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Abstract
We investigate higher dimensional Robinson–Trautman spacetimes with an
electromagnetic field aligned with the hypersurface orthogonal, non-shearing,
expanding geodesic null congruence. After integrating the system of Einstein–
Maxwell equations with an arbitrary cosmological constant, we present the
complete family of solutions. In odd spacetime dimensions they represent
(generalized) Reissner–Nordström–de Sitter black holes. The event horizon
(more generically, the transverse space) may be any Einstein space, and the full
metric is specified by three independent parameters related to mass, electric
charge and cosmological constant. These solutions also exhaust the class
of Robinson–Trautman spacetimes with an aligned Maxwell–Chern–Simons
field (the CS term must vanish because of the alignment assumption and
Einstein equations). In even dimensions an additional magnetic ‘monopole-
like’ parameter is also allowed provided now the transverse space is an (almost-)
Kähler Einstein manifold. The Weyl tensor of all such solutions is of algebraic
type D. We also consider the possible inclusion of aligned pure radiation.

PACS numbers: 04.50.+h, 04.20.Jb, 04.40.Nr

1. Introduction

In general relativity, the study of ray optics has played a major role in the construction,
interpretation and invariant classification of exact solutions (see, e.g., [1] for a review and
for original references). This applies, in particular, to solutions representing gravitational
radiation. During the golden age of theoretical studies of exact radiative spacetimes, Robinson
and Trautman introduced and investigated D = 4 dimensional Lorentzian geometries that
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admit a geodesic, non-twisting, non-shearing, expanding null congruence [2, 3]. The
Robinson–Trautman family is by now one of the fundamental classes of exact solutions
to Einstein’s field equations in vacuum and with principal matter fields such as pure radiation
or an electromagnetic field [1]. It includes a number of well-known spacetimes ranging
from static black holes and the Vaidya solution to the C-metric and other radiative solutions.
Noticeably, the Goldberg–Sachs theorem [1] implies that Robinson–Trautman geometries are
algebraically special (at least in vacuum and with ‘sufficiently aligned’ matter fields), since
they are non-shearing. In fact, explicit vacuum solutions of all special Petrov types are known
[1–3].

The geometric optics approach was naturally developed in the framework of D = 4
general relativity. On the other hand, in recent years string theory and specific extra-dimension
scenarios have stimulated the investigation of gravity in more than four spacetime dimensions.
It is thus now interesting to consider possible extensions of the above concepts to arbitrary
(higher) dimensions, and their relation to the D > 4 classification of the Weyl tensor [4]. In
[5–9], various general aspects of geometric optics in D > 4 dimensions (which evades the
standard D = 4 Goldberg–Sachs theorem in many ways) have been analyzed. In [10], the
Robinson–Trautman family of solutions has been extended to higher dimensions in the case of
empty space possibly with a cosmological constant and in the case of aligned pure radiation.
The authors pointed out important differences with respect to the D = 4 case for vacuum
spacetimes (see also [9, 11]). However, from a higher dimensional perspective one would
also be interested in theories that incorporate electromagnetic fields. It is thus the purpose
of this paper to study Robinson–Trautman spacetimes in the higher dimensional Einstein–
Maxwell theory (for any value of the cosmological constant). For simplicity, we will focus on
aligned fields. In D � 5 odd dimensions, we shall also consider the inclusion of an additional
Chern–Simons term, which gives rise, e.g., to the bosonic sector of five-dimensional minimal
(gauged) supergravity.

The paper is organized as follows. In section 2, we present the line element of generic
Robinson–Trautman spacetimes [10] and study purely algebraic properties of an aligned
Maxwell field. In section 3, we proceed by integrating systematically the full set of Einstein–
Maxwell equations within such a setting. We summarize the resulting spacetimes and discuss
some special cases in section 4. Concluding remarks are given in section 5, and some technical
details in appendix A. Throughout the paper, we focus on D > 4 dimensions, and well-known
results in the special case D = 4 are summarized in appendix B.

