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ABSTRACT
In a series of papers, we recently investigated properties of geodesic motion and
test scalar fields in the background of generic rotating higher-dimensional black
holes. In this contribution, we briefly discuss the integrability of geodesic motion,
the construction of constants of motion, and the relation to the separability of the
Hamilton–Jacobi equation. We also present a class of algebraically special test
electromagnetic fields which generalize the electromagnetic field of a charged black
hole in four dimensions. It will be, however, shown that in higher dimensions such
fields cannot be easily modified in such a way that they would satisfy full Maxwell–
–Einstein equations.

Keywords: Black holes – higher dimensions – geodesic motion – integrability and
separability – test fields

1 INTRODUCTION

Spacetimes of higher dimensions (D > 4) have become much studied as a result of their
role in unification theories, such as the string/M theory. One important class of such
spacetimes is a sequence of higher-dimensional black-hole metrics of greater and greater
generality that have been discovered over the years.
The first such higher-dimensional black-hole spacetime was the metric for a nonrotat-

ing black hole in D > 4 (the generalization of the 1916 Schwarzschild solution), found
in Tangherlini (1963). Next was the metric for a rotating black hole in higher dimensions
(the generalization of the 1963 Kerr metric in four dimensions), discovered in Myers and
Perry (1986) in the case of zero cosmological constant. Then in 1999 Hawking, Hunter and
Taylor-Robinson (Hawking et al., 1999) found the general D = 5 version of the D = 4 ro-
tating black holewith a cosmological constant (called also theKerr–(anti-)de Sittermetric).
In 2004 Gibbons, Lü, Page and Pope (Gibbons et al., 2004, 2005) discovered the general

1 This contribution is a review of the results which have been obtained together with Don N. Page, Valeri Frolov,
David Kubizňák, and Muraari Vasudevan last and this year and have been published in the papers (Page et al.,
2007; Frolov et al., 2007; Krtouš et al., 2007a,b; Krtouš, 2007).
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Kerr–de Sittermetrics in all higher dimensions, and in 2006Chen, Lü andPope (Chen et al.,
2006) put these into a simple form similar to that of Carter (1968a,b) and were able to add
aNUT parameter (though not electric charge) to get the general Kerr–NUT–(a)dSmetrics
for all D. The properties of these metrics have been extensively studied in recent years. In
the following, we give overview of some of these results.
One of the key spacetime properties is the nature of the corresponding geodesic mo-

tion. In our papers (Page et al., 2007; Krtouš et al., 2007b) we have found a full set of
D conserved quantities for geodesic motion and demonstrated that this motion is com-
pletely integrable. The constants of motion have been constructedwith help of the principal
Killing–Yano tensor – an important geometrical structure that has been thoroughly invest-
igated in (Krtouš et al., 2007a).
Closely related to the integrability of the geodesic motion is the separability of the

Hamilton–Jacobi equation. It was proved, together with the separability of the Klein–
–Gordon equation (in Frolov et al., 2007).
Finally, we will discuss a test electromagnetic field specially aligned with the high-

-dimensional black hole background which was found in (Krtouš 2007; cf. also Chen and
Lü 2007) and a no-go theorem for “charging” the rotating black hole in higher dimensions
with the electromagnetic field of this type. Let us note that another no-go theorem for “ac-
celerating” black holes in a way analogous to the four dimensional case has been presented
in Kubizňák andKrtouš (2007).
In the following sections, we will revisit these topics in more detail. For simplicity, we

will concentrate on the case of even dimensions. However, all discussed properties are
valid also in odd dimensions – see the originals papers for corresponding expressions and
modifications.

