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Some High-Frequency Gravitational Waves Related
to Exact Radiative Spacetimes

J. Podolsky? and O. Sutek?!
Received July 31, 2003

A formalism is introduced which may describe both standard linearized waves and
gravitational waves in Isaacson’s high-frequency limit. After emphasizing main differ-
ences between the two approximation techniques we generalize the Isaacson method
to non-vacuum spacetimes. Then we present three large explicit classes of solutions
for high-frequency gravitational waves in particular backgrounds. These involve non-
expanding (plane, spherical or hyperbolical), cylindrical, and expanding (spherical)
waves propagating in various universes which may contain a cosmological constant and
electromagnetic field. Relations of high-frequency gravitational perturbations of these
types to corresponding exact radiative spacetimes are described.
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1. INTRODUCTION

In classic work [1] Isaacson presented a perturbation method which enables one to
study properties of high-frequency gravitational waves, together with their influ-
ence on the cosmological background in which they propagate. Itis this non-linear
“back-reaction” effect on curvature of the background spacetime which distin-
guishes the high-frequency approximation scheme from other perturbation meth-
ods such as the standard Einstein’s linearization of gravitational field in flat space
[2, 3] or multipole expansions [4] that were developed to describe radiation from
realistic astrophysical sources.

The high-frequency perturbations were originally considered by Wheeler [5]
and then applied to investigation of gravitational geons by Brill and Hartle [6].
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Isaacson’s systematic study [1] stimulated further works in which his treatment
was developed and also re-formulated in various formalisms. Choquet-Bruhat[7, 8]
analyzed high-frequency gravitational radiation using a generalized WKB “two-
timing” method. Averaged Lagrangian technique which leads to Isaacson’s results
with less calculation was introduced by MacCallum and Taub [9, 10]. Compari-
son of these approaches, and clarification of assumptions that have to be made in
order to provide a consistent high-frequency approximation limit was also given
by Araujo [11, 12]. Elster [13] proposed an alternative method that is based on
expanding null-tetrad components of the Weyl tensor. Recently, Burnett developed
a weak limit approach [14] in which the high-frequency limit can be introduced
and studied in a mathematically rigorous way. These general methods have been,
of course, applied to study explicit particular examples of high-frequency gravita-
tional waves, see e.g. [1, 8, 9, 15, 16].

On the other hand, mamxactsolutions of Einstein’s equations are known
which represent gravitational radiation. Among the most important classes are
planampp-waves [17, 18] which belong to a large family of non-expanding radiative
spacetimes [19, 20], cylindrical Einstein-Rosen waves [21], expanding “spherical”
waves of the Robinson-Trautman type [22, 23], spacetimes with boost-rotation
symmetry representing radiation generated by uniformly accelerated sources [24—
26], cosmological models of the Gowdy type [27], and others —for comprehensive
reviews containing also a number of references see, e.g., [28-32].

However, there are only several works in whrehation between exact grav-
itational waves and those obtained by perturbations of non-flat backgrounds has
been explicitly investigated and clarified, see e.g. [10, 33, 16]. The purpose of our
contribution is to help to fill this “gap”.

We first briefly summarize and generalize the Isaacson approach [1] to admit
non-vacuum backgrounds, the cosmological congtantparticular. Modification
of Isaacson’s formalism allows us to incorporate also standard linearized gravita-
tional waves into the common formalism. Then, in section 3 we study properties of
high-frequency gravitational waves in specific classes of spacetimes with special
algebraic or geometric structure. In particular, we focus on waves which propa-
gate in backgrounds with # 0. This is motivated not only theoretically but also
by recent observations [34] which seem to indicate that (effective) positive cos-
mological constant played a fundamental role in the early universe, but it is also
important for its present and future dynamics.

