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Correlation effects are studied in electron scattering off the fluorine molecule. Fixed-nuclei
approximation R-matrix calculations of the elastic collision cross sections are presented for a set of
internuclear distances at three levels of correlation. The aim of this work is to study the role of
electronic correlation on the properties of the 2�u resonance. The Feshbach-Fano R-matrix method
of resonance-background separation is used to study the effect of inclusion of various levels of
correlation on the energy and width of the 2�u resonance. Data required for construction of the
nonlocal resonance model �construction of a discrete state and its coupling to the continuum� which
allows the calculation of inelastic processes such as dissociative electron attachment and vibrational
excitation �W. Domcke, Phys. Rep. 208, 97 �1991�� including the correlation are presented. © 2007
American Institute of Physics. �DOI: 10.1063/1.2789430�

I. INTRODUCTION

Understanding of the electron-molecule collisions is im-
portant for determining the energy balance and transport
properties of electrons in low-temperature gases and plasmas
under variety of conditions. Important applications of these
processes include thermonuclear fusion, astrophysics, phys-
ics of upper atmosphere layers of planets as well as techno-
logical applications connected with laser physics or surface
physics. In this context it is desirable to study electron scat-
tering off the fluorine molecule. It plays an important role in
the determination of properties of the electron-beam ener-
gized fluoride excimer lasers as well as in other
applications.1

Significant progress has been made in development of
quantum scattering theory methods for resonant electron-
molecule collisions based on ab initio methods of quantum
chemistry. Recently, particular attention was paid to applica-
tion of the Feshbach-Fano projection formalism,2 the com-
plex absorbing potential �CAP� method,3,4 complex rotation
method5 as well as to the R-matrix theory6 and several oth-
ers. All of them have been successfully applied to electron
scattering off polyatomic molecules. In particular, method
for combining the Feshbach-Fano formalism with the
R-matrix method �called Feshbach-Fano R-matrix� has been
developed and successfully applied to the separation of reso-
nances in the potential scattering7 as well as in the electron-
molecule collisions.8–10 This method enables the extraction
of the discrete state and its coupling to the background con-
tinuum on the basis of the standard R-matrix calculations.
From these quantities it is possible to construct the nonlocal
resonance model �NRM� used to study the processes con-
nected with the nuclear dynamics such as dissociative elec-
tron attachment �DEA�, associative electron detachment, and
vibrational excitation �VE�.11,12

The electron scattering off fluorine molecule has been
investigated theoretically several times. The first ab initio
calculation of DEA and VE has been carried out by Hazi
et al.13 using the method developed by O’ Malley.14 In this
calculation the correlation has been included on the level of
configuration interaction �CI� expansion consisting of very
restricted number of configurations. Moreover, this calcula-
tion did not give the relative position of the potential curve
of the neutral target and negative ion. Subsequent R-matrix
study of elastic electron collision with the F2 molecule by
Morgan and Noble15 has included the correlation on the level
of the static exchange with polarization �SEP�. This study
found that the ionic state is stable against autodetachment at
the equilibrium internuclear separation of the neutral mol-
ecule. Another calculation of the potential energy curve of
the X2�u

+ resonance by Ingr et al.14 made use of the CAP/CI
method. This calculation treats the correlation by the multi-
reference CI �MRCI� method. The crossing point of the neu-
tral target potential curve with the resonance state potential
curve is determined by the extrapolation of the resonance
width to zero. This calculation does not provide the energy-
dependent width function as required for NRM. Brems
et al.11 studied the DEA and VE of the F2 molecule using the
R-matrix method with Feshbach-Fano R-matrix �FFR� sepa-
ration of the discrete state. This discrete state and its cou-
pling with the background continuum have been used to con-
struct the NRM and to study the nuclear dynamics processes.
The R-matrix calculation has been provided using the code
of Nestmann et al.6 at the SEP level of correlation. This
calculation indicates that the position of the crossing point of
the ionic and neutral potential curves, which is strongly in-
fluenced by the correlation included in the fixed-nuclei cal-
culation, is of particular importance in the nuclear dynamics
calculation.