2 METRICOFAGENERALLYROTATINGBLACKHOLE INHIGHER
DIMENSIONS

The metric of the general Kerr–NUT–(anti-)de Sitter spacetime in D = 2n dimensions
discovered by Chen et al. (2006) can be written

g =
n∑

µ=1


Uµ

Xµ
dx2

µ +
Xµ
Uµ

(n−1∑

k=0

A(k)µ dψk

)2
 . (1)

Here, the coordinates xµ (µ = 1, . . . , n) correspond to (Wick rotated) radial and latitudinal
directions, ψk (k = 0, . . . , n − 1) to temporal and azimuthal directions. The metric
functionsUµ, A(k)µ , together with auxiliary functions A(k), are given by

Uµ =
n∏

ν=1
ν 6=µ

(
x2
ν − x2

µ

)
, A(k)µ =

n∑

ν1,...,νk=1
ν1<···<νk ,νi 6=µ

x2
ν1
· · · x2

νk
, A(k) =

n∑

ν1,...,νk=1
ν1<···<νk

x2
ν1
· · · x2

νk
. (2)

Each of the remaining metric functions Xµ is a function of a single variable xµ and their
exact form is given by the Einstein equations. However, most of the properties discussed
below are independent of the exact form of the metric functions Xµ.
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It is useful to rewrite the metric in a diagonal form

g =
n∑

µ=1

(eµeµ + eµ̂eµ̂) (3)

introducing an orthonormal frame of 1-forms {eµ, eµ̂} and the dual vector frame {eµ, eµ̂},
withµ = 1, . . . , n and µ̂ = µ+ n:

eµ =
(

Uµ
Xµ

)1/2

dxµ , eµ =
(

Xµ
Uµ

)1/2

∂ xµ ,

eµ̂ =
(

Xµ
Uµ

)1/2 n−1∑

k=0

A(k)µ dψk , eµ̂ =
(

1
XµUµ

)1/2 n−1∑

k=0

(
−x2

µ

)n−1−k
∂ψk .

(4)

It was derived inHamamoto et al. (2007) that the Ricci tensor is also diagonal in this frame

Ric = −
n∑

µ=1

rµ(eµeµ + eµ̂eµ̂) , (5)

with the component rµ given by

rµ = 1
2

X ′′µ
Uµ
+

n∑

ν=1
ν 6=µ

1
Uν

xνX ′ν − xµX ′µ
x2
ν − x2

µ

−
n∑

ν=1
ν 6=µ

1
Uν

Xν − Xµ
x2
ν − x2

µ

. (6)

The scalar curvature then is

R = −
n∑

ν=1

X ′′ν
Uν

. (7)

Enforcing the vacuumEinstein equationswe have to solve the conditions rµ = 0. It turns
out that the general solution is

Xµ = bµxµ +
n−1∑

k=0

ck

(
−x2

µ

)n−1−k
. (8)

The constants bµ and ck are related to the mass, NUT parameters, angular momenta and
cosmological constant (for details, see Gibbons et al., 2005; Chen et al., 2006).

3 PRINCIPALKILLING–YANOTENSOR

Inspecting the metric, we immediately see that the metric has n Killing vectors ∂ψk . How-
ever, it also possesses hidden symmetries which can be demonstrated by the existence of the
so-called principalKilling–Yano tensor f

f =
n∑

µ=1

xµ e1 ∧ · · · ∧ eD
︸ ︷︷ ︸

eµ,eµ̂ skipped

. (9)
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Its Hodge dual gives the second-rank closed conformal Killing–Yano tensor

h =
n∑

µ=1

xµeµ ∧ eµ̂ . (10)

The conformal Killing–Yano tensor (CKYT)was first proposed byKashiwada (1968) and
Tachibana (1969) as a generalization of the Killing–Yano tensors (Yano, 1952). Since then
both these tensors foundwide applications in physics related to hidden (super)symmetries,
conserved quantities, symmetry operators, or separation of variables. Let us recall that
CKYT of a general rank r is an antisymmetric r -form f the covariant derivative of which
can be split into an antisymmetric part and a divergence part

∇ f = A∇ f + T ∇ f . (11)

HereA is the standard anti-symmetrization and T is the projection onto the “trace” part of
the tensor of rank r + 1which is antisymmetric in the last r indices,

T Aaa1...ar =
r

D − r + 1
ga[a1 Ae

|e|a2...ar ] . (12)

