

In order to gain physical insight, it is useful to visualize the behaviour of the gravita-

tional field at a large spatial distance within the wave front u = 0. Defining the coordi-

nates (r, θ)

x2 = r cos θ , ξ = r sin θ , (4.7)

an expansion for small values of the dimensionless parameter L/r (using the identities

summarized in [19]) leads to

H
⊥

=
π√
2
pλL

[

3
L

r
−

(

5

8
+

pν

4pλ

)

(3 cos2 θ − 1)
L3

r3
+

+

(

7

64
+

pν

16pλ

)

(35 cos4 θ − 30 cos2 θ + 3)
L5

r5
+ O

(

L7

r7

)]

. (4.8)

We recognize the standard form of multipole terms. The monopole is essentially an

Aichelburg-Sexl term. The dipole and the octupole are missing, due to the geometry

of the source. The quadrupole and 16-pole reflect the shape of the singularity and depend

on the spin of the original black ring, but they persist even in the static limit pν = pλ [19]

(when, in fact, they reach their maximal strength).

It is remarkable that for the physically more interesting case of black rings in equilib-

rium, i.e. those satisfying pλ = 2pν (see eq. (3.10)), the profile function simplifies signifi-

cantly to

He
⊥
(x2, y1, y2) =

3
√

2 pλL2

√

(ξ + L)2 + x2
2

K(k) . (4.9)

Interestingly, this is just the newtonian potential generated by a uniform ring of radius L

and linear density µ = 3
√

2pλL/4 located at x2 = 0 in the flat three-dimensional space

(x2, y1, y2). Since for a general pp -wave (4.1) the only component of the Ricci tensor is

– 7 –
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Figure 1: The profile function H
⊥
, given by eq. (4.4), in the case of underspinning (pλ < 2pν ,

left), overspinning (pλ > 2pν , right) and balanced (pλ = 2pν , bottom) black rings (cf. eq. (3.10))

boosted along an orthogonal direction x1. It is represented over the plane (x2, ξ) (cf. eq. (3.5)), and

the Killing coordinate ψ is suppressed. In the equilibrium case, H
⊥

reduces to He

⊥
of eq. (4.9) and

the disk membrane at x2 = 0, ξ < L disappears (no jump of ∂He

⊥
/∂x2 occurs at x2 = 0). In all

cases, there is a ring singularity at x2 = 0, ξ = L, as indicated by the thick points in the pictures.

Ruu = −1

2
δ(u)∆H

⊥
, ∆ denoting the Laplace operator over the transverse space (x2, y1, y2),

it follows that the profile function (4.9) represents a spacetime which is vacuum everywhere

except on the circle u = 0 = x2, ξ = L (so that k = 1 in eq. (4.5)). This lies on the wave

front and corresponds to a singular ring-shaped source moving with the speed of light. It is

obviously a remnant of the curvature singularity (y = −∞) of the original stationary black

ring (2.1). For the non-equilibrium solution (4.4), the discontinuous term proportional to

Θ(L − ξ) is responsible for a disk memebrane supporting the ring [19]. We have plotted

typical profile functions H
⊥

and He
⊥

in figure 1.

5. Parallel boost: α = π/2

For the parallel boost α = π/2, from eq. (3.6) one has z1 = y1 and z2 = −x1, and the

general pp -wave (3.16) reduces to

ds2 = 2dudv + dx2
1 + dx2

2 + dy2
2 + H

||
(x1, x2, y2)δ(u)du2 . (5.1)
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Figure 2: Plot of the profile function He

||
, given by eq. (5.10), for balanced black rings (pλ = 2pν)

boosted along the direction y1 in the plane of rotation. It is depicted over the plane (y2, η) (cf.

eq. (3.5)), and the Killing coordinate φ is suppressed. The profile function He

||
diverges at the rod

singularity η = 0, |y2| ≤ L, as indicated by the thick line. The two smaller pictures represent the

symmetric and antisymmetric part (with respect to the origin of the y2-axis) of He

||
, respectively.

The case of unbalanced black rings, eq. (5.5), does not produce qualitative changes, since the disk

membrane Lorentz-contracts to the singular rod region.