2. HIGH-FREQUENCY APPROXIMATION VERSUS STANDARD
LINEARIZATION

Let us assume a formal decomposition of the spacetime ngirinto the
background metrig,, and its perturbatioh,,,,
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O =V + Eh/un (1)

where, in a suitable coordinate system, = O(1) andh,, = O(¢) [by definition,
f = O(e") ifthere exists a constafit > Osuchthatf| < Ce"ase — 0]. Thetwo
distinct non-negative dimensionless parameteasde have the following mean-
ing: ¢ is the usual amplitude parameter of weak gravitational perturbations whereas
the frequency parameterdenotes the possible high-frequency character of radi-
ation described by,,. To be more specific, the paramete 1 characterizes
(for e = 1) the amplitude of linearized gravitational waves in the ordinary weak
field limit of Einstein’s equations. The second independent parametek /L
represents, on the other hand, the ratio of a typical wavelengftgravitational
waves and the scale on which the background curvature changes significantly.
Isaacson’s high-frequency approximation [1] arises wheq L, i.e.e < 1 (and
¢ = 1). SinceL can be considered to have a finite value of order unity, we may
write O(e) = O(A).

To derive the dynamical field equations we start with the order-of-magnitude
estimates which indicate how fast the metric components vary. Symbolically, the
derivatives are of the ord@y ~ y /L, dh ~ h/x, so that the following formulas

Y = O(1),  hyy = O(e),
Yo = O(1),  hupo = 0(1),
Vuvap = O(1),  hyyep = O™, 2
are valid. Next, we expand the Ricci tensor in powerh,of
Ruw(@) = RO+ eRM + 2R + 3RO + (3)
where
ROG) = Ru(»).
RO(y. h) =

2 —

%Vpr(hw;vr] + Nevip — Npryuw — Npwipe)
3307 Noe + 0 (hepn 4+ Ny — Mo
= Neviup) + 057 (Moo — Nppie)
— (W5 = 307) (Mo + Nevie — o) |-
RO h) = 307 hopuh’ e + .. @

The semicolons denote covariant differentiation with respect td#okground
metricy,,,, which is also used to raise or lower all indices. Considering relations
(2), the orders of the terms (4) are

0 1 -1 2p(2 2 3p(3 3
RO =0(1), eRY = O(c %), e?R®) = 0(?), e*RY = O(e?). (5)
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Two limiting cases thus arise naturally. For tstandard linearization
(e € 1, € = 1) the dominant term oR,,(g) is R® = O(1) which corresponds
to the background,, [to find, e.g., a vacuum spacetime metgg, we solve
,(PV)(V) 0]. Its first correction representing linearized (purely) gravitational
waves is governed by

RO(y, h) =0, (6)

which is a dynamical equation for perturbatidns on the fixed backgroung,, .

The next termR,(fv)(y, h) can then be used to define energy-momentum tensor
of these gravitational waves, but the background metrinasassumed to be
influenced by it. Improvements to this inconsistency can be obtained by iteration
procedure. More rigorous but somewhat complicated solution to this problem was
recently proposed by Efroimsky [35].

In the high-frequency approximatioe « 1, ¢ = 1) the dominant term is
R(l) = O(e~1) which gives the wave equation (6) for the perturbatibpson the
curved backgroungh,, (considering a vacuum full metrig,,, ). The two terms of
the orderO(1), namelyR(%) and R, arebothused to give the Einstein equation
for the backgroundhon-vacuummetric, which represents the essential influence
of the high-frequency gravitational waves on the background. Of course, to obtain
a consistent solution, one has to use both the wave equatidithe Einstein
equation for the background simultaneously.

2.1. Linear Approximation

Interestingly, it follows that the wave equation for,, which arises from the
linear perturbation of the Ricci tensor in vacuum iaththe above limiting cases
ekl e=1,ande « 1, ¢ =1, is thesameequation (6). In analogy with the
well-known theory of massless spin-2 fields in flat space [4] we wish to impose
two TT gauge conditions,

h.' =0, @)
h*, = 0. (8)

In this gauge we arrive at the following wave equation
Ohyy = hy, —2RD 0P — RO W, — ROh, =0, (9)

where the operatap is the generallzatlon of flat-space d’Alembertian. Contracting
(9) we obtain () )'S = 0, so that the condition (8) is always consistent with (9).
However, if we dlfferentlat@hlw and use equations (7), (2), we find that