The implementation of the R-matrix method by Nest-
mann et al. enables the static exchange �SE� and SEP ap-a�Electronic mail: tarana@mbox.troja.mff.cuni.cz

THE JOURNAL OF CHEMICAL PHYSICS 127, 154319 �2007�

0021-9606/2007/127�15�/154319/9/$23.00 © 2007 American Institute of Physics127, 154319-1

Downloaded 24 Apr 2008 to 195.113.23.29. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2789430
http://dx.doi.org/10.1063/1.2789430
http://dx.doi.org/10.1063/1.2789430


proach to the correlation. Recently this code has been ex-
tended in order to allow single and double excitations
multireference CI �Ref. 17� �SD-MRCI� treatment of the cor-
relation. This enables us to compare the scattering calcula-
tions on different levels of correlation and to study correla-
tion effects in the subsequent FFR separation. The main aim
of this work is to test the SD-MRCI approach in the electron
scattering off the fluorine molecule studied previously on the
SEP level and to study the correlation effects in the FFR
separation.

This paper is organized as follows: The R-matrix theory
is briefly reviewed in Sec. II A and different models of cor-
relation included are discussed in Sec. II B. The FFR formal-
ism is briefly summarized in Sec. II C. Technical details of
the calculations are explained in Sec. III, and results obtained
on different levels of correlation are discussed in Sec. IV.

II. THEORY

A. R-matrix theory

The basic idea of the R-matrix method is the division of
the coordinate space into two regions separated by a sphere
� with center in the center of mass of the molecule. Its
radius r� is chosen so that for scattering problem it is pos-
sible to neglect the exchange interaction between the projec-
tile and the target molecule electrons outside the sphere,
where their interaction is treated as the movement of the
scattered electron in an average single particle potential.

In the fixed-nuclei approximation HN+1 is the
�N+1�-particle electronic Hamiltonian. The scattering pro-
cess is described by the time-independent Schrödinger equa-
tion

HN+1�E = E�E, �E = �
k

�kAEk, �1�

where �k are basis functions, which can be written in the
form of the close coupling expansion

�k�x1, . . . ,xN+1�

= A�
ijlm

cijlmk�̄ilm�x1, . . . ,xN, r̂N+1�N+1�
ujlm�rN+1�

rN+1
,

�2�

where ujlm�rN+1� represent set of molecular orbitals �MOs� of
the target molecule and continuum orbitals �COs�. The chan-

nel functions �̄ilm in Eq. �2� are formed by coupling the
target wave functions �i with the spin-angle functions of the
scattered electron Yl

m��N+1 ,�N+1�s��N+1�, and xn= �rn ,�n�
denote the space and spin electron coordinates. The multi-
index �= �i , l ,m� defines the scattering channel. The antisym-
metry of the functions �k with respect to changes of all the
spatial electronic coordinates is ensured by the antisymme-
trization operator A. Finally, the expansion coefficients cijlmk

in Eq. �2� are obtained by solving the equation

�HN+1 + LN+1��k = Ek�k �3�

in the inner region. The Bloch operator18

LN+1 = �
i=1

N+1
1

2
	�ri − r��� d

dri
+

1

ri
	 �4�

guarantees the hermicity of the modified Hamiltonian
H�,N+1=HN+1+LN+1 in the inner region.

Equation �1� is solved formally in the inner region6 using
the basis �Eq. �2�� and its solutions are projected onto the

channel functions �̄ilm. This gives for the radial wave func-
tions of the projectile wilm�r� on the sphere

wilm�r�� = �
i�l�m�

Rilmi�l�m��E�r�
 dwi�l�m��r�

dr



r=r�

, �5�

where the R-matrix is defined by

Rilmi�l�m��E� =
1

2r�
�

k


 ��̄ilm��k
���k��̄i�l�m�
�
Ek − E



rN+1=r�

.