2. Robinson–Trautman geometry and aligned Maxwell fields

As shown in [10], the general line element for any D-dimensional spacetime which admits a
non-twisting, non-shearing but expanding congruence [5, 6] generated by the geodesic null
vector field k can be written as

ds2 = gij (dxi + gridu)(dxj + grj du) − 2 du dr − grrdu2. (1)

Here, u = const are the null hypersurfaces to which k is normal, r is the affine parameter along
the geodesics generated by k = ∂r , and x ≡ (xi) ≡ (x1, x2, . . . , xD−2) are spatial coordinates
on a ‘transverse’ (D − 2)-dimensional Riemannian manifold M(D−2). The metric functions

gri = gijguj , grr = −guu + gijguiguj , and gui = grjgij , (2)

may depend arbitrarily on (x, u, r), while the spatial components gij have the factorized form
gij = p−2(x, u, r)hij (x, u), and grr = 0 = gri (note that det gij = −det gαβ). The expansion
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of k is given by θ ≡ kα
;α

/
(D − 2) = −(ln p),r , which we assume to be non-vanishing. The

above metric is invariant under the coordinate transformations

xi = xi(x̃, ũ), u = u(ũ), r = r0(x̃, ũ) + r̃/u̇(ũ). (3)

The next step is to impose Einstein’s equations with a suitable energy–momentum tensor
in the above Robinson–Trautman class. In the present paper we concentrate on spacetimes
with Maxwell fields aligned with the geometrically privileged null vector field k, characterized
by

Fαβkβ = N kα, (4)

where N is an arbitrary function. In the coordinate system introduced above this means

Fri = 0 = Fui, Fru = N = Fur, (5)

with components Fij , Fui (or F ij = gikgjlFkl, F
ir = −Ngri + gijFuj − grkgijFkj ) still

arbitrary. Consequently, Fu
r = Fu

i = F i
r = 0 = Fr

u = Fr
i = Fi

u and F r
r = −Fu

u =
N = −Fr

r = Fu
u. For the corresponding energy–momentum tensor of the electromagnetic

field

Tαβ = 1

4π

(
FαµFβ

µ − 1

4
gαβFµνF

µν

)
, (6)

we find

Trr = Tri = 0, (7)

with the remaining components Tij , Tur , Tui, Tuu in principle non-trivial and specified below.
Note that the trace

T µ
µ = 4 − D

16π
FµνF

µν = 4 − D

16π
(FijF

ij − 2N 2) (8)

is generally non-zero unless D = 4. The field equations Rαβ − 1
2Rgαβ + �gαβ = 8πTαβ

including an arbitrary cosmological constant � thus take the form

Rαβ = 2

D − 2
�gαβ + 8πTαβ +

1

2

D − 4

D − 2
gαβFµνF

µν, (9)

which will now be solved together with source-free Maxwell equations F[αβ;γ ] = 0 and
Fµν ;ν = 0, and their Chern–Simons modification in odd dimensions.

3. Integration of the Einstein–Maxwell field equations

3.1. Equations Rrr = 0 and Rri = 0

Due to (7) and (1), the Einstein equations (9) for Rrr and Rri are exactly the same as in the
vacuum case [10]. Consequently, for the Robinson–Trautman class of spacetimes, we obtain
p = r−1 (up to a trivial rescaling of hij by a function of (x, u)) [10], i.e.

gij = r2hij (x, u), gri = ei (x, u) + r1−Df i(x, u), (10)

where hij , which is the transverse spatial part of the metric, and ei , f i are arbitrary functions
of x and u. The r-dependence of the metric functions gij , g

ri is now fixed. Thanks to (10), we
can write

−det gαβ = r2(D−2)h, (11)

where

h = h(x, u) ≡ det hij (x, u). (12)

We further note that the expansion of the congruence k is now given by θ = 1/r .
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3.2. Maxwell equations (step one)

