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Abstract
The global properties of static perfect-fluid cylinders and their external Levi-
Civita fields are studied both analytically and numerically. The existence and
uniqueness of global solutions is demonstrated for a fairly general equation
of state of the fluid. In the case of a fluid admitting a non-vanishing
density for zero pressure, it is shown that the cylinder’s radius has to be
finite. For incompressible fluid, the field equations are solved analytically
for nearly Newtonian cylinders and numerically in fully relativistic situations.
Various physical quantities such as proper and circumferential radii, external
conicity parameter and masses per unit proper/coordinate length are exhibited
graphically.

PACS numbers: 04.20.−q, 04.20.Jb, 04.40.−b, 04.40.Nr

1. Introduction and summary

Since 1917 when Levi-Civita gave his static vacuum solution, cylindrically symmetric
spacetimes have played an important role in general relativity. Recently, attention has been
mainly paid to dynamical situations or quantum issues. Some of these aspects are surveyed in
[1] (section 9 and references [247–263, 275–277] therein), for example; for even more recent
works, see, e.g., [2–4].

Still, in a recent concise review on static cylinders [5], Bonnor introduces the topic
by stating that ‘the Levi-Civita spacetime continues to puzzle relativists’. In contrast
to the Schwarzschild metric described completely by a single parameter, the Levi-Civita
solution contains two essential constant parameters—m, related to the local curvature, and C,
determining the conicity of the spacetime. Relating these two parameters to physical sources
turns out to be delicate, as we recently found in the case of static cylindrical shells of various
types of matter [6], and as we will demonstrate for solid perfect-fluid cylinders in the present
paper.
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In the second edition of the ‘exact-solutions bible’ [7], there are quoted about 20 papers
on static perfect-fluid cylindrically symmetric fields. However, these solutions are local, no
analysis of global properties is usually available. In addition, most perfect-fluid equations of
state in the literature are either ad hoc or not very physically plausible. In fact, the cylindrical
counterpart of the famous Schwarzschild interior solution, in which the fluid is incompressible,
so that its matter density µ = µ0 = constant, is not known. Although this equation of state
is unphysical (implying infinite velocity of sound), in the spherical case not only can the
corresponding solution can be easily found but it also gives ‘not unreasonable’ estimates for
maximum masses of neutron stars, for example.

The purpose of the present work is to study static perfect-fluid cylinders and their
fields globally, to investigate the Newtonian limit and to analyse incompressible cylinders
numerically. In section 2, we start from a line element in which the 3-space is rescaled by
the norm of the timelike Killing vector and we choose the distance from the axis as the radial
coordinate. Usually we require the axis to be regular, but the presence of a conical singularity
(a ‘cosmic string’) along the axis is also considered. The field equations in these coordinates
enable one to find convenient relations between some of the metric functions. In particular,
the vacuum Levi-Civita solution can be rederived in these coordinates. We show in detail
that although it contains five constants of integration, only two—the mass parameter and the
conicity parameter—cannot be removed.

In section 3 we first formulate a lemma (and then prove it in appendix A) stating that for
a smooth equation of state µ(p) and any value of the central density µ0 there exists a unique
solution of the field equations in a neighbourhood of the axis, which can be continued into
a global solution. Depending on the equation of state, the fluid occupies the entire space,
or the cylinder is of a finite extent in the radial direction provided that the pressure vanishes
at a finite radius, p(R) = 0. Another lemma shows that a unique vacuum solution can be
joined to the inner perfect-fluid solution at this radius R where the pressure vanishes. Finally,
a theorem is proved asserting that systems with µ(p = 0) > 0 always have a finite radius—as
with spherically symmetric balls.

The field equations are written in terms of λ = 1/c2 (c—the velocity of light); for λ = 0
the Newtonian limit is recovered. The conformal 3-space becomes flat, and the relativistic
Tolman mass turns into the Newtonian mass per unit length. This is demonstrated in section 4.
In appendix B, the Newtonian static constant-density cylinders and spheres are constructed
directly within the Newtonian theory for comparison. (For shell sources in Newtonian gravity,
see appendix in [6].)

In the brief section 5 it is explicitly shown how an outer Levi-Civita solution can be joined
to an inner perfect-fluid solution at the boundary where the pressure vanishes. The need for
a non-trivial conicity parameter, C �= 1, outside a general perfect-fluid cylinder is discussed
in detail in appendix C. As an example, the Evans solution [8] with the equation of state
µ = µ0 + 5p,µ0 > 0, is employed to elucidate that only special cylinders can be joined to
the outer Levi-Civita metrics with the conicity parameter C = 1.

Section 6 is devoted to cylinders of incompressible fluid. As mentioned above, exact
solutions representing incompressible perfect fluid cylinders have not yet been found. We
first study analytically weakly gravitating cylinders. Expanding all functions entering the field
equations in terms of the dimensionless radial distance from the axis, the pressure at any point
is found in terms of the central pressure pc. Inverting the series, the radius of a cylinder
can be determined by requiring the pressure to vanish. In this way, relativistic parameters
characterizing the cylinder can be determined analytically as corrections to the Newtonian
values. The conicity parameter starts to deviate from its Minkowskian value only by terms of
the order O

(
�2

c ln �c

)
, where �c = pc/µ0c

2.
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Fully relativistic cylinders of incompressible fluid are treated numerically. Here we
extend considerably the results of Stela and Kramer [9]. We allow the conicity parameter
C �= 1 (as one should—see above), admit high values of the central pressure and we also
exhibit other quantities of interest graphically. In particular, we show how the proper radius
of the cylinder increases with increasing central pressure, whereas the circumferential radius
starts to decrease. The peculiar behaviour of the circumferential radius is well seen in the
embedding diagram of the (z, t) = constant surfaces and their dependence on the central
pressure. Both the external Levi-Civita mass parameter and external conicity parameter are
plotted as functions of the central pressure. It is illustrated graphically that the dimensionless
mass per unit proper length has an upper bound of 1/4, whereas Thorne’s C-energy scalar
is bounded from above by 1/8. We also plot dimensionless mass per unit coordinate/proper
length of the cylinders as functions of their proper and circumferential radii and compare them
with the case of incompressible spherical stars.

We believe that full understanding of static cylindrical systems will give intuition for
more realistic situations in the neighbourhood of elongated but finite systems. In addition, the
only realistic hope to construct exact examples of interaction between simple physical matter
and gravitational waves seems to live in cylindrical symmetry. Even perturbative calculations
of slowly rotating and oscillating cylinders might bring useful insights. The simple static
configurations would then serve as convenient backgrounds.

2. Field equations and their vacuum solutions

We define cylindrical symmetry for static non-vacuum spacetimes by assuming that in addition
to the timelike Killing vector, two further commuting Killing vectors acting in hypersurfaces
orthogonal to the ‘static’ Killing vector exist3. Adapting coordinates to the symmetries, we
can write the line element with the metric in the 3-space rescaled by the norm of the timelike
Killing vector (written as an exponential) in the form

ds2 = −exp

(
2U

c2

)
c2 dt2 + exp

(
−2U

c2

)
(A2 dr2 + B2 dϕ2 + C2 dz2), (2.1)

with A(r), U(r), B(r), C(r), where we keep the velocity of light c because we wish to discuss
the Newtonian limit in detail. We assume circular orbits for ∂

∂ϕ
and consider only spacetimes

with a regular axis. Occasionally, we admit an infinitely thin cosmic string, which is described
by a conical singularity along the axis. The distance from the axis (in the conformal 3-metric)
can be used to define a unique radial coordinate, i.e., we put A = 1. There are many other
geometrical choices for the radial coordinate. If we fix the range of ϕ to be [0, 2π), we obtain
the following regularity conditions on the axis by comparing our form of the metric with
the Minkowskian metric (possibly containing the conical singularity) written in cylindrical
coordinates:

U(0) = 0, U ′(0) = 0,

B(0) = 0, B ′(0) = 1/C∗,
C(0) = 1, C ′(0) = 0,

(2.2)

where C∗ is the axis-conicity; in particular, the axis is regular for C∗ = 1. The functions
U, r−1B and C have to be differentiable functions of r2 to ensure differentiability on the
axis. The values (2.2) of U and C on the axis determine the normalization of the static and
translational Killing vectors.