�6�

The primes mean that the integration is carried over all the
coordinates except the radial coordinate rN+1.

The form of the solution in the outer region differs from
Eq. �2� by the absence of the antisymmetrization operator A
only �since the exchange interaction is negligible�. Substitu-
tion of this solution into the Schrödinger equation �1� and
projection onto the channel functions yield the system of
coupled second-order differential equations

� d2

dr2 −
l�l + 1�

r2 + 2�E − Ei
N�	wilm�r�

= 2 �
jl�m�

Vilmjl�m��r�wjl�m��r� , �7�

where Ei
N is the target energy and Vilmjl�m��r� is given by the

interaction potential between the target and projectile.6 The
scattering wave function in the outer region is obtained by
solving this system with boundary condition �5� providing
the correct connection between the solutions in the inner and
outer regions. All the scattering information can be obtained
from the asymptotic form of the solutions wilm�r� in the outer
region by application of standard methods of scattering
theory.

B. Different models of correlation

In the SE approximation no correlation is introduced in
the scattering system. The R-matrix basis set is written in the
form �2�, where �0 is the Hartree-Fock determinant ��0

consisting of lowest N spin orbitals �a ,b , . . . �. ujlm�r� /r are
the virtual MOs �k , l , . . . � and COs �u ,v , . . . � in the symme-
try of the interest. Higher eigenstates �i, i
0 are not taken
into account.

The SEP approximation introduces the correlation be-
tween the molecule as a whole and the projectile, but not
inside the molecular target. The SE space of configurations is
augmented by states with singly excited target and scattered
electron in virtual MO. In this approximation the R-matrix
basis states can be written in the following form:
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��a
 = �
k

cka��0k
 + �
u

cua��0u
 + �
bkl

cbkla��b
kl
 . �8�

The matrix elements �The subscript int denotes that the inte-
gration is carried over the inner region.� ��a�HN+1��b
int of
the R-matrix Hamiltonian in this basis contain terms corre-
sponding to the �N+1�-electron Hartree-Fock �HF� Hamil-
tonian, terms corresponding to the correlation between the
projectile and the target electrons as well as terms of form
��a

km�HN+1��b
l m
int= �kb��al
int introducing the additional

correlation into the target. These elements are also present in
the calculation of the N-electron neutral target ground state
wave function in the basis set containing the ��0
 and all the
monoexcitations ��a

k
, but according to the Brillouin theorem
they do not contribute to the ��0
 energy due to the fact that
off-diagonal elements of the Fock operator are zero. On the
other hand, in the �N+1�-electron calculation these elements
contribute to the R-matrix poles Ek. This difference in the
correlation treatment of the neutral target and the scattering
system causes incorrect relative positions of the R-matrix
poles with respect to the HF ground state energy of the
neutral-target molecule.

The CI level of the correlation treatment introduces the
correlation into the target in addition to the correlation be-
tween the projectile and the target. The target wave functions
�i in expansion �Eq. �2�� take the form of the MRCI expan-
sion consisting of the single and double excitations from
selected references into the virtual MOs. Inclusion of the
double excitations improves the behavior of the wave func-
tions for internuclear distances, where the target is not de-
scribed correctly by single-determinant wave function.

C. Feshbach-Fano R-matrix

In the following we give a brief survey of the FFR
method extensively discussed by Nestmann8 and Kolorenč
et al.7

The projection formalism developed by Feshbach2,19,20

provides separation of the Hilbert space of the scattering
problem into the resonance scattering subspace Q and back-
ground scattering subspace P by introduction of the corre-
sponding projection operators Q and P. Using the corre-
sponding decomposition of the scattering Hamiltonian H it is
possible to express the matrix elements ����T��
=T��� ,�� as
sum of the background and resonance terms. We choose

Q = ��d
��d�, P =� d�d�̂���
+
���

+� , �9�

where �r ��d
 is the square-integrable function �discrete state
function� and ���

+
 is the scattering solution of the operator
PHP. We define the discrete state-energy �d and the discrete
state-continuum coupling Vd� by