The function h can be reexpressed as

h
||
(zε) =

[

(3pλ + pν)L
2 − pνy

2
2 + 2

√

pλ(pλ − pν)Ly2 − (pλ − pν)η
2
] 1

2Σ
− pν

4L2η2z2
ε

Σ3
+

+
1

2

[

(2pν − pλ)y2
2 − 2

√

pλ(pλ − pν)Ly2

]

[

− L2 + η2

(z2
ε + y2

2)Σ
+

1

z2
ε + y2

2

]

+

+
1

2
(pλ − pν)

(

1 − z2
ε

Σ

)

, (5.2)

and

Σ =
√

z4
ε + 2(y2

2 + η2 − L2)z2
ε + a4 , (5.3)

with

a =
[

(η2 + y2
2 − L2)2 + 4η2L2

]1/4
. (5.4)

It is understood that η =
√

x2
1 + x2

2. Performing the integration (3.17) with h given by

eqs. (5.2)–(5.4), one obtains

H
||
(x1, x2, y2) =

[

2(2pλ − pν)L
2 + (2pν − pλ)a2

(

1 +
L2 + η2

a2 − y2
2

)

+

+ 2
√

pλ(pλ − pν)Ly2

(

1−L2+η2

a2−y2
2

)]
√

2

a
K(k)−2

√
2(2pν − pλ)aE(k)+

+

√
2

2

[

(2pν − pλ)y2 − 2
√

pλ(pλ − pν)L
]

×

×
[

−η2 + L2

ay2

a2 + y2
2

a2 − y2
2

Π(ρ, k) + π sgn(y2)

]

, (5.5)
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where

k =

(

a2 − η2 − y2
2 + L2

)1/2

√
2a

, ρ = −(a2 − y2
2)

2

4a2y2
2

. (5.6)

Again, we refer to the [19, appendix], the only additional integral used here being (Σ given

by eq. (5.3) with zε replaced by z)

∫ ∞

0

(

1 − z2

Σ

)

dz = 2aE(k) − aK(k) . (5.7)

With the coordinates

y2 = r cos θ , η = r sin θ , (5.8)

the behaviour at large spatial distances is given by

H
||

=
π√
2
pλL

[

3
L

r
+ 2

√

pλ − pν

pλ
cos θ

L2

r2
+

(

7

8
− pν

4pλ

)

(3 cos2 θ − 1)
L3

r3
+

+
3

4

√

pλ − pν

pλ
(5 cos3 θ − 3 cos θ)

L4

r4
+

+

(

11

64
− pν

16pλ

)

(35 cos4 θ − 30 cos2 θ + 3)
L5

r5
+ O

(

L6

r6

)]

. (5.9)

Notice that now there appear also a dipole and an octupole term, as a remnant of the

angular momentum of the black ring.

We are especially interested in black rings in equilibrium (3.10), for which one is left

with

He
||
(x1, x2, y2) = pλL

[

3
√

2L

a
+

2y2

a

(

1 − L2 + η2

a2 − y2
2

)

]

K(k) +

+ pλL

[

η2 + L2

ay2

a2 + y2
2

a2 − y2
2

Π(ρ, k) − π sgn(y2)

]

. (5.10)

This function is singular at the points satisfying u = 0 = η and |y2| ≤ L (k = 1 in

eq. (5.6)), i.e. on a rod of length 2L contained within the wave front. This is a remnant of

the curvature singularity of the original stationary black ring (2.1), which has (infinitely)

Lorentz-contracted because of the ultrarelativistic boost in the plane of the ring. For the

same reason, and because the original ring was rotating, the rod-source corresponding to

eq. (5.10) is not uniform. The profile (5.10) corresponds to a vacuum spacetime everywhere

except on the rod. Notice also that the apparent divergences of He
||

at y2
2 = a2 and y2 = 0

is only a fictitious effect: the singular behaviour of the coefficient of Π in eq. (5.10) is

exactly compensated from that of K in the first case and from the sgn(y2) function in the

second case (recall also the form of ρ in eq. (5.6)). Finally, it is interesting to observe

that the antisymmetric part (in the coordinate y2) of H
||

and He
||

comes entirely from the

off-diagonal term gtψ in the metric (2.1), which was responsible for rotation before the

boost (and produces the terms even in cos θ in the expansion (5.9)). The profile function

He
||

is plotted in figure 2.
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6. Boost of the supersymmetric black ring

To conclude, we demonstrate that the above method can also be employed to calculate the

gravitational field generated by other black rings in the ultrarelativistic limit. The first

supersymmetric black ring (solution of D = 5 minimal supergravity) was presented in [21]

(and subsequently generalized in [22 – 24]). The line element reads

ds2 = −f2(dt + ωψdψ + ωφdφ)2 + f−1(ds2
0 + dt2) , (6.1)

with ds2
0 as in eq. (2.3) and

f−1 = 1 +
Q − q2

2L2
(x − y) − q2

4L2
(x2 − y2) , (6.2)

ωψ =
3

2
q(1 + y) +

q

8L2
(1 − y2)

[

3Q − q2(3 + x + y)
]

, (6.3)

ωφ = − q

8L2
(1 − x2)

[

3Q − q2(3 + x + y)
]

. (6.4)