3 For the definition of cylindrical symmetry, see [7]; for a detailed, careful discussion, see, e.g., the recent work [10].
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For fluid cylinders we have

Tαβ = (c2µ + p)uαuβ + pgαβ, (2.3)

where the 4-velocity uα is normalized as

gαβuαuβ = −1. (2.4)

The fluid is assumed to be at rest in the coordinates of metric (2.1), hence uα =
(c−1 exp(−U/c2), 0, 0, 0). The Einstein field equations

Rαβ = 8πG

c4

(
Tαβ − 1

2
T gαβ

)
⇐⇒ Gαβ = 8πG

c4
Tαβ, (2.5)

imply
(
λ = 1

c2

)
:4

Rtt = U ′′BC + B ′CU ′ + C ′BU ′ = 4πG(µ + λ3p) e−2UλBC, (2.6)

Grr = −λ2(U ′)2BC + B ′C ′ = 8πG e−2UλBCλ2p, (2.7)

Gϕϕ = λ2(U ′)2C + C ′′ = 8πG e−2UλCλ2p, (2.8)

Gzz = λ2(U ′)2B + B ′′ = 8πG e−2UλBλ2p. (2.9)

As we have three unknown functions and three second-order equations (2.6), (2.8), (2.9), we
expect six integration constants. The first-order equation (2.7) reduces the number of constants
in the solution to five. The conservation law T α

β;α = 0 gives

U ′ = − p′

λp + µ
. (2.10)

We assume that an equation of state (EOS) µ(p) is given. Then we can integrate the last
equation,

U(r) − U(0) = U(r) = −
∫ p(r)

pc

dp

λp + µ(p)
. (2.11)

For incompressible fluid of density µ0 and central pressure pc, this can be integrated explicitly
to yield

U(R) = 1

λ
ln

(
1 + λ

pc

µ0

)
(2.12)

for the value of U on the surface r = R with p(R) = 0. The field equations can be simplified
as follows: from equations (2.7), (2.8), and (2.9) we can eliminate U ′ to obtain

(BC)′′

BC
= 8πGλ2 e−2U 4p. (2.13)

Equation (2.6) can be rewritten as

U ′′ +
(BC)′

BC
U ′ = 4πG(µ + λ3p) e−2Uλ. (2.14)

Hence, we obtain two equations for U and for the product BC.
One immediate consequence of the field equations: take C × (2.9) − B × (2.8) and

consider the above initial conditions (2.2). This yields

CB ′ − BC ′ = 1

C∗ = constant, (2.15)

for 0 � r < ∞.
4 To avoid confusion, hereafter we denote the inverse square of the velocity of light by λ. Since C is a metric
function, we denote the ‘external’ Levi-Civita conicity parameter by C (cf equation (2.19) and below) and the
‘internal’ axis-conicity by C∗ as in equation (2.2).
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To construct local solutions having a prescribed EOS and ignoring the regularity of the
axis, one can proceed as follows: given µ(p), equation (2.11) implies there are unique
functions µ(U), p(U). Inserting these functions in equations (2.13), (2.14), we can solve
for U and BC locally. Next, equations (2.8) and (2.9) determine B and C. Equation (2.7) is
satisfied as a consequence of the Bianchi identities. Hence, given an EOS, there are many
local solutions away from the axis. Infinitely extended solutions with some special equations
of state (µ = γp) were derived in [11–13], while finite solutions satisfying energy conditions
were obtained in [8, 14]. In [15], the authors consider polytropic equations of state using
numerical solutions of the structure equations.

We can also easily find vacuum solutions in the above coordinates. For simplicity, we
now put λ = 1/c2 = 1. Equation (2.13) implies BC = a1(r + a2) with constant parameters
a1 �= 0 and a2 (if a1 = 0 then either B = 0 or C = 0 in contradiction with (2.1)). From
(2.6), we have (U ′BC)′ = 0, so we can write U ′BC = a1a3, where we introduced a third
integration constant a3.5 Substituting for BC we find

U = a3 ln

(
r + a2

a4

)
, (2.16)

with a4 �= 0 being a fourth integration constant. To find B and C, we have to solve (2.8) and
(2.9) with vanishing rhs, taking into account BC = a1(r + a2). The solutions can be written
as

B = a1a5

(
r + a2

a5

)n2

, C =
(

r + a2

a5

)n1

, (2.17)

where a5 �= 0 is a fifth integration constant and n1,2 = (
1 ±

√
1 − 4a2

3

)/
2. (We can also

interchange the roles of B and C. As long as we have no axis we cannot really distinguish
between the two Killing vectors ∂z and ∂ϕ .) From the relation for n1,2 we can see that the
range of a3 for which solutions exist is a3 ∈ [−1/2, 1/2]. It is thus advantageous to introduce
a new constant γ ∈ [0, 1] such that a3 = √

γ (1 − γ ). With this definition, the exponents in
(2.17) can be written n1 = γ, n2 = 1 − γ . Introducing δ = a1a5, a = a5/a4, b = a2 and
L = a5, the resulting metric functions read

U =
√

γ (1 − γ ) ln

(
a
r + b

L

)
, C =

(
r + b

L

)γ

, B = δ

(
r + b

L

)1−γ

. (2.18)

The solution thus has five constants of integration. However, we now show that three of
these constants are redundant. We shall see that this is related to the fact that the Killing
vectors ∂t , ∂z are defined only up to constant multiplicative factors and, in addition, the whole
metric can be rescaled by a constant. First, denote α = [a(1 − γ )]

√
γ (1−γ ) and introduce new

constants ρ0,m and C̃ by the relations

L = αρ0, γ = m2

1 + m2
, δ = αρ0

C̃
(1 + m2)

1
1+m2 . (2.19)

Then apply the transformation

[t, z, r, ϕ] →
[

τ

α
, α(1 + m2)

m2

1+m2 ζ,
αρ0

1 + m2

(
ρ

ρ0

)1+m2

− b, ϕ

]
. (2.20)

This leads to the metric of the form

ds2 = −
(

ρ

ρ0

)2m

dτ 2 +

(
ρ

ρ0

)2m(m−1)

(dζ 2 + dρ2) +
1

C̃2
ρ2

(
ρ

ρ0

)−2m

dϕ2, (2.21)

containing three constants only.
5 Note its relation to the Tolman mass, mT of (4.8), following from U ′BC = 2mT = constant.
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Next, use a linear coordinate transformation with a scaling parameter q, which will be
fixed subsequently, as follows:

[τ, ζ, ρ, ϕ] →
[
q

m

m2−m+1 t, q
m(m−1)

m2−m+1 z, q
m(m−1)

m2−m+1 r, ϕ
]
. (2.22)

This yields

ds2 = −
(

rq

ρ0

)2m

dt2 +

(
rq

ρ0

)2m(m−1)

(dz2 + dr2) +

(
1

C̃
q

m2

m2−m+1

)2 (
rq

ρ0

)−2m

r2 dϕ2. (2.23)

By choosing q appropriately, we can dispose of either C̃ or ρ0 so that the resulting metric
involves only two constants. Indeed, setting q = ρ0 we eliminate ρ0 in (2.23),

ds2 = −r2m dt2 + r2m(m−1)(dz2 + dr2) +
1

C2
r2(1−m) dϕ2, (2.24)

where we put C = C̃
/
ρ

m2

m2−m+1
0 . With C = 1, this is the standard Levi-Civita metric as given in

the primary reference [7], equation (22.7). In (2.24), the t, z and r coordinates and the conicity
parameter C do not have the usual dimensions. We can maintain the conventional dimensions

if we set q = C̃
m2−m+1

m2 , thus obtaining

ds2 = −
( r

R

)2m

dt2 +
( r

R

)2m(m−1)

(dz2 + dr2) + r2
( r

R

)−2m

dϕ2, (2.25)

with R = ρ0/C̃
m2−m+1

m2 . Note, however, that this cannot be done for m = 0. Hence, this
coordinate system has the usual dimensions but (2.25) does not include the standard cosmic
string as the limit m → 0 only yields the flat spacetime without deficit angle. In the following,
we use the form (2.24).