�d = ��d�H��d
, Vd� = ��d�H���
+
 . �10�

Using these quantities and explicit form of the projection
operators �Eq. �9�� it is possible to express energy-dependent
complex level shift F���=
���− i���� /2:

���� = 2�� d�̂�Vd��2, 
��� =
1

2�
P� d��

�����
� − ��

. �11�

The quantities �d and Vd� fully describe resonant scattering.
The main assumption of the FFR method is the confine-

ment of the discrete state wave function associated with the
resonance inside the R-matrix sphere �. Then the discrete
state can be expressed in terms of the R-matrix basis �2�:

��d
 = �
Ek��res

ck��k
 . �12�

The region �res is chosen so that it covers all the spectral
domain where the discrete state interacts with the back-
ground continuum. The requirement of vanishing of the dis-
crete state wave function outside the R-matrix sphere gives
the condition

rN+1
−1 ��̄���d
rN+1=r�

� = �
Ek��res

ckw�k�r�� = 0. �13�

The corresponding projection operators Q and P can be de-
fined by

Q = �
Ej,Ek��res

�� j
cjck��k�, P = 1 − Q . �14�

With the background Hamiltonian Hbg,�=PH�P it is pos-
sible to solve the background R-matrix problem

H�,bg�� j
bg
 = Ej

bg�� j
bg
, ���
 = �

j

A�j
bg�� j

bg
 �15�

corresponding to Eqs. �3� and �1�. Then it is possible to cal-
culate �d and Vd� using Eq. �10� and Eq. �11� gives energy-
dependent width and level shift.

Since condition �13� does not define the discrete state
unambiguously, another criterion of the resonance definition
is needed. It can be found by comparison with a similar
system possessing no resonance in the region �res repre-
sented by the Hamiltonian H0 �its restriction to the sphere �
is denoted H�

0 , and corresponding eigenstates and eigenener-
gies are denoted by ���k

0 
 and E�k
0 �. This model system is

usually represented by the target molecule plus noninteract-
ing free electron.

It is possible to show that under certain conditions8 the
expansion coefficients ck in Eq. �12� are solutions of the
system of linear equations

�
Ek��res

ck���j
0 ��k
 = 0, E�j

0 � �res. �16�

In realistic cases it is usually impossible to find H0 such that
solution of this system exists. However, it is possible to find
an approximation of the overlaps ���j

0 ��k
 such that condi-
tion �13� is satisfied when Eq. �16� is solved:8

���j
0 ��k
 �

1

Ek − E�j
0 . �17�
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III. APPLICATION TO THE FLUORINE MOLECULE

In all the calculations performed the R-matrix sphere �
of radius r�=10 bohrs has been used. Since the dipole mo-
ment of F2 is zero and its polarizability is small, it is suffi-
cient to consider the scattered electron as free in the outer
region and set Vilmi�l�m��0 in Eq. �7�. The target is repre-
sented by the CC-pVTZ basis set,21 and the continuum basis
set used in all the calculations has been taken from the pre-
viously published R-matrix calculation11 and is listed in
Table I.

Since the continuum basis set has been optimized by
fitting the set of spherical Bessel functions to the set of
Gaussians22,23 for the given angular momentum quantum
number, this basis set might not be appropriate for represen-
tation of continuum wave functions for higher energies. It is
difficult to fit higher Bessel functions with many nodes by
the linearly independent Gaussians. Continuum states with
considerable contribution of these higher Bessel functions
are not represented well by the used continuum Gaussian
basis set. The exact solution of the free particle R-matrix
problem gives zero phase shift for every energy of the free
particle. In order to estimate the energy interval of validity of
the Gaussian continuum basis set we solved the free particle
R-matrix problem in the Gaussian basis set listed in Table I.
The corresponding phase shifts are very small for
E�14 eV �see Fig. 1�. This graph shows that the Gaussian
basis set listed in Table I is appropriate in the energy region
of interest �0–12 eV�.