(<>h//.u)"} = (R‘()?g)’u — ZRI(LOU),ﬁ)hUﬁ, where (10)
(©hw)' =03, (RY, — 2R )h” = Oe). (11)
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Thus, in case of standard linearized wawes=(1) there is an obvious inconsis-
tency, except for backgrounds with a covariantly constant Ricci tensor (e.g., for
the Einstein spaces). On the other hand, in the high-frequency kmitX), the
inconsistency between (9) and (7) is extremely small (the left and the right sides of
(10) differ bye® wheree « 1). Moreover, for all background metrics ebnstant
curvaturethe equations aréully consistent This is an important advantage of
the equation (9) containing also terms of non-dominant order (namely those pro-
portional to the Riemann or Ricci tensors), if compared to other “simpler” wave
equations (e.gh,.,".s = 0) for which the left and right sides of (10) generally
differ by only two orders of magnitude.

2.2. Nonlinear Terms and the Effective Energy-Momentum Tensor

Before considering the second-order terms we now extend the formalism
to be applicable to a larger class of spacetimes with (possibly) non-vanishing
energy-momentum tensay,,. Namely,g,,, need not be a vacuum metric (as only
considered in [1]) but it satisfies Einstein’s equations

R.(9) = 87 T,(9, ¢)- 12)

Here 'Nr/“, =T, — %g,wa‘ﬁ, such thatT,, (g, ¢) depends on non-gravitational
fields¢ and on the full metrig,, but it does nottontain thederivativesof g,,.

Note that this admits as particular cases a presence of electromagnetic field, and
also Einstein spaces whéﬁgv = % Ag,,. Under the assumptions (2) valid for

the decomposition (1) we expand the equation (12) as

RO(y) +eRY(y. h) + e2R@(y, h) + ... =
87 [TOW. 0) +e TP, 0 0) + 2T, h o) +... ], (13)

Whereflﬁ‘j)(y, @) = 'IN',”(y, ¢), and the remaining terms on the right-hand side
are linear and quadratic im respectively. The orders of magnitude of the terms

in the expansion of the Ricci tensor have been described above, cf. (5). For the
energy-momentum tensor one obtains

TO=0@1). TH=0(). T?=0(?. (14)

For ordinary linearization we thus get the equati®{3 = 8z T in each order
n=0,1,2,.... For the high-frequency approximation we obtain from (13) in
the leading orde©(e 1) the equation (6) which is identical with the wave equa-
tion in the vacuum case. The second-order contributions, th@ €k represent

an influence of the high-frequency gravitational waves and matter fields on the
background,

0 = (O 2
ROG) - 87 TO(y, ¢) = —R@(y. h). (15)
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This equation (which in case of a vacuum spacetime reduces to the Isaacson result)
can be rewritten in the form of Einstein’s equation for the background as
G — 8t TO(r. ¢) = = [RO(. h) = 37RO, )] =8z TEY.  (16)

v ny /3% nv

This defines the effective energy-momentum tefig¥ of high-frequency grav-
itational waves.

2.3. Gravitational Waves in the WKB Approximation

In the following we shall restrict ourselves to the Isaacson approxima-
tion (¢ =1, € <« 1), i.e. on study of high-frequency gravitational waves on
curved backgrounds. Inspired by the plane-wave solution in flat space, the form
h. = Ae,, exp{¢) of the solution is assumed. The amplitude= O(e) is a
slowly changing real function of position, the phagés a real function with a
large first derivative but no larger derivatives beyond, apdis a normalized
polarisation tensor field. The above assumption, introduced in [1], is called the
WKB approximation, or the geometric optics limit [4]. The wave vector normal to
surfaces of constant phasjs= ¢ , and the orders of various relevant quantities
areRY ; = 0(1), A, = O(e), k, = O(¢™Y), andk,;, = O(e%). Substituting
this into the conditions (7), (8), and the wave equation (9) we obtain, in the two
highest orders which are gauge invariant,

k'k, =0, kte,, =0, k¥, =0,
eve, =1 y"e, =0, (4A%kP)y=0. (17)

These express that a beam of high-frequency gravitational waves propagate along
rays which are null geodesics with tangé&fit with parallelly transported polar-
ization orthogonal to the rays. Moreover, using the WKB approximatio‘ﬁfﬁ‘?

and the Brill-Hartle averaging procedure [6] (which guarantees the gauge invari-
ance) Isaacson obtained for gravitational waves in the geometric optics limit the
energy-momentum tensor [1]

THF = - A%KK,. (18)

The energy-momentum tensor of high-frequency waves thus has the form of pure
radiation. This fully agrees with results obtained by alternative techniques|[8, 9, 14].