The S1 × S2 horizon is localized at y → −∞, and asymptotic infinity at x, y → −1. The

Maxwell field F = dA is determined by

A =

√
3

2
f(dt + ωψdψ + ωφdφ) −

√
3

4
q[(1 + x)dφ + (1 + y)dψ]. (6.5)

The net electric charge and the local dipole magnetic charge are proportional to the positive

parameters Q and q, respectively, which (for a physical interpretation) are assumed to

satisfy Q ≥ q2 and L < (Q− q2)/(2q) [21]. The mass and angular momenta of the ring are

M =
3π

4
Q , Jψ =

π

8
q(6L2 + 3Q − q2) , Jφ =

π

8
q(3Q − q2) . (6.6)

In the limit q = 0 the black ring becomes a static charged naked singularity, solution of

the pure Einstein-Maxwell theory. In order to boost the line element (6.1), we can follow

a procedure almost identical to the one used for the vacuum ring. The standard mass

rescaling of [4] together with the inequality L < (Q − q2)/(2q) suggests that during the

boost we rescale the charges as

Q = εpQ , q = εpq (pQ > 2Lpq) . (6.7)

Omitting straightforward intermediate steps, in the case of a boost orthogonal to the plane

(ξ, ψ) we obtain a shock pp -wave (4.1) with

Hs
⊥
(x2, y1, y2) =

3
√

2 pQ
√

(ξ + L)2 + x2
2

K(k), (6.8)

and k given by eq. (4.5). For a parallel boost, we obtain the metric (5.1) with

Hs
||
(x1, x2, y2) = 3

√
2

[

pQ
1

a
+ pq

y2

a

(

1 − L2 + η2

a2 − y2
2

)]

K(k) +

+
3
√

2pq

2

[

η2 + L2

ay2

a2 + y2
2

a2 − y2
2

Π(ρ, k) − π sgn(y2)

]

, (6.9)
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where k and ρ as in eq. (5.6). To obtain the field of a boosted naked singularity (q = 0)

just set pq = 0 in eq. (6.9). Notice that the dipole charge q has an effect only in the

case of a parallel boost, since pq does not appear in Hs
⊥

[which is in fact equivalent to the

expression (4.9) for balanced vacuum rings]. This is related to the “asymmetry” between

the angular momenta Jψ and Jφ in eq. (6.6). In both boosts, one also finds that F = dA

tends to zero together with its associated energy-momentum tensor (so that the “peculiar

configuration” of [13] does not arise here). In fact, both Hs
⊥

and Hs
||

correspond to vacuum

pp -waves. In principle, rescalings different from eq. (6.7) can be considered if one drops the

requirement L < (Q − q2)/(2q). The detailed investigation of this and other possibilities

is left for possible future work.
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A. Results for the boosted D = 5 Myers-Perry black hole

Ref. [17] analyzed the ultrarelativistic boost of D-dimensional Myers-Perry black holes [16]

with a single non-vanishing angular momentum. As in the present work, the calculation

was performed in the case of two particular boosts orthogonal and parallel to the plane

of rotation, and for D = 5 it resulted in impulsive pp -waves of the type (4.1) and (5.1),

respectively. It is thus interesting to compare the results of [17] to ours. First of all, the

angular momentum of black holes in D = 5 must obey a Kerr-like bound a2 < µ [16]. Since,

in the Aichelburg-Sexl limit, ref. [17] sent the mass parameter µ to zero while keeping the

spin parameter a fixed, for D = 5 the final metrics refer to boosted naked singularities

rather than black holes [17]. On the other hand, there is no upper limit on the spin of

black rings [18], so that in our limit the rings do remain “black” until the final pp -wave is

obtained (the same applies to the solutions of [17] in D ≥ 6, when also black holes can be

ultra-spinning). In the rest of this appendix we shall present the profile functions of [17]

(for the case D = 5) using an explicit form adapted to our notation,4 and we shall compare

them with our functions (4.4) and (5.5).

A.1 Orthogonal boost

For an orthogonal boost, the result of [17] can be rearranged as

H̃
⊥
(x2, y1, y2) =

8
√

2 pM

3π

[

2
√

2

(ξ2 + x2
2 + L2 + b2)1/2

K(k1) +

√
2

L2
(ξ2 + x2

2 + L2 + b2)1/2 ×

× E(k1) −
2
√

2

L2

b2

(ξ2 + x2
2 + L2 + b2)1/2

Π(ρ1, k1)

]

, (A.1)

4In particular, the quantity L will replace the original spin parameter a.
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where

k1 =

(

ξ2 + x2
2 + L2 − b2

ξ2 + x2
2 + L2 + b2

)1/2

, ρ1 = −(ξ2 + x2
2 − L2 − b2)2

4L2x2
2

,

b = [(ξ2 + x2
2 − L2)2 + 4x2

2L
2]1/4 . (A.2)