The divergence part T ∇ f thus depends only on the divergence ∇e f e
ab.... The operations

A and T satisfyA2 = A, T 2 = T , and T A = A T = 0. The condition (11) implies that
∇ f does not have a harmonic part (given by the complement of the A and T projectors),
i.e., f does not have a part for which both d f and ∇ · f vanishes. A CKYT transforms
into a CKYT under the Hodge duality. The antisymmetric part A∇ f transforms into the
divergence part T ∇∗ f and vice versa.
A Killing–Yano tensor f is such a CKYT for which the divergence part is missing, i.e.,
∇ f = A∇ f . The dual of a Killing–Yano tensor is a closed CKYT, i.e., an r -form obeying
∇ f = T ∇ f .
In our case, the principal CKYT h is the crucial geometrical structure which allows us to

construct additional conserved quantities for geodesic motion and which is closely related
to the separability of the Hamilton–Jacobi equation.

4 INTEGRABILITYOFGEODESICMOTION

Let us now investigate geodesic motion in the spacetime given by the metric (1) with
unspecified metric functions Xµ. For such a motion, the non-normalized velocity plays the
role of momentum p. Its norm

w = p · p (13)

is conserved along the motion. Having n Killing vectors ∂ψk , we can construct n conserved
quantities linear inmomentum

L j = ∂ψj · p , j = 0, . . . , n − 1 . (14)
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The remaining n − 1 independent constants of motion can be constructed starting from the
generating function written in terms of the Killing–Yano tensor andmomentum

W (β) = det
(

I −√β h · P
)
. (15)

Here, P is a projector on the directions orthogonal to the momentum p. It was shown
in Krtouš et al. (2007a) that W (β) is conserved for any value of β. The independent
constants of motion can be extracted as coefficients in the β-expansion

W (β) = 1
w

∑

j

Cjβ
j , (16)

leading toC0 = w and

Cj =
n∑

µ=1

A( j)
µ

(
p̄2
µ + p̄2

µ̂

)
, j = 0, . . . , n − 1 , (17)

where p̄µ, p̄µ̂ are components of momentum in the frame eµ, eµ̂,

p =
n∑

µ=1

(
p̄µeµ + p̄µ̂eµ̂

)
. (18)

We have shown in Page et al. (2007); Krtouš et al. (2007b) that the constants L j and Cj
are not only independent, but that they are also in involution

{Lk, Ll} = {Lk,Cl} = {Ck,Cl} = 0 . (19)

These are sufficient conditions for themotion to be completely integrable (see, e.g., Arnol’d,
1989).

5 SEPARABILITYOF THEHAMILTON–JACOBI ANDKLEIN–GORDON
EQUATIONS

Both the complete integrability and the existence of the Killing–Yano tensor are closely
related to the separability of the Hamilton–Jacobi equation (see, e.g., Arnol’d, 1989; Floyd,
1973; Penrose, 1973; Benenti and Francaviglia, 1979, 1980).
The separability of the Hamilton–Jacobi equation for geodesic motion

∂S
∂τ
+ dS · g · dS = 0 (20)

can be demonstrated assuming

S = −τw +
n∑

µ=1

Sµ(xµ)+
n−1∑

i=0

L iψi ,
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with Sµ(xµ) being functions of a single variable only. Substituting into (20), we obtain an
ordinary differential equation for Sµ (Frolov et al., 2007)

S′2µ =
1

Xµ

n−1∑

i=0

Ci

(
−x2

µ

)n−1−i − 1
X2
µ

[n−1∑

i=0

L i

(
−x2

µ

)n−1−i
]2

, (21)

which can be solved by quadratures.
Identifying the gradient dS with the momentum dS = p, we find that the separability

constants w, L j , and Cj are exactly those defined in the previous section in (13), (14), and
(17), L j being linear inmomentum andC j quadratic.
Similarly, itwas also demonstrated inFrolov et al. (2007), that themassiveKlein–Gordon

equation for a scalar field
[

� −m2
]
Φ = 0 (22)

can be solved by the separability ansatz

Φ =
n∏

µ=1

Rµ(xµ)
m∏

k=0

exp (iΨkψk) . (23)

It leads to differential equations for Rµ

(
XµR′µ

)′ −

 1

Xµ

(n−1∑

k=0

Ψk(−x2
µ)

n−1−k

)2

+
n−1∑

k=0

Ξk

(
−x2

µ

)n−1−k


 Rµ = 0 , (24)

withΨj andΞk arbitrary separation constants.