In the expansion �2� only the ground electronic state of
the target has been included. Due to the 2�u symmetry the
lowest partial wave contributing to the scattering in our basis
set is the p wave, and the d wave does not contribute to the
scattering. These two facts allow the single channel scatter-
ing calculation.

The R-matrix poles Ek as well as transition density ma-
trix used to calculate the R-matrix amplitudes16 in Eq. �6�
have been calculated using the MRCI program package
DIESEL.17 The R-matrix amplitudes as well as elastic scatter-
ing eigenphases and cross sections have been calculated us-
ing R-matrix program package by Nestmann et al.6 Calcula-
tions at the different levels of correlation have been carried
out. Due to technical complications with implementation of
the MRCI method it is usually possible to obtain only four
lowest R-matrix poles and corresponding amplitudes at the
SEP and CI levels in the case of the fluorine molecule. The
calculated R-matrix states ��k

SEP
, respectively, ��k
CI
 are

TABLE II. R-matrix poles on the SE level for internuclear separation R
=2.4 bohrs and configurations strongly contributing to the R-matrix eigen-
states with their weights. The energies are relative to the HF ground state.
The configurations are represented by the orbital occupied by the scattered
electron. Virtual MOs have numbers 1–13 and COs have numbers 14–18.

E �eV� Orbital �weight�

1 1.026 14�0.603� 15�0.273�
2 4.730 3�0.520� 15�0.225� 16�0.121�
3 7.880 3�0.446� 4�0.110� 12�0.173� 14�0.105� 15�0.136�
4 15.038 4�0.276� 15�0.120� 16�0.428� 17�0.103�
5 25.677 5�0.447� 17�0.406�
6 31.966 4�0.468� 14�0.104� 15�0.172� 17�0.150�
7 47.722 5�0.177� 17�0.112� 18�0.493�
8 64.700 6�1.0�
9 80.414 5�0.252� 7�0.348� 18�0.154�

10 101.750 7�0.568� 18�0.173�
11 170.494 8�0.959�
12 207.122 9�1.0�
13 239.546 10�0.869�
14 242.274 11�1.0�
15 242.274 12�0.618� 13�0.300�
16 404.273 12�0.120�

FIG. 2. �Color online� Elastic scattering cross section at the SE level as a
function of E at several internuclear separations R �in bohrs�.

TABLE I. Exponents of the continuum basis set.

s p d

0.130 137 0.104 354 0.111 252
0.101 981 0.082 488 0.089 412
0.080 524 0.065 610 0.072 361
0.063 367 0.052 121 0.058 496
0.049 648 0.041 110 0.047 005
0.038 298 0.032 122 0.037 397
0.029 151 0.024 635 0.029 225
0.021 901

FIG. 1. �Color online� Phase shifts corresponding to potential-free R-matrix
problem calculated in the Gaussian continuum basis set described above.
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completed by the R-matrix states calculated on the SE level
��k

SE
 and orthogonalized on ��k
SEP
, respectively, ��k

CI

�keeping the original space unchanged� forming a new basis
set

����CI,SEP
�

���SE�
�
	 = �1 0

A B 	����CI,SEP
�
���SE
�

	 . �18�

The restricted Hamiltonian H�,N+1 is diagonalized in the ba-
sis set ���SE�
� and resulting R-matrix poles and amplitudes
are added to those calculated on the SEP, respectively, CI
level.

The FFR method has been used to calculate the discrete
state. The �res region has been taken such that it contains the
four lowest R-matrix states. The separation of the cross sec-
tions and phase shifts to the resonance and background parts
has been calculated as well as the discrete state-continuum
coupling and the discrete state energies. The data obtained
can be therefore used to construct the NRM in the future
work. Discussion of nuclear dynamics is, however, beyond
the scope of the present paper.