The above elliptic functions are singular for k1 = 1, that is on a circle of radius L given

by x2 = 0, ξ = L. This was already remarked in [17] and it resembles our results of

section 4. Other physical properties are more “hidden” in the expression (A.1). First of

all, for x2 → 0 one has ρ1 → 0 if ξ > L, whereas ρ1 diverges if ξ < L. This implies

(with [19, identity (A5)]) that, when ξ < L and x2 is small, H
⊥

contains a non-smooth

term proportional to |x2|, namely there is an additional membrane at x2 = 0 and ξ < L (i.e.

within the ring singularity discussed above). The presence of such a disk-shaped source is

related to the structure of the singularities of the Myers-Perry solutions [16], and it should

be contrasted with the simpler profile function (4.9) for balanced black rings, which has

only a “uniform” circle as a source. From a complementary viewpoint, we can compare

an expansion of the profile function (A.1) at large spatial distances with the analogous

result (4.8) for the black ring. From eq. (A.1) we obtain

H̃
⊥

=
1√
2

8 pM

3L

[

3
L

r
− 5

8
(3 cos2 θ − 1)

L3

r3
+

7

64
(35 cos4 θ − 30 cos2 θ + 3)

L5

r5
+ O

(

L7

r7

)]

.

(A.3)

The monopole term coincides with the one in the corresponding expression (4.8) for the

black ring, which we should expect since we are boosting objects with the same mass

(which scales as M = γ−1pM ). However, eqs. (A.3) and (4.8) in general differ already in

the quadrupole term, in particular for the physically most interesting case of balanced rings

pλ = 2pν . They coincide only in the limiting case pν = 0, corresponding to ν = 0, when the

black ring in fact reduces to a naked singularity isometric to that of Myers and Perry (see

the discussion above about the Kerr bound). In addition, in the limit of vanishing rotation

L = 0 of eq. (A.3) only the Aichelburg-Sexl monopole survives, which corresponds to the

ultrarelativistic boost of the D = 5 Schwarzschild-Tangherlini black hole.5

A.2 Parallel boost

For a parallel boost, the profile function of [17] is

H̃
||
(x1, x2, y2) =

8
√

2 pM

3π

[

4

a

(

1 +
η2 + y2

2 + L2 + a2

2Ly2

)

K(k) +
2a

L2
E(k) −

− 2L + y2

a

η2 + y2
2 + L2 + a2

L2y2

Π(ρ1, k)

]

, (A.4)

with a as in eq. (5.4), k as in eq. (5.6) and

ρ1 = −η2 + y2
2 + L2 − a2

2a2
. (A.5)

5Recall that, instead, balanced black rings can not be static, while unbalanced static rings correspond

to setting pν = pλ in eq. (4.8) [19] (and not L = 0).
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Similarly as in section 5, the elliptic integrals are singular at k = 1, i.e. on a rod of

length 2L located at η = 0, |y2| ≤ L [17]. At large spatial distances, the expression (A.4)

behaves as

H̃
||

=
1√
2

8 pM

3L

[

3
L

r
+ 2cos θ

L2

r2
+

7

8
(3 cos2 θ − 1)

L3

r3
+

3

4
(5 cos3 θ − 3 cos θ)

L4

r4
+

+
11

64
(35 cos4 θ − 30 cos2 θ + 3)

L5

r5
+ O

(

L6

r6

)]

. (A.6)

The discussion is similar as the one above for H̃
⊥
. Again, the monopole term coincides with

the one in the corresponding expression (5.9) for the black ring. Higher multipoles in general

differ, in particular for balanced rings. Boosted black holes reduce to the Aichelburg-Sexl

monopole in the static limit L = 0.
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[19] M. Ortaggio, P. Krtouš and J. Podolský, Ultrarelativistic boost of the black ring, Phys. Rev.

D 71 (2005) 124031 [gr-qc/0503026].

[20] R. Emparan and H.S. Reall, Generalized Weyl solutions, Phys. Rev. D 65 (2002) 084025

[hep-th/0110258].

[21] H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev.

Lett. 93 (2004) 211302 [hep-th/0407065].

[22] H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric black rings and

three-charge supertubes, Phys. Rev. D 71 (2005) 024033 [hep-th/0408120].

[23] I. Bena and N.P. Warner, One ring to rule them all . . . and in the darkness bind them?,

hep-th/0408106.

[24] J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005)

045002 [hep-th/0408122].

[25] R. Emparan, Rotating circular strings and infinite non-uniqueness of black rings, JHEP 03

(2004) 064 [hep-th/0402149].
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