Note that if the ∂ϕ symmetry is considered locally only, we can also rescale ϕ and thus
put C = 1 in (2.24). This is not the case, however, as we insist on a particular range of ϕ and
require ϕ ∈ [0, 2π).

3. Existence of global solutions

Our aim here is to show that for a given barotropic EOS, a unique global solution corresponds
to each value of the pressure on the axis pc > 0.6 Depending on the EOS, the fluid cylinder
either is of a finite extent, or the fluid occupies the entire space. (In this section we again put
λ = 1/c2 = 1.)

We begin with the construction of solutions with a regular axis. Inserting the Taylor series
for the metric coefficients into the field equations indicates that for a given analytic equation
of state µ(p), a value pc of the pressure at the centre determines a unique solution. We prove
the following lemma in appendix A.

Lemma 1. Let µ(p) be a barotropic equation of state. Then for each value of the central
density µ0 = µ(pc) > 0 there is r0 > 0 such that a unique solution of the field equations
(2.6)–(2.10) exists for 0 � r � r0.

Next we show that the solution can be extended as long as the pressure is positive.

Lemma 2. Suppose we have a solution with a regular axis. Then U,B and C are monotonically
increasing and p is monotonically decreasing as long as p > 0 (then also µ + p > 0).

6 We choose the pressure rather than the energy density as the fundamental variable since in section 6 we analyse
cylinders of incompressible fluids.
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Proof. B ′ and C ′ are positive near the centre. If any of them vanished at some point, then
equation (2.7) would give a contradiction because we assumed p > 0, and B,C > 0 near the
centre as a consequence of the regularity conditions (2.2). Hence, B and C are monotonically
increasing.

Equation (2.14) implies—due to U ′(0) = 0—that U ′′(0) > 0. Hence U ′ is positive near
the centre. Assume U ′(r0) = 0; then U ′′(r0) > 0 means that U cannot have a maximum at r0,
so U is monotonically increasing, i.e., U ′ � 0. Equation (2.10) then implies p′ � 0. (This is
really the maximum principle for 
U = µ + 3p.)

Now we have the following possibilities:

(1) The pressure is positive for all values of r. Then the fluid fills all the space and it is not
possible to extend the solution because radial (r-) lines have an infinite proper length (cf
equations (2.1), (2.11)).

(2) The pressure vanishes at some value of r. Then we show in the next lemma that a unique
vacuum solution can be joined to the inner solid solution. �

Lemma 3. If p(R) = 0, a unique vacuum solution—a particular Levi-Civita solution—can
be joined to the fluid cylinder.

Proof. We first show that U(R) is finite. For equations of state with a positive boundary
density, µb = µ(p = 0), this is obvious from equation (2.11). If, however, the boundary
density vanishes, the integral in equation (2.11) could diverge for p → 0. If this happens, we
use the fact that U,B,C,U ′ and (BC)′ are positive. Therefore, from equation (2.14) we have

U ′′ < 4πG(µ + 3p), (3.1)

so that

U ′(r) =
∫ r

0
U ′′(r ′) dr <

∫ r

0
4πG(µ + 3p) dr. (3.2)

This shows that U ′ is bounded for 0 � r � R if the EOS is monotonic (in fact, it is sufficient to
assume that µ(p) is bounded on [0, pc]). The same holds for U. Furthermore, the monotonicity
of U and the upper bound on U ′′ imply that U,U ′ have limits at R. As U,U ′ have limits at R, we
can consider equations (2.8) and (2.9) as linear equations for B and C with given coefficients.
This implies that B,B ′, C and C ′ have limits at R.

All field equations remain meaningful for µ = p = 0. Therefore, the constants
B(R), B ′(R), C(R), C ′(R), U(R) and U ′(R) provide the boundary values for the vacuum
field equations; these have a unique solution—a Levi-Civita solution. Since the metric is C1

in our radial coordinate, the junction conditions at the boundary are satisfied by construction.
Summarizing, we have shown that a barotropic EOS determines a one-parameter family

of global spacetimes.
As mentioned in the introduction, solutions with constant density, the analogues of the

interior Schwarzschild solutions, have so far not been found as explicit exact solutions. In
section 6 examples of cylinders with µ = constant are constructed numerically. The following
theorem shows that a general constant-density cylinder always has a finite radius. �

Theorem. For a solution with a regular axis, a barotropic EOS and a positive boundary
density µ(p = 0) = µb > 0, there is a finite radius R with p(R) = 0.

Proof. Suppose that p is positive for all r. Equation (2.11) implies that U has a limit for
r → ∞. We want to show first that U ′ → 0. If this is not the case, then there is a sequence
rn → ∞ with U ′(rn) = a > 0. Since U ′ is integrable, the peaks where U ′ reaches the value a
repeatedly must become even narrower with increasing r. Therefore, there must be values of
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r where there are arbitrary high positive and negative values of U ′′. However, equation (2.14)
shows that U ′′ is bounded and we have a contradiction. Thus, U ′ → 0.

We can rewrite equation (2.6) as

(BCU ′)′ = 4πG(µ + 3p) e−2UBC, (3.3)

so that by integration we get

U ′ = 1

BC

∫ r

0
4πG(µ + 3p) e−2UBC dr. (3.4)

Eliminating the pressure through equation (2.13), we obtain

U ′(r) = 1

BC

∫ r

0
4πGµ e−2UBC dr +

1

BC

∫ r

0

3

8
(BC)′′ dr, (3.5)

or

U ′(r) = 1

BC

∫ r

0
4πGµ e−2UBC dr +

1

BC

3

8
(BC)′(r) − 1

BC

3

8
(BC)′(0)

= 1

BC

∫ r

0
4πGµ e−2UBC dr +

1

BC

3

8
((BC)′(r) − 1/C∗). (3.6)

Due to equation (2.15), we further have

(BC)′ − 1

C∗ = CB ′ + BC ′ − 1

C∗ = CB ′ − BC ′ + 2BC ′ − 1

C∗ = 2BC ′ > 0. (3.7)

If BC is bounded, the first integral gives a positive contribution to U ′ and we have a
contradiction with U ′ → 0 because the second term in (3.5) is also positive. For BC

unbounded, we calculate the limit of the integral for r → ∞ by l’Hospital rule as

lim
r→∞

4πGµ e−2UBC

(BC)′
. (3.8)

Now for r → ∞ either both terms in equation (3.6) (which are positive) are finite, or, if
one vanishes, the other diverges and we again have a contradiction with U ′ → 0. Hence,
p has to vanish at some finite radius. Note that equations (3.6), (3.7) and (2.15) imply that
this conclusion is valid for both a regular axis (C∗ = 1) and for an axis with a cosmic string
(C∗ �= 1). �

4. Newtonian limit

For a systematic treatment of the Newtonian limit, we refer to [16, 17]. Above, we have
already chosen our variables in such a way that the field equations have a limit for a diverging
velocity of light, i.e., for λ → 0. For λ = 0, equations (2.6)–(2.9) imply

U ′′BC + B ′CU ′ + C ′BU ′ = 4πGµBC, (4.1)

B ′C ′ = 0, (4.2)

C ′′ = 0, (4.3)

B ′′ = 0, (4.4)

U ′ = −p′

µ
. (4.5)

Equations (4.2)–(4.4) show that the conformal 3-space is flat in the Newtonian limit. To
adapt the coordinates to the axial symmetry and the regularity of the axis (cf equations (2.2)),
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we have to choose B = r, C = 1. Equation (4.1) then becomes the Poisson equation for the
Newtonian gravitational potential

U ′′ +
1

r
U ′ = 4πGµ. (4.6)

The field equations depend on λ in such a way that it is easy to demonstrate the existence
of families of exact solutions that have a Newtonian limit. Suppose we choose an EOS that is
independent of λ. The theorem in appendix A, which is used to obtain solutions with a regular
axis, also shows that these solutions depend smoothly on λ and that the limiting solution
satisfies the equations for λ = 0. The same is true for the extension of the solution up to the
radius where the pressure vanishes.