3. EXAMPLES OF HIGH-FREQUENCY GRAVITATIONAL WAVES

Now we present some explicit classes of high-frequency gravitational waves.
These are obtained by the above described WKB approximation method consid-
ering specific families of background spacetimes with a privileged geometry.
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3.1. Non-Expanding Waves

As the background we first consider the Kundt class [19, 28] of non-
expanding, twist-free spacetimes in the form [36]

2
ds? = F du? —ngudv+—(dx + dy?), (19)
with

P=1+— (x +v9),

Q= [1+§(x2+y2)]e+clx+czy,

v— < H, (20)

whereqa, 8, ande are constants (without loss of generabity- 0 ore = 1), Cy, C,
andD are arbitrary functions of the retarded timeandH (x, y, u) is an arbitrary
function of the spatial coordinates y, and of u.

In particular, these are Petrov typé (or conformally flat) solutions of
Einstein’s equations with cosmological constantwhena = —8 = %A and
D = —2Be+ C2 + C3, see e.g. [36—-39]. Such metrics represent exact pure grav-
itational waves propagating along principal null directi@nif H satisfies the
equationP?(H xx + H.yy) + %A H = 0. However, in our treatment here the func-
tion H doesnat describe exact gravitational waves but rather it characterizes the
influenceof high-frequency perturbations on the background metric, which is as-
sumed to be initially given by (19), (20) witH = 0.

We consider the phase of high-frequency gravitational waves given-by
¢(u), and we seek solution in the WKB form, namely

h.w = Ae. expieo(u)), (21)

where the amplitudel and polarization tens@,, are functions of the coordinates
{u, v, X, y}. The corresponding wave vector kg = (¢, 0,0,0), where the dot
denotes differentiation with respectuoApplying now all the equations (17) we
obtain

A= A(u, x,y),
0 00 O
N 1 (oo o0 o
e =
w = p2l0 0 1 0
0 0 0 -1
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0000

., 1 loooo

%= /5p2|0 0 0 1 (22)
0010

The fact that the amplitudel is independent of the coordinate expresses
non-expanding character of the waves. The special polarisation tensors, denoted
as+ and x, are analogous to those used in the standard theory of linearized
waves in flat space. A general polarisation is easily obtained by considering
e, = aef, +be;,, wherea?(u, x, y) + b?(u, x, y) = 1.

Using the Einstein tensor for the metric (19) with the cosmological term
in equations (16) and (18), we determine the reaction of the background on the

presence of the above high-frequency gravitational perturbations, namely

Qp2 a—2+8—2 + 24 H(u, X, y) = 2A4%(u, X, y)$? (23)
P ax2 "~ 9y2) 3 XY= AN X Y9
Notice thatd = O(e) andgp = O(e~1). Therefore, the influence of high-frequency
gravitational waves on the background, represented by the funkitjas of the
order O(1). Theseapproximatesolutions can obviously be compared to specific
exactradiative vacuum solutions which are given Hysolving the field equation
(23) with a vanishing right-hand side (wheh= 0, i.e. high-frequency perturba-
tion waves are absent).

The above waves are non-expanding with the wave-frertsconst being
two-dimensional spaces of constant curvature giverx by %A, cf. (19). For
A = 0 these are plane-fronted waves, for> 0 they are spheres, and far< 0
hyperbolical surfaces.