6 ALGEBRAICALLYSPECIAL TESTELECTROMAGNETICFIELD

Following Krtouš (2007), we will discuss now a special kind of test electromagnetic fields
on the background given by the metric (1). We are looking for a field that would share the
explicit symmetry of the metric (it would be independent of ψ j ) and that would be aligned
with the hidden symmetry of the spacetime, namely, its Maxwell tensor F would have the
same eigenspaces as the principal conformal Killing–Yano tensor h. We thus require

F =
n∑

µ=1

fµeµ ∧ eµ̂ , fµ = fµ(x1, . . . , xn) . (25)

The Maxwell tensor is generated by the vector potential, F = d A. As a consequence of
the assumption (25), we find that the vector potential can be written as

A =
n∑

µ=1

gµ

(
xµ
Uµ

)1/2

eµ̂ , (26)
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where gµ are functions of a single variable only, gµ = gµ(xµ). Evaluating the Maxwell
tensor, we get the components fµ:

fµ = gµ
Uµ
+ xµg′µ

Uµ
+ 2xµ

n∑

ν=1
ν 6=µ

1
Uν

xνgν − xµgµ
x2
ν − x2

µ

. (27)

Alternatively, we could apply directly the first Maxwell equation d F = 0 to find that fµ
are generated by an auxiliary potential φ,

fµ = φ,µ , (28)

which satisfies the equation

φ,µν = 2
xνφ,µ − xµφ,ν

x2
µ − x2

ν

for µ 6= ν . (29)

The field (26) is generated by the potential

φ =
n∑

ν=1

gνxν
Uν

. (30)

Calculating the source J of the electromagnetic field using the secondMaxwell equation
J = −∇ · F, we obtain

J =
n∑

µ=1

jµ

(
xµ
Uµ

)1/2

eµ̂ , (31)

with

jµ = − 1
xµ

∂

∂xµ

(
φ − x2

µ

n∑

ν=1

x−1
ν φ,ν

)
. (32)

Substituting (30), we finally obtain

jµ = 1
xµ

∂

∂xµ

( n∑

ν=1

x2
νg′ν
Uν

)
. (33)

We are interested in source-free electromagnetic fields, so we require J = 0. Using the
special form of the sum in the square brackets in (33) we find that g ′µ are given by a single
polynomial of order (n − 1) in variable x 2

µ. Integrating oncemore, we find

gµxµ = eµxµ +
n−1∑

k=0

ak

(
−x2

µ

)n−1−k
. (34)
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Substituting into the vector potential (26) or the scalar potential (30), we find that the terms
containing the constants ak are gauge-trivial and they can be ignored.
We have thus found that an algebraically special electromagnetic field (i.e., a field of the

form (25)) satisfiesMaxwell equations on the background described by themetric (1) if and
only if it is generated by the vector potential

A =
n∑

µ=1

eµ

(
xµ
Uµ

)1/2

eµ̂ . (35)

The components fµ of the Maxwell tensor are easily determined by (28) from the auxiliary
potential

φ =
n∑

µ=1

eµxµ
Uµ

, (36)

and they read

fµ = eµ
Uµ
+ 2xµ

n∑

ν=1
ν 6=µ

1
Uν

xνeν − xµeµ
x2
ν − x2

µ

. (37)

Here, eµ are constants that can be related to the electric and magnetic charges of the field
using the Gauss and Stokes theorems.
If we set all charges except for one, say eν , to zero, the Maxwell tensor F corresponds

to the harmonic form G(ν)
(2) recently found and verified for particular cases in Chen and Lü