Suppose we have such a λ-family of solutions with finite radii Rλ for all λ. Integration of
equation (2.6) up to the boundary gives

(U ′BC)(Rλ) = G4π

∫ Rλ

0
(µ + λ3p)BC e−2λU dr. (4.7)

The constant

mT = 2π

∫ Rλ

0
(µ + λ3p)BC e−2λU dr (4.8)

is the Tolman mass (see, e.g., [5, 18]). Since all metric coefficients have limits for λ → 0,
equation (4.8) implies that the limit of mT is the Newtonian mass per unit length

lim
λ→0

mT = 2π

∫ R0

0
µr dr. (4.9)

The corresponding results for Newtonian cylinders and spheres are summarized in
appendix B.

5. Joining the inner fluid solution and the outer Levi-Civita solution

Next, we want to demonstrate explicitly how a fluid solution, with the property that the pressure
vanishes at some fixed r = R such that all metric coefficients and their first derivatives are
finite there, can be uniquely matched to a vacuum solution given by functions (2.18).7

This is obvious because all the equations are regular for p = 0. Hence we can just take
the values of the metric and their first radial derivatives as the initial values for the vacuum
field equations and obtain a unique solution satisfying the matching conditions (the metric
and its first derivatives continuous) by construction. Let us note that, as we have checked, we
obtain the same results by requiring that (i) the cylinder’s proper circumference is the same
as measured from both sides of the surface and (ii) the surface energy–momentum tensor
(calculated using the general Israel formalism [19]) vanishes.

Equations (2.15) and (2.18) imply

δ = L

1 − 2γ

1

C∗ . (5.1)

On the surface, we have to satisfy equations (2.18): on the left-hand sides we have the metric
potentials obtained by integration within the cylinder, from these we now determine the five
constants on the right-hand side.

7 In the following, we need to distinguish between L of (2.18), ρ0 of (2.21), R of (2.25) and the coordinate R, proper
Rp and circumferential Rc radii of the cylinder defined by equations (6.8), (6.9). In this section again λ = 1/c2 = 1.
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Denoting F(r) ≡ B(r)C(r), we have on the surface F ′(R) = δ/L = 1/C∗(1 − 2γ ) and
thus γ = (C∗F ′ − 1)/(2C∗F ′) = m2/(1 + m2). Using this, we readily find

m =
√
C∗F ′ − 1

C∗F ′ + 1
, (5.2)

where F ′ is evaluated at R. It is elementary to show that the outer Levi-Civita parameter m is
bounded by m ∈ [0, 1). Using the expression for the Tolman mass mT = 2π

∫ R

0 e−2UBC(µ +
3p) dr , we find

2mT = U ′BC = δ

L

√
γ (1 − γ ) = 1

1 − 2γ

1

C∗
m

1 + m2
= 1

C∗
m

1 − m2
. (5.3)

Thus, we obtain an explicit relation between the Levi-Civita parameter, m, of the outer metric,
the axis conicity, C∗, and the Tolman mass, mT , of the fluid cylinder

mT = 1

2C∗
m

1 − m2
. (5.4)

Using the external metric in the form (2.24), we find the conicity parameter from the continuity
of the metric and its radial derivative. Simple calculations yield

C = 1

B ′

(
B

B ′ eU

) C∗F ′−1√
(C∗F ′)2−1−2C∗F ′

, (5.5)

where B,B ′, U and F ′ are evaluated at R, the axis conicity C∗ is constant. Consequently, the
conicity parameter, C, of the outer metric is determined by the values of the metric potentials
on the surface independently of the EOS. In the case of incompressible fluid, the coefficient
eU on the surface is given explicitly by (2.12). Since the surface values of the metric, for a
given EOS, are determined by the central pressure pc, both m and C are, in fact, given by pc

and by C∗ in the case of a general cylinder. Even if the axis is regular (C∗ = 1), the external
conicity parameter C �= 1 in general.

6. Cylinders of incompressible fluid: analytic approach and numerical results

The set of ordinary differential (field) equations (2.6)–(2.9) can be simplified by converting it
into the dimensionless form:

d

ds
N = Q

H
, (6.1)

d

ds
Q = (χ + 3�)

H

N
+

Ṅ2H

N
, (6.2)

d

ds
� = −(χ + �)

Ṅ

N
, (6.3)

d2

ds2
H = 8

�H

N2
, (6.4)

d2

ds2
K = −KṄ2

N2
+ 2

�K

N2
. (6.5)

Here the dimensionless radial coordinate s = βr , where β2 = 4πGλµ0, with µ0 being a
characteristic (e.g., the central) fluid density; the dimensionless fluid density is χ = µ/µ0

and the dimensionless pressure � = λp/µ0 (this is not an EOS). The dimensionless
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metric functions are given in terms of the original metric functions U,B,C, F = BC as
N = eλU ,K = βB,H = βF,Q = ṄH and the dot ˙ = d/ds. When considering an
incompressible fluid, we have χ = 1, the solution of the equations then depends only on the
central pressure �c = λpc/µ0, which enters into the solution through the initial conditions
N(0) = 1,Q(0) = 0,�(0) = �c,H(0) = 0, Ḣ (0) = 1,K(0) = 0 and K(0) = 1. From
now on, we assume C∗ = 1 on the axis, i.e., we consider cylinders without a cosmic string
along the symmetry axis. These initial conditions lead to a solution regular at s = 0 that yields
Q/H → 0 and thus no problems with ‘0/0’ arise during the numerical integration of the
differential equations (cf equation (6.1)). For a rigorous proof of the existence and uniqueness
of a smooth solution in a neighbourhood of the axis, see appendix A.

Before turning to the numerical results on the fully relativistic cylinders of incompressible
fluid, it is interesting to derive relativistic corrections to the Newtonian cylinders of
incompressible fluid analytically. For small radii the analytic expressions agree well with
fully relativistic numerical calculations.

In the analytic approach we make Taylor expansions in the dimensionless radial distance
s around the origin (the axis) s = 0 of all functions entering the field equations (6.1)–(6.5),
in which, for incompressible fluids, we put χ = 1. Combining the results we can express the
dimensionless pressure as a series in s in which the coefficients are uniquely determined by
the value of the pressure at the centre:

�(s) = �c − 1
4 (1 + 3�c)(1 + �c)s

2 + 1
192 (61�c + 21)(1 + 3�c)(1 + �c)s

4 + O(s6). (6.6)

Note that this expansion in s can also be understood as an expansion in the parameter λ = 1/c2

since s2 = (4πGµ0)λr2. Hence, it also yields relativistic corrections to the corresponding
Newtonian expression (given by the first two terms in the following series—see appendix B):

p(r) = pc − πGµ2
0r

2 + πGµ0r
2
(

7
4πGµ2

0r
2 − 4p

)
λ

+ πGr2
(− 317

90 π2G2µ4
0r

4 + 145
12 πGµ2

0r
2p − 3p2

)
λ2 + O(λ3). (6.7)

Expansion (6.6) approximates well the numerical results for s � 1. Assuming that the
dimensionless central pressure �c � 1, we can invert the expansion (6.6) to find the location of
the cylinder’s surface, i.e., such a value s = S at which �(S) = 0. Note that �c = λpc/µ0 � 1
is indeed valid for not very relativistic pressures.

There are two physical (geometrical) radii of a relativistic cylinder—the proper radius Rp

and the circumferential radius Rc, defined by

Rp =
∫ R

0

√
grr dr = 1√

4πGλµ0

∫ S

0

ds

N
, (6.8)

Rc = √
gϕϕ|r=R = 1√

4πGλµ0

K

N

∣∣∣∣
s=S

. (6.9)

Using the expansions of the metric functions K,N in s2 and substituting for S from the
condition �(S) = 0 determined by inverting equation (6.6), we arrive at the following results:

Rp =
√

pc

πGµ2
0

(
1 − 35

24
�c +

18 347

5760
�2

c + O
(
�3

c

))
, (6.10)

Rc =
√

pc

πGµ2
0

(
1 − 17

8
�c +

6415

1152
�2

c + O
(
�3

c

))
. (6.11)



1594 J Bičák et al

Here the dimensionless central pressure plays the role of an expansion parameter; since
it involves λ, the second and subsequent terms in (6.10), (6.11) determine the relativistic
corrections. The first terms, of course, coincide: Rp = Rc =

√
pc/πGµ2

0 is the radius of
a Newtonian cylinder of incompressible fluid with density µ0 and central pressure pc (see
appendix B).