IV. RESULTS

A. Static exchange „SE… and static exchange with
polarization „SEP…

Before the discussion of the SEP calculation we briefly
discuss results of the SE calculation. This is important for
understanding of the effects of correlation included at the
SEP and CI levels. At this level of correlation 16 R-matrix
poles have been calculated for every considered internuclear
separation R near the equilibrium internuclear distance Req

=2.67 bohrs. Configurations containing the scattered elec-
tron in the virtual MOs contribute to the eigenstates of the
restricted Hamiltonian with coefficients comparable to con-
figurations containing the scattered electron in the COs �see
Table II as an example for R=2.4 bohrs�. Several higher
eigenstates of H�,N+1 consist of single configurations with
the electron in the virtual MO. Corresponding amplitudes in
Eq. �6� are zero, since the MOs vanish on the sphere. These
eigenstates do not contribute to the R-matrix �6� at all.

The integral cross section of the electron-F2 collision for

FIG. 3. �Color online� FFR separation of the cross section for internuclear
distance R=2.4 bohrs in the SE approximation.

FIG. 4. �Color online� FFR separation of the eigenphase for internuclear
distance R=2.4 bohrs in the SE approximation.

FIG. 5. �Color online� Lowest R-matrix poles of the free particle compared
with poles calculated at different levels of correlation and with the corre-
sponding background R-matrix poles. In the case of the SE and SEP poles
the energy is relative to the HF energy of the neutral molecule, and in the
case of CI poles the energy is relative to the SDCI energy of the neutral
target. The regions �res and �res� are bounded by corresponding lines and the
top of the picture.

FIG. 6. �Color online� Elastic scattering cross section in the SEP model as a
function of E in several internuclear separations R �in bohrs�.
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several internuclear distances is presented in Fig. 2. This
figure shows a well pronounced peak located at 2.1 eV with
a value of 22.2 Å2 for the equilibrium internuclear separa-
tion. The resonance structure becomes narrower as R ap-
proaches the crossing point of the potential curve of neutral
molecule ground state with the negative ion.

The FFR method has been used to separate the discrete
state in two variants. In one of them the �res region includes
the four lowest R-matrix poles in all considered geometries.
For small internuclear separations �R�Rcrit� the contribution
of the lowest R-matrix eigenstate ��1
 to the discrete state
should be negligible. The approximation17 of the overlaps,
however, leads to unreasonably large value of coefficient c1.
The separation by projectors Q and P results therefore into
an additional peak in the background cross section. The cor-
responding separations of the cross section and eigenphases
are shown in Figs. 3 and 4 for R=2.4 bohrs. In order to avoid
this behavior another calculation has been carried out with
�res� excluding the lowest R-matrix eigenstate �see Fig. 5�.
The corresponding cross section and eigenphase separation
are also plotted in Figs. 3 and 4.

With increasing R �R
Rcrit� it is necessary to include
the lowest R-matrix state into �res in order to avoid the poles
with small imaginary part in the background T matrix and to
obtain smooth transition to the bound state region of R.

Results of the R-matrix calculations at the SE level of
correlation show the resonance structure in every considered
geometry �the presence of the resonance in the equilibrium
internuclear separation is in agreement with earlier results of
Morgan and Noble15�.

At the SEP level of correlation 4 R-matrix poles have
been calculated and additional 16 poles have been added on
the SE level. Single excitations of the neutral molecule con-
tribute to the SEP R-matrix poles. As at the SE level, con-
figurations consisting of the molecule in the HF ground state
and the scattered electron in the virtual MO or CO still rep-
resent the major contribution to the CI expansion of the
H�,N+1 eigenstates. However, the presence of single excita-
tions of the neutral molecule strongly affects the respective
weights of these dominating configurations �compare Tables
II and III�. The calculated cross sections for several values of
R are presented in Fig. 6. Contrary to the SE calculation, for
three largest considered geometries, the ionic state is bound.
This means that at the SEP level of correlation the crossing
point of the neutral target ground state potential with the first
R-matrix pole curve is shifted towards smaller values of R
compared to the SE level. The presence of the bound ionic
state in the equilibrium geometry is in agreement with results
of Morgan and Noble.15

The results of the FFR separation are shown in Figs. 7
and 8. The discussion of the lowest R-matrix pole exclusion
from �res remains valid also in the SEP calculation, but the

TABLE III. R-matrix poles on the SEP level for internuclear separation R
=2.4 bohrs and configurations strongly contributing to the R-matrix eigen-
states with their weights. The representation of the configurations is the
same as in Table II.