Another interesting subclass of the Kundt spacetimes of the form (19), (20)
are explicit Petrov typél (or more special) metrics givenlfy=«o,e=1,C =0
andD = 2(A — «), namely

1
d32=[2(A—a)v2—H]du2—2dudv+ﬁ(dx2~|—dy2). (24)

For H = 0 these are electrovacuum solutions with the geometry of a direct prod-
uct of two 2-spaces of constant curvature, in particular the Bertotti-Robinson,
(anti-)Nariai or Plebaski-Hacyan spaces [40-43], see e.g. [44, 36]. Considering
again (21) we obtain the results (22) as in the previous case. However, the reac-
tion of high-frequency waves on the background is now different. It is determined
by the equations (16) and (18) with the energy-momentum tensor consisting of a
cosmological term plus that of a uniform non-null electromagnetic field described
by the complex self-dual Maxwell tens@*’ = 4d(ml*m"l — kl#["1), where

®; = ,/a — 5 €° c=const, andm = P d;, k = 3,, | = 1F 9, + 3, form the
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null tetrad. Straightforward calculation gives

p2 > L H =142 b2 25
o L (25)

This result is analogous to the equation (23), but the present situation is now
more complicated since the background spacetinmois/acuuntbut it contains
electromagnetic field. (In fact, the term with the cosmological constaint(23)
has been entirely compensated by this.) Therefore, we have to analyze the pertur-
bation of thecompleteEinstein-Maxwell system, and its consistency.

The Einstein equations in the two highest orders (6) and (16) have already
been solved. We will now demonstrate that the Maxwell equations are also sat-
isfied in the high-frequency limit, namell*",, = O(¢), where| denotes the
covariant derivative with respect to the full metgg,. Indeed, using antisymme-
try of F* we can writeF*"|, = F*¥ , + %g“ﬂ O«,» F*’. Considering (2) and the
gauge condition (8) we obtaigf’gus , = ¥ *?yup. — h*hys, + O(e?) because
YPhas, — hByy,, = (hﬂﬁ);v — 2h®Fy,s., = 0, so that

Fro, = Fi, — 1hh,, (F* 4+ O(). (26)

Consequently, if the original background represents an electrovacuum spacetime,
F#’., = 0, the Maxwell equation*”, = O(e) for the full metric are satisfied in
the dominant orde®©(1) in the high-frequency limi¢ « 1. In addition, the field
equations are valid also in the next ord2fe) for the new electromagnetic field

F = (14 3h*hyg) F™, @27)

since using (26) we obtaii*"|, = O(e?). Starting from an electromagnetic field
F# satisfyingF*"., = 0 with respect to the background metyig,, we can thus
construct the electromagnetic fiel#*” which satisfies the Maxwell equations
FH,, = O(e?) with respect to the full metrig,,,, in the presence of high-frequency
gravitational waves. Both the Einstein and Maxwell equations are then satisfied
in the two highest perturbative orders. Interestingly, these results hold for high-
frequency perturbations ainy“seed” electrovacuum background spacetimes.

In particular, if the backgrounds are direct product spacetimes (24) ferO
with uniform non-null electromagnetic field; = const then high-frequency
gravitational waves (21), (22) introdu¢¢ which is given by equation (25). Ac-
cording to (27), the electromagnetic field is perturbed by the term proportional to
h*fh,s = A2€?¢ = O(€?), see (17), namely

@) = @ [1+ 2A4%(u, x, y)e??W]. (28)

This remains non-null but itis no longer uniform. The full spacetime thus describes
non-uniform, non-null electromagnetic field plus the null field of high-frequency
gravitational waves.