Next, defining mass per unit coordinate and proper lengths of the cylinder, M1 and Mp,
by

GλM1 = 2πGλ

∫ R

0
µBC e−3λU dr = 1

2

∫ S

0

H

N3
ds, (6.12)

and

GλMp = 2πGλ

∫ R

0
µB e−2λU dr = 1

2

∫ S

0

K

N2
ds, (6.13)

respectively, we find expansions

GλM1 = �c − 15

4
�2

c +
995

72
�3

c + O
(
�4

c

)
, (6.14)

and

GλMp = �c − 13

4
�2

c +
731

72
�3

c + O
(
�4

c

)
. (6.15)

Again, the first term yields the expected Newtonian result: M1 = Mp = �c/Gλ = pc/Gµ0.
The Levi-Civita mass parameter turns out to be

m =
√

Ḣ − 1

Ḣ + 1

∣∣∣∣∣∣
s=S

= 2�c

(
1 − 7

4
�c +

185

72
�2

c + O
(
�3

c

))
, (6.16)

so that in the lowest order GλM1 = GλMp = m/2, as is also the case for infinitely thin
cylindrical shells [6].

The conicity parameter, C, outside the cylinder is also uniquely determined by the central
pressure as it follows from equation (5.5) with C∗ = 1:

C = 1 + �2
c

(
2 ln

β2

4�c

− 1

)
− �3

c

(
3 ln

β2

4�c

− 41

3

)
+ O

(
�4

c

)
. (6.17)

The conicity parameter starts to deviate from 1 only by terms of order O
(
�2

c ln �c

)
.

Let us now turn to the numerical results for fully relativistic cylinders of incompressible
fluid. The numerical integration of the system (6.1)–(6.5) (with χ = 1) enables one to find
first the radial distribution of the pressure and then the proper and circumferential radii of the
cylinders, as well as other physical quantities, all being determined uniquely by the central
dimensionless pressure �c = pc/µ0c

2.
The dependence of the pressure on the dimensionless distance s from the axis is illustrated

in figure 1. The higher the central pressure, the more the resulting curve deviates from the
Newtonian case. The Newtonian curve is represented by a parabola y = 1−x2 for any central
pressure. For low central pressures, the curve is very close to this parabola; as the central
pressure increases, it drops faster than in the Newtonian case and the surface is thus closer to
the axis.

Perhaps the most interesting result can be seen in figure 2. Here the dimensionless proper
and circumferential radii, Rp and Rc, of the cylinders are illustrated for cylinders parametrized
by the central pressure �c. Curiously enough, while the proper radius increases with increasing
�c, the circumferential radius starts to decrease for higher central pressures, though with still
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Figure 1. Pressure fall-off as a function of the distance from the axis. The individual curves from
upper right to lower left correspond to the values of the central pressure �c = 0.001, 0.01, 0.1, 1, 10
and 100. The vertical axis gives the ratio of the pressure at a given point to the axis pressure �/�c .
The horizontal axis gives the ratio of the coordinate distance r from the axis to the Newtonian
radius of a cylinder with the same axis pressure: r/RNewtonian = r/

√
pc/πGµ2

0. The central
pressure increases from upper right to lower left.
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0.3

2 4 6 8 10

Figure 2. The dependence of the dimensionless proper radius of the cylinder Rp = √
Gλµ0Rp

and the dimensionless circumferential radius Rc = √
Gλµ0Rc of an incompressible fluid cylinder

on the dimensionless central pressure �c = λpc/µ0. The circumferential radius Rc has only a
bounded range of values.

‘physical’ values of �c < 1; the maximum of the curve Rc(�c) gives Rc ≈ 0.213 243 and
occurs at �c ≈ 0.8 (see figure 2). For any finite value of µ0 = constant > 0 and any finite
�c > 0, the coordinate radius of the cylinder, R—and, correspondingly, also Rp and Rc—is
finite in accordance with the theorem in section 3.

As discussed below (5.5), knowing the cylinder radius, we can use the matching conditions
to calculate the Levi-Civita mass parameter, m, and the conicity parameter, C, of the vacuum
spacetime outside the cylinder for any given �c. The resulting curves are illustrated in figure 3.
The Levi-Civita mass parameter, characterizing the curvature of the vacuum spacetimes
(see equation (2.21)), increases from its flat-space value, reaching the magnitude of m ≈ 0.69
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Figure 3. The external Levi-Civita parameter, m, and the external conicity parameter, ln(C), as
functions of the dimensionless central pressure, �c = λpc/µ0, for incompressible fluid (m can
attain only values within [0, 1)). We set β2 = 4πGλµ0 = 1.

for pc = µ0c
2, and approaching m = 1 for the extreme central pressures �c 
 1.

Interestingly, the cylinders with still relatively low central pressures are so relativistic that
they produce Levi-Civita solutions with m > 1/2, in which there are no circular timelike
geodesics (cf also [20] below equation (14)). For an analogous phenomenon in the case of
static cylindrical shells and their Levi-Civita fields, see [6].

In the physical region of the pressures, pc � µ0c
2, one can find, by numerical

interpolation, the following nice analytical approximations (all with a relative accuracy better
than 10−3 up to �c = 1) to the numerical curves illustrated in figures 2 and 3:

Rp ∼
√

pc

πGµ2
0

(
1 − �c

532 + 36�c

368 + 788�c

)
, (6.18)

Rc ∼
√

pc

πGµ2
0

(
1 − �c

473 + 21�c

225 + 567�c

)
, (6.19)

m ∼ 2�c

(
1 − �c

733 − 24�c

413 + 670�c

)
, (6.20)

C ∼
(

1 + �2
c

41 − 3�c

5 + 220�c

)
β

�2
c

168+15�c+5�2
c

42+68�c+184�2
c . (6.21)

It is not obvious what expression to use as the unit-length mass of the cylinders. There are
several choices. One can use the Vishveshwara–Winicour definition [21] employing Killing
vector fields outside the cylinders (in the outer Levi-Civita spacetime) and yielding

MV W = m

2
. (6.22)

We find MV W ∈ [0, 1/2). This value crosses the 1/4 limit [6] already for the central pressure
�c well below 1. We can also use the Tolman mass

mT = 2π

∫ R

0
(µ + λ3p)BC e−2λU dr = 1

2G
U ′BC

∣∣
r=R

= 1

2Gλ

Q

N

∣∣∣∣
s=S

, (6.23)
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Figure 4. Dimensionless masses per unit coordinate and unit proper lengths of the cylinders,
M1 = GλM1 and Mp = GλMp , as functions of the dimensionless central pressure �c . The
dimensionless mass per unit proper length Mp has an upper bound of 1/4.

0
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Figure 5. C-energy scalar U evaluated on the surface of the cylinders as a function of the
dimensionless central pressure �c . As can be seen, this quantity is bounded from above
by 1/8.

which is not bounded from above—solutions with unbounded mT have also been found
analytically [18]. We can use mass per unit coordinate length, M1 (6.12), with no upper bound
(see figure 4). There are two more expressions that do exhibit a limited interval of values:
mass per unit proper length of the cylinder, Mp (6.13), with GλMp � 1/4 as shown in [22]
(see figure 4), and Thorne’s C-energy scalar defined by using the symmetries of the spacetime
[23] as

U = 1

8

[
1 − A,µA,µ

4π2
∣∣ ∂
∂z

∣∣2

]
= 1

8

[
1 −

(
KN2

H

d

ds

[
H

N2

])2
]

, (6.24)

where A = 2πBC e−2U is the area of the cylindrical belt given by r = constant,
z ∈ [0, 1], ϕ ∈ [0, 2π). We find U � 1/8—in accordance with [23] (see figure 5).
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Figure 6. The conicity characterizing quantity ψ (see equation (6.25)) evaluated at the surface of
the cylinder with the central pressure �c .