E �eV� Orbital �weight�

1 0.848 3�0.222� 14�0.517� 15�0.185�
2 1.999 3�0.678� 15�0.145�
3 6.266 4�0.229� 14�0.217� 15�0.278� 16�0.209�
4 14.509 4�0.271� 16�0.443� 17�0.103�

FIG. 7. �Color online� FFR separation of the cross section at the SEP level
of correlation for internuclear separation R=2.4 bohrs calculated including
four lowest R-matrix eigenstates into �res.

FIG. 8. �Color online� FFR separation of the eigenphases at the SEP level of
correlation for internuclear separation R=2.4 bohrs calculated including
four lowest R-matrix eigenstates into �res.

FIG. 9. �Color online� Elastic scattering cross sections for several internu-
clear separations R �in bohrs� calculated at the CI level.
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critical geometry Rcrit, where the lowest R-matrix pole be-
comes important, is smaller than in the SE calculation. Cal-
culated R-matrix poles show good agreement with previously
published SEP work enabling us to compare our calculations
at the CI level with previous R-matrix results.11 The small
discrepancies are caused by different compact basis sets
used.

B. Configuration interaction „CI…

At the CI level of the theory four R-matrix poles have
been calculated for a range of geometries from
2.0 to 5.5 bohrs. These CI poles have been completed by 16
SE poles. For comparison with calculations at different lev-
els of correlation the R-matrix poles and configurations
dominating in corresponding eigenstates are listed in Table
IV �compare with Tables II and III�. These eigenstates con-
sist of configurations with scattered electron in the con-
tinuum as well as of configurations with scattered electron in
virtual MOs, both types with comparable weights. The com-
parison of numbers of configuration state functions �CSFs� in
the SEP and CI calculations is presented in Table V.

The calculated cross sections are plotted in Fig. 9. This
figure shows resonance structure at every considered internu-
clear distance with lower energies and smaller widths than in
the SE calculation. The corresponding peak in the cross sec-
tion is located at 0.75 eV for the equilibrium internuclear
separation. With increasing internuclear distance the contri-
bution of the excited configuration increases in the target
eigenstates as well as in the eigenstates of H�,N+1 �3�g

→3�u since these orbitals become degenerated asymptoti-
cally�. These excitations have not been allowed in the previ-
ous models of correlation. Double excitations allow the en-
ergy of the target state as well as the energies of the poles to
be lower than in the previous models and more consistent
with previous calculations of the neutral target ground state
potential curves.25 The electron affinity calculated at this
level of correlation �2.2 eV� is much closer to the experi-
mental value26 �3.4 eV� than the value obtained at the SEP

level11 �13.5 eV�. The discrepancy of our results with the
experimental value is caused by the correlation imbalance in
the calculation of the neutral target state and the negative ion
state as well as not sufficiently large R used for calculation of
the electron affinity. The incorrect value obtained at the SEP
level is understandable, because the absence of double ex-
cited configurations in the wave functions leads to incorrect
behavior of the potential curves for large values of R. In the
SEP calculation the target ground state is represented by
single closed-shell Slater determinant. In the asymptotic re-
gion of internuclear separations this gives ground state of
system F++F− and does not take into account the contribu-
tion of the open-shell configurations. Therefore the CI level
of calculation improves the description of the target consid-
erably for large internuclear distances.

The R-matrix pole curves as functions of the internuclear
distance are plotted in Fig. 10. These curves show the
avoided crossing near the crossing point of the neutral target
state with the lowest R-matrix pole. The crossing point
where the resonance turns into the bound state is located at
Rthr=2.76 bohrs at variance with previously calculated
results4,11,15 �see Table VI�. The determination of the crossing
point, which is of particular importance in the nuclear dy-
namics calculations, is complicated by the unbalanced corre-
lation in independent calculations of the ionic and neutral
target states.