396 Podolsk/and Sutek

3.2. Cylindrical Waves

Next we consider the class of cylindrical Einstein-Rosen waves,
ds® = ¥~ (—dt? + dp?) + €V dZ? + p2e ?dy?. (29)

If the functionsy (t, p) andy (t, p) satisfy the corresponding field equations (see,
e.g. [21],[28], or equations (33)-(35) below) these are exact radiative spacetimes of
the Petrov type I. We conveniently define double null coordinates%i(t —p)

andv = %(t + p); in these coordinate, v, ¢, z} the metric takes the form
ds? = -2 #dudv + € dz? + (v — u)?e ¥ dy?. (30)

We assume this to be the class of background universes into which we wish to in-
troduce high-frequency gravitational waves. We assume ggairg(u) implying
the wave vectok, = (¢, 0, 0, 0), i.e. the WKB perturbation of the form (21). By
applying all the conditions (17) we obtain

PO
C Jv—u’
00 0 0
1 00 0 0
T a2
=510 o0 tw-uz o |
0 0 0 —e¥
0 00O
. 1 0 00 0],
e;w - E (U - U) 00 o0 1|’ (31)
0010
notice thatv — u = +/2 p. Thus the perturbative solution is given by
U(u)
h,, = €., ex u)). 32

The back-reaction on the background (contained in a specific modification of
the metric functiong andvr) is given by the following equations, cf. (18),

(W—U P2 +yu = — (v — u) A%2, (33)
(v—uy3 -y, =0, (34)

1
Vaw = 35— u(w,u —Yu) =0 (35)

Interestingly, this set of equationsésnsistentby differentiating equation (33)
with respect ta, equation (34) with respect tg and combining them, one obtains
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(35) provided the amplitudd(u, v) satisfies the equation
(v—u)A?), =0. (36)

However, this is automatically satisfied for the amplitude (31). Itis thus quite simple
to introduce gravitational waves in the WKB approximation into the cylindrical
spacetimes (30). If the functiopsandy representing the background are solutions
of the vacuum equations [i.e. (33)-(35) with a vanishing right-hand side of (33)]
then for introducing high-frequency gravitational waves it is sufficjesitto alter

the functiony as

y(U,v) = y(u,v) + 7(u), (37)
where
a’gﬁ”) = — Ly, (38)

In particular, when = 0 = y the background (29) is a flat Minkowski space. By
assuming non-triviajy ‘we obtain Petrov typ& spacetime with high-frequency
gravitational waves which have cylindrical wave-fronts. In a general case this per-
turbation is propagating in the background which is the Einstein-Rosen cylindrical
wave of Petrov type |. The effect on background is given by the relation (38) where
U(u) = O(e) is an arbitrary amplitude function.

The above described perturbations depend on the null “retarded” coordinate
u so that the high-frequency gravitational wavesartgoing(p is growing witht,
on afixedu). However, since the background metric (30) is invariant with respect to
interchangings with v, it is straightforward to consider al§ngoingperturbations
by assuming the phase to depend on the “advanced coordinatatfnely

v
M = o eX0((0), (39)

Then the term proportional td2¢?2 will appear on the right-hand side of equation
(34) instead of (33). This results in an interesting possibilitytmduce ingoing
high-frequency gravitational cylindrical waves into the background of outgoing
Einstein-Rosen wavgsst by assuming (v) in (37) such that

3y (v)
Jdv

=+ V292, (40)

or vice versa.

Moreover, allthe above results can further be extended to a class of generalized
Einstein-Rosen (diagonal) metrics [29, 45] which desc@einhomogeneous
cosmological models

ds? = e~ (—dt? 4 dp?) + €7V dZ% + t?e ¥ dyp>. (41)
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If the three-dimensional spacelike hypersurfaces are compact, the corresponding
model is the famous Gowdy universe with the topology of three-torus [27, 29].
In the double null coordinates just one component of the metric is now different
from (30), namelyg,, = %(v + u)?e~2/ (), The only modification of the above
results (in the double null coordinates) consists of replacing the facteru)

with (v + u), and each derivative with respect tochanging sign (e.gyy —

—y.u Or ¥y — —¥.u). High-frequency gravitational waves in inhomogeneous
cosmologies of the form (41) can thus easily be constructed.

3.3. Expanding Waves

Finally, we assume that the background is an expanding Robinson-Trautman
spacetime. The metric (generally of the Petrov typgin the standard coordinates
has the form, see e.g. [22, 23, 28, 39],

A 2
ds = —<K —2r(InP), — 2? - §r2) du? — 2dudr + %(dn2 + dg?),

(42)
whereK = A(InP), A = PH(L; + 1), andm(u). WhenP(u, 1, £) satisfies the
Robinson-Trautman equatiaxK + 12m(InP) , — 4m = 0, the metric (42) is
an exact vacuum solution of the Einstein equations.