There is a fundamental difference between the two bounded expressions—there is no
increase in Mp outside the solid cylinders but there is a non-zero C-energy scalar associated also
with the outer vacuum Levi-Civita spacetime. The total C-energy contained within a cylinder
of radius greater than the radius of the solid cylinder is given simply by the corresponding
expression for the pure Levi-Civita spacetime (no integration) U = 1

8 (1− (1−m)4/r2m2C2) �
1
8 .

We can construct the following invariant expression characterizing the conicity of the
metric

ψ ≡ lim
r2→r1

Rp(r2) − Rp(r1)

Rc(r2) − Rc(r1)
= 2

√
gϕϕ(r1)grr (r1)

d
dr

gϕϕ(r1)
, (6.25)

with Rc being the circumferential and Rp the proper radius. In Minkowski spacetime we find
ψ = 1. For a cosmic string ds2 = −dt2 + dr2 + dz2 + 1

C2 r
2 dϕ2, and we have ψ = C; in a

Levi-Civita spacetime we calculate ψ = Crm2
/(1 − m) (and thus U = 1

8 (1 − [(1 − m)/ψ]2)).
For full cylinders, we obtain

ψ = 1

B ′ − BU ′ = N

NK̇ − KṄ
(6.26)

—see figure 6.
If we embed a two-dimensional hyperplane t, z = constant with metric

ds2 = e−2λU (dr2 + B2 dϕ2) (6.27)

into a flat Euclidian space with metric

ds2 = dR2 + R2 dϕ2 + dζ 2, (6.28)

we get

R = B e−λU = K

βN
. (6.29)

Equation (6.9) implies R = Rc and finally (using (6.8))

dζ

dRc

=
√

1(
N d

ds
(K/N)

)2 − 1 =
√(

dRp

dRc

)2

− 1. (6.30)
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Figure 7. Embedding of the z, t = constant surfaces according to formula (6.30) for central
pressures �c = 0.2, 1, 3, 10, 25, 100, 1000, 104, 106 and 108, bottom to top. The dots on the
graph indicate the position of the cylinder’s surface. Rc = √

Gλµ0Rc is the dimensionless
circumferential radius, ζ̄ = √

Gλµ0ζ .

We conclude

dR2
p = dR2

c + dζ 2. (6.31)

Thus Rp measures the length of the embedding curve, see figure 7. It can be shown that
the embedding surface never degenerates into a cylinder (dζ/dRc = ∞) at a finite distance
from the axis. For a cosmic string, this simplifies to a cone dζ/dRc = √

C2 − 1, as expected.
Further we find

ψ =
√

1 +

(
dζ

dRc

)2

and
dζ

dRc

=
√

ψ2 − 1. (6.32)

Another interesting graph is a plot of unit-length mass within the cylinder as a function
of the cylinder radius. We have four options: mass per unit coordinate or proper length and
proper and circumferential radii. In figure 8 we present all four quantities. The graph of
the unit proper length mass as a function of the circumferential radius resembles the plot of
equilibrium spherical configurations where we plot the Schwarzschild mass M of the system as
a function of its coordinate radius R. On the other hand, if we integrate the structure equations
in the case of a spherically symmetric static star of constant density µ0, we find

GλMp = 3

4

(
Rp − 1

A
sinARp cosARp

)

= 3

4

(
1

A
arcsin(ARc) − Rc

√
1 − A2R2

c

)
, (6.33)

where A = √
8πGλµ0/3,Mp is the total proper mass of the star and Rp,Rc are its proper and

circumferential radii, respectively (see figure 9). This function is similar to the first graph in
figure 8—to the mass per unit coordinate length M1 as a function of the dimensionless proper
radius Rp of the cylinder. There is, however, a fundamental difference between the spherical
and cylindrical configurations—in the spherical case in standard Schwarzschild spherical
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Figure 8. Dimensionless masses of the cylinders per unit coordinate and unit proper lengths,
M1 = GλM1 and Mp = GλMp , as functions of their dimensionless proper and circumferential
radii, Rp = √

Gλµ0Rp and Rc = √
Gλµ0Rc . The graph uses logarithmic scales to reveal the

asymptotic behaviour of the masses.
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Figure 9. Dimensionless total proper mass Mp = √
Gλµ0GλMp of a static spherical star of

constant density µ0 as a function of its dimensionless proper radius Rp = √
8πGλµ0/3 Rp

and dimensionless circumferential radius Rc = √
8πGλµ0/3 Rc . In the spherical case, the

circumferential radius Rc coincides with the coordinate radius R in the standard spherical
coordinates.

coordinates, the radial component of the metric tensor depends on the density but not on the
pressure. Therefore, we do not need to find the pressure as a function of the distance from
the centre to evaluate Mp. For spheres of incompressible fluid, the dependence of the proper
mass on the distance from the centre inside the sphere is common for all spheres and it is the
same as the dependence of the total proper mass on the radius of the spheres. This is not the
case for cylinders of incompressible fluid where each value of the central pressure determines
a unique curve p(r).

7. Concluding remarks

Although the main results were announced in the introductory section already, let us briefly
summarize them here, emphasizing those aspects that appear to be new in the subject of
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cylindrical symmetry in general relativity. Our primary goal, in contrast to the majority of
other works, has been (i) to understand the global character of spacetimes with static perfect
fluid cylinders, (ii) to study weakly gravitating cylinders and their Newtonian limit and (iii) to
analyse in detail cylinders of incompressible fluid. Except for the last item, we did not start
from an a priori equation of state, so our results are of a general character.

We have shown that for any smooth monotonic equation of state or for incompressible
fluid and for any density at the axis of symmetry there exists a unique solution in some
neighbourhood of the axis which is regular at the axis and can be uniquely extended to a global
solution. In other words, the equation of state determines a one-parameter family of global
spacetimes. If the pressure vanishes at a finite value of the radial coordinate then a unique
Levi-Civita vacuum solution can be joined to the inner perfect-fluid solution. In particular,
we prove that the cylinder has a finite radius if the equation of state admits a non-vanishing
density for zero pressure (as is the case for incompressible fluid, for example). In general,
the outside Levi-Civita solution is determined by both the mass (curvature) parameter and
the conicity parameter. The need for a non-trivial conicity parameter in the external vacuum
region and the fact that both the mass and conicity parameters are determined uniquely by
the value of the density/pressure at the axis of the fluid cylinder do not appear to have been
elucidated before.

In the Newtonian limit, we prove that the spatial metric inside the fluid cylinders is
conformally flat. The relativistic Tolman mass becomes the Newtonian mass per unit length.
For comparison, we also discussed cylinders and spheres of perfect fluid constructed ab initio
in the Newtonian theory.

In the case of relativistic cylinders of incompressible fluid, no analytical solution is
available. However, we succeeded in deriving analytic results for the relativistic corrections
to the Newtonian cylinders. For weakly relativistic cylinders, the Levi-Civita mass parameter
and the conicity parameter, for example, are given by equations (6.16) and (6.17). For
fully relativistic cylinders, various physical quantities of interest were found by numerical
integration of the field equations and they are exhibited graphically (figures 1–8 in section 6).
The resulting configurations are determined uniquely by the dimensionless pressure �c =
pc/µ0c

2 at the axis. As the central pressure increases, the pressure away from the axis
decreases more rapidly so that relativistic cylinders become more compact than the Newtonian
ones. A remarkable phenomenon, unnoticed so far, arises in the relativistic regime: while
the (dimensionless) proper radius of the cylinders increases with increasing central pressure,
the (dimensionless) circumferential radius starts to decrease for still ‘physical’ values of
�c < 1; the circumferential radius has only a bounded range of values. This phenomenon is
nicely illustrated by the embedding diagrams of the surfaces z, t = constant (figure 7). The
external Levi-Civita mass parameter m increases with �c, approaching m = 1 as �c 
 1,
whereas the quantity ψ characterizing the conicity increases without limit as �c → ∞. The
dimensionless mass per unit proper length inside the cylinders starts to decrease for highly
relativistic cylinders (it has an upper bound of 1/4), but the analogous mass per unit coordinate
length increases without bound. Thorne’s C-energy increases with �c and approaches 1/8 as
�c becomes large.