(2007).
The surprising property of our field is that it satisfies Maxwell equations independently

of the specific form ofmetric functions Xµ. Moreover, the stress-energy tensor correspond-
ing to the field (25) has a form consistent with the structure of the Ricci (and Einstein)
tensor (5). These facts open up a possibility that we could solve the full Einstein–Maxwell
equations: modifying the metric functions Xµ, we could construct a spacetime in which the
stress-energy tensor T would be a source for the Einstein equations, and the electromag-
netic field would still satisfyMaxwell equations.

7 NO-GOTHEOREMFORCHARGINGTHEKERR–NUT–(A)DSMETRIC

Indeed, this goal can be achieved in the physical dimension D = 4. In this case metric (1)
with metric functions Xµ given by (8) corresponds to the uncharged black-hole solution
in the form found by Carter (1968a,b) and elaborated by Plebański and Demiański (1976).
However, if we modify the metric functions by adding constant terms−e2

1 and−e2
2,

X1 = c0 + c1x2
1 + c2x4

1 + 2b1x1 − e2
1 ,

X2 = c0 + c1x2
2 + c2x4

2 + 2b2x2 − e2
2 ,

(38)
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the metric (1) together with the electromagnetic field (35) solve the full Einstein–Maxwell
equations – it corresponds to the Carter’s charged black-hole solution.
In a generic dimension,wefirst evaluate the stress-energy tensorT of the electromagnetic

field (25):

8πT =
n∑

µ=1

(
2 f 2
µ − f 2

) (
eµeµ + eµ̂eµ̂

)
. (39)

Its trace is

8πT = 2(2− n) f 2 , (40)

where the function f 2 is defined as

f 2 =
n∑

ν=1

f 2
ν . (41)

We explicitly see that the trace of the stress-energy is non-vanishing for D 6= 4 which is
related to the fact that the electromagnetic field is not conformally invariant in a general
dimension.
Nowwe would like to solve the Einstein equationsRic− 1

2Rg +Λg = 8πT . The trace
gives the condition

R = 2
D

D − 2
Λ+ 2

D − 4
D − 2

f 2 . (42)

However, the scalar curvature has the form (7) and it immediately follows that

∂2n−2

∂x2n−2
µ

(UµR) = −X [2n]
µ , (43)

which is a function of xµ only. Applying this to the right-hand-side of (42), we obtain the
condition:

∂2n−2

∂x2n−2
µ

(
Uµ f 2

)
must be a function of xµ only. (44)

This condition does not hold for the electromagnetic field given by (37), at least for the
lowestnon-trivial valuesofn. It seems that themainproblem is thatR behavesas

∑
hµ/Uµ

while f 2 as a square of such sums.
We can thus conclude that in a generic even dimension the electromagnetic field of the

form (25), (37) cannot couple to the metric given by (1).

8 SUMMARY

In this contribution, we have reviewed some properties of the general higher-dimensional
rotating black-hole spacetimes given by the metric (1). We have discussed the complete
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integrability of geodesic motion and explicitly found the full set of constants of motion.
We have seen that the “nontrivial” constants are generated using the principal conformal
Killing–Yano tensor and that they are quadratic in momenta and thus correspond to rank-2
Killing tensors (Krtouš et al., 2007a).
The complete integrability of the geodesic motion is related to the issue of separability of

theHamilton–Jacobi equation, which has been reviewed next. It was demonstrated that the
separability constants for the Hamilton–Jacobi equation are the same as those constructed
directly for geodesic motion.
Finally, we have presented an algebraically special test electromagnetic field. It depends

on n = D/2 constants eµ related to the global electric andmagnetic charges. It generalizes
the field known on the background of the Carter’s black-hole solution in D = 4 dimensions.
In this case, the metric functions can be modified in such a way that the field and the metric
solve the full Einstein–Maxwell equations. Unfortunately, an analogousmodification is not
possible in a generic dimension.
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