In view of the existence of privileged congruence of null geodesics generated
by o; we introduce the phasg = ¢(u) and the wave vectdr, = (¢, 0,0,0) of
high-frequency gravitational waves. We again assume the WKB form (21) of the
solution. Applying the equations (17) we obtain

1
A == r_U(us '795)’
000 O
. 1r2loo0o0 O
e = ——
w= P20 0 1 0
000 -1
0 00O
y 1r2l0 00 O
G ="/P2| 0 0 0 1 43)
0010

A general solution has the fornh,, =r~U(u, n, &) e,, expi¢(u)), where
U(u,n, &) and ¢(u) are arbitrary functions, ana,, =ae/‘fv+be;U with
a2(u, n, £) + b?(u, n, £) = 1. Introducing the amplituded * =aU, U* =bU
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for both polarizations, we can write the solution as

huw = r} [UTe;, + U e, ] explo(u)). (44)

If the wave-surfaces = const, u = const with the metricdl? = P~?(dn? +
d&2) are homeomorfic t&?, the waves can be interpreted as “spherical”. In the
asymptotic regiom — oo such solutions locally approach plane waves [16].

The reaction of the waves on background is determined by the equations
(16) and (18) withT(9 = —z- Ay,,,. From the only nontrivial component we
immediately obtain the following equation

—88—:' +3m(InP)y + 1AK = L[(UT)? + (U)F¢2, (45)

where m(u), ¢(u), whereas the remaining functions depend on coordinates
{u, n, £}. Notice that this isSndependentf the cosmological constant.

The expressions (44),(45) agree with results obtained by MacCallum and
Taub [9] or recently by Hogan and Futamase [16] who used Burnett’s technique
[14]. Our results, which were derived by a straightforward approach, are slightly
more general because they are not restricted to a constant freghiencpnst
Particular subcase of the Vaidya metric has already been studied before by Isaacson
[1] and elsewhere [8].

4. CONCLUSIONS

The Isaacson approach to study high-frequency perturbations of Einstein’s
equations was briefly reviewed and compared with the standard weak-field limit. In
our contribution we generalized Isaacson’s method to include non-vacuum space-
times, in particular an electromagnetic field and/or a non-vanishing value of the
cosmological constamtk. Then we explicitly analyzed possible high-frequency
gravitational waves in three large families of background universes, namely non-
expanding spacetimes of the Kundt type, cylindrical Einstein-Rosen waves and
related inhomogeneous cosmological models (such as the Gowdy universe), and
the Robinson-Trautman expanding spacetimes. These backgrounds are of various
Petrov types. For example, high-frequency gravitational waves can be introduced
into electrovacuum conformally flat Bertotti-Robinson space, tpdariai and
Plebanski-Hacyan spaces, their typeand typel | generalizations, or into alge-
braically general Einstein-Rosen universes.

For construction of high-frequency gravitational perturbations we have em-
ployed the fact that all these spacetimes admit a non-twisting congruence of null
geodesics. The corresponding tangent vedtérare hypersurface orthogonal so
that there exists a phase functigrwhich satisfiesp , = k,. The last equation
in (17) can be put into the forrﬁl(ln A) = —0, wherel is the affine parameter,
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and® = 1k“ is the expansion of the null congruence. This determines the be-
hawourofthe amplitudel in the above spacetimes (22), (31), (43). The remaining
equations (17) enables one to deduce the polarization tensors.

It has been also crucial that all the classes of spacetimes discussed ad-
mit exact solutions with the energy-momentum tensor of pure radiation, i.e.,
G —8rTy, = %Azkﬂku, whereT,, is either constant (representing the cos-
mological constant) or it describes an electromagnetic field. The relation between
high-frequency perturbations and exact radiative solutions of Einstein’s equations
in each class is thus natural. In particular, it is possible to determine explicitly the
reaction of the background on the presence of high-frequency gravitational waves.
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