At the end of the preceding section, a comparison of cylindrical and spherical
configurations of incompressible fluid shows similarities and fundamental differences between
the two cases (figures 8 and 9).

The ‘external’ Levi-Civita conicity parameter, the importance of which has been
emphasized throughout the text, takes various values depending on the ‘inner’ cylinder, which
is regular everywhere. However, to include more general situations, we also considered an
infinitely thin cosmic string (see equation (2.2)), i.e., a conical singularity along the axis
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of symmetry inside the cylinder. This produces the ‘axis conicity’ which enters various
formulae, such as the Tolman mass, but it does not, for example, influence the conclusions of
the theorem stating that a cylinder has a finite radius if the equation of state admits positive
density at vanishing pressure.

Finally, to ‘end with the beginning’, let us remark again that only a full understanding
of the static situation will enable a sufficiently thorough treatment of problems such as the
interaction of cylindrical gravitational waves with static cylindrical matter configurations.
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Appendix A. Regularity of the axis

In order to prove the existence of solutions regular on the axis we begin with the following
two equations (2 × (2.7) + B × (2.8) + C × (2.9)) and (2.6) written for F = BC:

F ′′ = 8πλ2G e−2Uλ4pF = V (U, λ)F, (A.1)

U ′′ +
F ′

F
U ′ = 4πG(µ + λ3p) e−2Uλ = W(U, λ). (A.2)

For a given EOS, µ(p), and the value of the pressure on the axis, pc > 0, the function p(U)

is uniquely determined from equation (2.10) since p + µ does not change sign. The boundary
values at r = 0 are F(0) = U(0) = U ′(0) = 0, F ′(0) = 1.

We want to write the above system in the form

x
df

dx
+ Yf = xG(x, f (x)) + g(x), (A.3)

where Y is a constant n × n matrix and f (x) a vector. For this form, the existence and
uniqueness of a smooth solution in a neighbourhood of x = 0 was shown in theorem 1 in [24],
provided the matrix Y has positive eigenvalues.

First we define

F(r) = rf̂ (r2), (A.4)

where f̂ (0) = 1 and f̂ ′(0) is finite, and obtain the equation

U ′′ +
1

r
U ′ + 2r

f̂ ′

f̂
= W. (A.5)

With x = r2 as radial coordinate and Û (r2) = U(r), we get

4xÛ ′′ + 4Û ′ + 4x
f̂ ′

f̂
Û ′ = W(Û, λ), (A.6)

where ′ is the derivative with respect to the argument of the function, i.e, x. We write this
equation as a first-order system

Û ′ = v̂, (A.7)

4xv̂′ + 4v̂ + 4x
f̂ ′

f̂
v̂ = W(Û, λ). (A.8)
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With Û (x) = xû(x), we obtain

xû′ + û − v̂ = 0. (A.9)

Similarly, we rewrite the equations for f̂ as a singular first-order system. Defining

f̂ ′ = ĝ, (A.10)

we get

4xĝ′ + 6ĝ = V f̂ . (A.11)

To make the equation singular, we define

f̂ = xĥ + 1, (A.12)

and obtain

xĥ′ + ĥ − ĝ = 0. (A.13)

Now we finally have the system in the desired form of equation (A.3)

xv̂′ + v̂ = −x
xĥ′ + ĥ

xĥ + 1
v̂ +

1

4
W(xû, λ), (A.14)

xû′ + û − v̂ = 0, (A.15)

xĝ′ + 3
2 ĝ = 1

4
(1 + xĥ)V (xû, λ), (A.16)

xĥ′ + ĥ − ĝ = 0. (A.17)

The matrix Y is

Y =




1 −1 0 0

0 1 0 0

0 0 3
2 0

0 0 −1 1


 , (A.18)

which has positive eigenvalues 1, 3
2 .

Appendix B. Static Newtonian configurations of matter

For a Newtonian cylinder, the balance equation reads

p′ + gµ = 0, (B.1)

where g is gravitational acceleration, p is pressure and µ is the fluid density (variable in
general). Using the Gauss theorem, we have

p′ +
4πGµ

r

∫ r

0
µr dr = 0. (B.2)

Since there appears an integral quantity, namely, the total mass contained within the cylinder
up to radius r, we obtain a second-order differential equation

4πGrµ3 = rp′µ′ − µp′ − µrp′′. (B.3)

For incompressible fluid of density µ0, pressure p is a quadratic function of distance from the
axis and, therefore, the mass M1 per unit length of the cylinder and its radius R are given by

p = pc − πGµ2
0r

2, R =
√

pc

πGµ2
0

, M1 = pc

Gµ0
. (B.4)
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Is it possible to find the dependence of the cylinder radius on the central pressure in other
cases as well? Let us consider, for example, a polytropic EOS, p = αµκ , with a dimensionless
polytropic index κ . Substituting the EOS into equation (B.3), we have

4πGrµ3 = ακr(2 − κ)µκ−1µ′2 − ακµκµ′ − ακrµκµ′′. (B.5)

One of the solutions is µ = (
πG(2−κ)2r2

ακ(1−κ)

) 1
κ−2 . This, however, is either zero (κ > 2) on the axis

or divergent (κ < 2) and thus it is not physically relevant. For κ = 2 we find the non-divergent
solution to be the Bessel function of the first kind J0

(√
2πG

α
r
)
. In this case the radius of the

cylinder does not depend on the central pressure.
This peculiar result can be deduced using dimensional analysis as follows. The radius R of

a Newtonian polytropic self-gravitating cylinder is described completely by three quantities:
pc, µc and G. From these quantities only one dimensionless parameter—π = GR2µ2

cp
−1
c —

can be constructed. Thus, the Buckingham π theorem [25] says that the physical law must
take the form f (κ, π) = 0, and, assuming uniqueness, we can write π = g2(κ), i.e.,

R = g(κ)

√
pc

Gµ2
c

= G− 1
2 g(κ)

(
pc

µκ
c

) 1
κ

p
κ−2
2κ

c . (B.6)

Since pc

/
µκ

c is constant for a given EOS, the derivative

dR

dpc

= κ − 2

2κ

R

pc

(B.7)

suggests that if a unique solution of hydrostatic equations exists, then the sign of dR/dpc will
be the same as the sign of κ − 2. Moreover, for κ = 2 the radius of the cylinder will not
depend on pc at all.

We note that the same argument cannot be used in the relativistic case since then we
have another quantity, namely c, the velocity of light, which we need to take into account.
In addition to the dimensionless quantity π mentioned above, we can also construct the
dimensionless central pressure �c = pc/c

2µc. Consequently, f (κ, π,�c) = 0, and we do
not find the derivative (B.7) explicitly.

To demonstrate the dependence of these results on the symmetry of the configuration, we
give the results for Newtonian spheres. The balance equation reads

4πGrµ3 = rp′µ′ − 2µp′ − µrp′′. (B.8)

For incompressible fluid of density µ0, pressure is again a quadratic function of the distance
from the centre. The total mass M contained within the sphere and its radius R read

p = pc − 2

3
πGµ2

0r
2, R =

√
3pc

2πGµ2
0

, M = pc

Gµ2
0

√
6pc

πG
. (B.9)

The dimensional analysis for a polytropic EOS yields exactly the same results as in the
cylindrical case.