The FFR method has been again used to determine the
discrete state and corresponding separation of the cross
sections and eigenphases for internuclear distance
R=2.4 bohrs �see Figs. 11 and 12�. Again two calculations

TABLE V. Counts of CSFs generated in the SEP and CI calculations by
allowed excitations from the given reference set for internuclear distance
R=2.4 bohrs.

SEP CI

Target 0 64154
Ion 1430 612582

FIG. 10. �Color online� R-matrix poles calculated at the CI level as function
of the internuclear distance. V0 is the potential curve of the neutral target,
Vk=1,. . .,4 are the R-matrix pole curves, Vk=1,. . .,3

bg are the background R-matrix
pole curves, and �d is the energy of the discrete state wave function. All
energies are relative with respect to the neutral target energy in the equilib-
rium internuclear distance.

TABLE IV. R-matrix poles at the CI level for internuclear separation R
=2.4 bohrs and the configurations strongly contributing to the R-matrix
eigenstates with their weights. The representation of the configurations is the
same as in Table II. The energies are relative to the SDCI energy of the
neutral target.

E �eV� Orbital �weight�

1 0.988 14�0.551� 15�0.236�
2 3.789 3�0.686� 15�0.138�
3 6.848 3�0.163� 4�0.181� 14�0.190� 15�0.182� 16�0.162�
4 14.640 4�0.255� 16�0.403�

TABLE VI. Locations of the crossing points �bohr� where the resonance
turns into the bound state.

Morgan and Noble
�Ref. 15�

Ingr et al.
�Ref. 4�

Brems et al.
�Ref. 11� This work

2.56 2.62 2.41 2.76
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have been carried out in order to study the effect of inclusion
of the lowest pole into the region �res �see Fig. 5�. The in-
ternuclear distance, where the lowest R-matrix pole becomes
important, is near the avoided crossing point of the first and
the second R-matrix state.

In order to compare the resonance positions in the con-
sidered correlation models the poles �res of the T matrix have
been estimated assuming that the imaginary part is small
enough to allow the solution in the form

R�res − �d − 
�R�res� = 0, I�res = 1
2��R�res� . �19�

Comparison of these estimated resonance positions is pre-
sented in Fig. 13. This figure shows that the resonance ener-
gies calculated at the CI level are larger than the values cal-
culated at the SEP level and smaller than those calculated at
the SE level.

V. CONCLUDING REMARKS

The Bonn implementation16 of the R-matrix method has
been used to study the 2�u resonance in electron scattering
off the fluorine molecule using different levels of correlation
including recently implemented SD-MRCI approach. The

cross section calculated at the SE level of correlation shows
well pronounced resonance for the equilibrium internuclear
distance, while the SEP calculation yields a bound ionic state
in this geometry. The obtained results are in agreement with
previously published works of Morgan and Noble.15 The
resonance structure appears again at the CI level, but with
different energy and width. The FFR method has been used
to separate the resonance and to determine its coupling with
the background continuum at three levels of correlation. The
effect of the correlation on the resonance position and width
has been studied. We have shown that inclusion of the dou-
bly excited configurations in SD-MRCI expansions of the
wave functions improves the results of the scattering calcu-
lations for larger internuclear distances, since the SD-MRCI
approach correctly includes the neutral fragmentation chan-
nels of the target molecule. Our results show how the posi-
tion of the crossing point of the neutral target potential curve
with the ionic potential curve depends on the included cor-
relation. Unlike previous results our calculation shows that
the ion is unstable towards autodetachment even at the equi-
librium internuclear separation of the neutral molecule. The
results obtained here from the CI calculation present the first
step in the construction of the nonlocal resonance model of
the nuclear dynamics which will show the correlation effects
in the DEA and VE of the fluorine molecule. This will be a
subject of the forthcoming work.
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