Appendix C. Conicity outside general perfect-fluid cylinders

We have seen that the conditions at the axis determine uniquely the fields both inside and
outside the cylinders. In particular, we can choose the axis to be regular or to have an inner
conicity C∗ �= 1, and the conicity parameter C of the external field is determined uniquely
(cf equation (5.5)). In section 6, we have shown numerically that the conicity parameter C
outside relativistic self-gravitating cylinders of incompressible fluid is always greater than 1.
Is that the case for any cylinder of perfect fluid? Let us investigate what happens if one just
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puts C = 1 in the exterior Levi-Civita metric. We consider the cylinders discussed by Stela
and Kramer [9] and use their coordinate system. They start out from the following metric
describing a solid cylinder composed of perfect fluid:

ds2 = −e2x dt2
− +

yz − 1

8πp
dx2 + e−2x(e2k dξ 2 + e2h dϕ2

−), (C.1)

where t−, x, ξ and ϕ− ∈ [0, 2π) are the temporal, radial, axial and azimuthal coordinates,
respectively, p is pressure, and y, z, k, h are functions of x. This applies to the range x ∈ [0, x1),
where x1 denotes the surface of the cylinder, p(x1) = 0.

Outside, they use Levi-Civita spacetime in the form

ds2 = −ρ2m dt2
+ + ρ−2m

[
ρ2m2

(dz2 + dρ2) + ρ2 dϕ2
+

]
, (C.2)

i.e., without a general conicity parameter; so the metric (C.2) is our metric (2.24) with C = 1.
It is claimed in [9] that these two spacetimes, described by (C.1) and (C.2), can be smoothly
joined on the surface p = 0. However, this cannot be achieved if the complete spacetime
is to represent a solid cylinder and its external gravitational field with a fixed range of the
angular coordinate, ϕ, throughout the whole spacetime. We have to consider a general conicity
parameter C �= 1.

To demonstrate this, we shall use Israel’s formalism [19]. We consider two hypersurfaces
located at x = x1 inside and at ρ = ρ+ in the outside spacetime. These two hypersurfaces
are intrinsically flat and, therefore, we may identify them locally. Let the coordinates on the
resulting hypersurface (representing possibly a matter shell) be chosen as T ∈ (−∞,∞), Z ∈
(−∞,∞) and � ∈ [

0, 2πρ1−m
+

)
so that the induced 3-metric is flat:

t−ex1 = T = t+ρ
m
+ , ξ ek(x1)−x1 = Z = zρm(m−1)

+ , ϕ−eh(x1)−x1 = � = ϕ+ρ
1−m
+ .

(C.3)

The induced surface (three-dimensional) energy–momentum tensor calculated from the jump
of the extrinsic curvatures (see [19]) then turns out to be

8πST T =
√

8πp

yz − 1
(y + z − 2) − ρm−m2−1

+ (1 − m)2,

8πSZZ = ρm−m2−1
+ −

√
8πp

yz − 1
z, (C.4)

8πS�� = ρm−m2−1
+ m2 −

√
8πp

yz − 1
y,

where functions y and z are evaluated on the surface of the cylinder (p = 0). Einstein’s
equations yield the following relations for the metric functions

ẏ = (1 − yz)(Fy − 2), ż = (1 − yz)(Fz − 2),
(C.5)

0 = ṗ + (µ + p),

where F = (µ + 3p)/2p (see equations (1), (2) in [9]). On the surface, Gxx = 0 then implies
yz = 1, and the fraction under the square root symbols in (C.4) is thus of the ‘0/0’ type.
Using (C.5) and l’Hospital’s rule, we find on the surface

ż = ẏ/y2,

√
8πp

yz − 1
=

√
−4πµy

ẏ
. (C.6)
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If the inner solution is to be smoothly extended into the Levi-Civita spacetime without any
matter shell on the surface (no ‘surface layer’), SAB must be zero. Combining equations (C.4)
and (C.6), we get on the surface√

−4πµy

ẏ

(
y +

1

y
− 2

)
= ρm−m2−1

+ (1 − m)2,

√
−4πµy

ẏ

1

y
= ρm−m2−1

+ , (C.7)

√
−4πµy

ẏ
y = ρm−m2−1

+ m2.

Comparing the last two equations, we see that y(x1) = ±m = 1/z(x1). Then the first equation
yields

y(x1) = m = 1/z(x1). (C.8)

This leaves us with only one equation fixing the outer radius of the cylinder√
− 4πµ

ẏ(x1)
= √

mρm−m2−1
+ . (C.9)

If one is only interested in the value of the Levi-Civita parameter m this equation is sufficient.
However, there is one more (global) junction condition, namely that the proper length of a
hoop with constant T ,Z must be the same as measured on both sides of the surface of the
cylinder:

2π eh(x1)−x1 = 2πρ1−m
+ , (C.10)

so

h(x1) = x1 + (1 − m) ln ρ+. (C.11)

Integrating Einstein’s equations from the axis to the surface where p(x1) = 0, we infer the
value of m outside just by reading off the value of y(x1) = 1/z(x1) as seen from equation (C.8).
However, to ensure that there be no surface layer at ρ+, we have to require that also conditions
(C.9) and (C.11) be fulfilled. There are thus two conditions but only one free parameter—the
outer radius ρ+. Combining equations (C.9) and (C.11), we see that any solution must satisfy
the relation √

−4πµ

ẏ
= √

y exp

(
(h − x1)

y − y2 − 1

1 − y

)
, (C.12)

where all quantities are evaluated at the surface x = x1. For a given EOS, values of all
these quantities are determined by a single parameter—the central pressure. This means that,
generally, we cannot choose the central pressure arbitrarily since it has to satisfy (C.12).
Therefore, only special cylinders will comply with this condition. Moreover, we have shown
in section 6 that in the case of incompressible fluid one gets C > 1 for any central pressure
(see figure 3 and expansion (6.17)) and thus none of the cylinders composed of incompressible
fluid can satisfy (C.12) because we derived this equation starting from the Levi-Civita metric
(C.2) with C = 1.

Surprisingly enough, there exist EOSs for which special cylinders can be constructed that
do satisfy this condition and hence the outside Levi-Civita metric with C = 1 applies. To give
an explicit example, let us consider the Evans analytical solution [8], which is also discussed
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in [9]. The equation of state is µ = µ0 + 5p; µ0 > 0 is (arbitrarily chosen) density at the
surface where p = 0. In the coordinate system of [9], the solution can be written as follows:

p(x)

µ0
≡ �(x) = 1

6

(
a2

4
e−6x − 1

)
,

�c = 1

6

(
a2

4
− 1

)
, e3x1 =

√
1 + 6�c,

y(x) = a2 − 4e3x

2(a2 − 4e3x)
, z(x) = 1 − 4e3x

2(1 − 4e3x)
, (C.13)

y(x1) = 1

z(x1)
= m = 2

√
1 + 6�c − 2

4
√

1 + 6�c − 1
<

1

2
,

lim
x→x1

yz − 1

p
= 1

µ0

18a

(2a − 1)(a − 2)
.

a is an arbitrary constant determining the central dimensionless pressure. The condition (C.12)
gives a relation8 between the parameter a (or, equivalently, �c) and the surface density µ0 that
has to be satisfied in order that C = 1

[µ0/(a − 2)](a−2)2 = 22(a2+2a−2)3−7a2+a−1a−3a2
[π(2a − 1)3](2a−1)(a+1). (C.14)

Therefore, given a specific equation of state, which fixes the value of µ0, the pressure on the
axis cannot be chosen arbitrarily if the outside field has C = 1. Not all physically admissible
cylinders can be sources of the Levi-Civita field with C = 1. Only if pc (i.e., �c = pc/µ0) is
chosen so that relation (C.14) is indeed satisfied, the external field has C = 1. However, any
value a > 2 gives a positive value of both the central pressure, �c, and surface density, µ0,
and it thus gives a cylinder with C = 1 outside.

If we admit C �= 1 outside, (C.11) changes to

h(x1) = x1 + (1 − m) ln ρ+ − ln C, (C.15)

and we can smoothly join any cylinder composed of perfect fluid to the outer Levi-Civita
solution. On the other hand, most characteristic quantities are either independent of µ0 (e.g.,
the Levi-Civita parameter m, mass per unit coordinate or proper length of the cylinder), or they
scale with µ0 (Rp = rp(�c)/

√
µ0) so that it is possible to use a single cylinder with a given

�c for the description of properties of a whole family of cylinders. Nevertheless, one does
not determine the complete spacetime geometry outside the cylinders without knowing C. If,
for example, one studies the focusing of light rays passing on both sides of a fluid cylinder,
one needs to know C.
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