To determine the r-dependence of the components Fµν , we now employ Maxwell’s
equations. With equation (5), the ‘geometrical’ equations F[αβ;γ ] = 0, equivalent to Fαβ,γ +
Fβγ,α + Fγα,β = 0, imply

Fij,r = 0, (13)

Fui,r = −N,i , (14)

Fij,u = Fuj,i − Fui,j , (15)

F[ij,k] = 0. (16)

In view of (11), the ‘dynamical’ equations Fµν ;ν = (−det gαβ)−
1
2
(
(−det gαβ)

1
2 Fµν

)
,ν

= 0 are

(rD−2N ),r = 0, (17)
√

h(rD−2F ir),r = −rD−2(
√

hF ij ),j , (18)

(
√

hF ir),i = −(
√

hN ),u. (19)

From (13) we observe that the components Fij are independent of r,

Fij = Fij (x, u). (20)

Using (17), we find

Fru = N = r2−DQ(x, u), (21)

with Q(x, u) arbitrary. Using this result and (14), we obtain

Fui = r3−D Q,i

D − 3
− ξi(x, u), (22)

with ξi(x, u) being some functions of x and u. Thus we found the r-dependence of all
electromagnetic field components. In particular, the invariant FµνF

µν of the Maxwell field is

FµνF
µν = r−4F 2 − r2(2−D)2Q2, (23)

where we have defined

F 2(x, u) ≡ FikFjlh
ijhkl, (24)

and (from now on) hij denotes the inverse of hij . We always have F 2 � 0 (with F 2 = 0 ⇔
Fij = 0) because, in an orthonormal frame, F 2 = ∑

i,j F 2
(i)(j).

Substituting (22) into (15), we get

Fij,u = ξi,j − ξj,i , (25)

while equation (16) is unchanged. Finally, if expanded in the powers of r using the previous
results, the remaining Maxwell equations (18) and (19) yield the following set of relations in
D > 4:

Qf i = 0, (26)

Fjkf
k = 0, (27)

Q,j = 0, (28)

ξj − Fjk ek = 0, (29)
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(
√

h hikhjlFkl),j = 0, (30)

(
√

hQ),u − (
√

hQ ei ),i = 0. (31)

Relations (25)–(31) and (16) place restrictions on the admissible electromagnetic fields (20)–
(22) in Robinson–Trautman spacetimes. We shall return to the implications of these constraints
after we employ the next Einstein equation in subsection 3.4. For the special case D = 4, see
appendix B.

The above results already have an important consequence. Namely, one of the necessary
conditions for having a null Maxwell field reads FµνF

µν = 0. In view of the r-dependence
specified by (23), one finds immediately that for D > 4 this requires Fij = 0 = Q and thus
Fru = 0. Substituting into (18), this also gives Fui = 0, that is, a vanishing electromagnetic
field. Hence higher dimensional Robinson–Trautman spacetimes do not admit aligned null
Maxwell fields, as opposed to the D = 4 case [1, 3]. This is an explicit example of the result of
[11] that higher dimensional null Maxwell fields cannot have expanding rays with vanishing
shear.

3.3. Chern–Simons term

In theories which include a Chern–Simons term, formulated in odd spacetime dimensions
(D = 2n + 1), the set of geometrical equations (13)–(16) is unchanged (dF = 0). On the
other hand, the dynamical set now contains an additional term on the rhs (cf, e.g., [12])

(
√−det gαβFµν),ν = −λεµγ δ...σ τ Fγ δ . . . Fστ︸ ︷︷ ︸

n times

, (32)

where λ is a coupling constant. Note that Fri = 0 thanks to the alignment condition (5), so
that the Chern–Simons term does not affect equation (32) with µ = u, which thus takes again
the form (17). In fact, this is the only dynamical equation we used in the discussion above, so
that equations (20)–(25) apply also in the Chern–Simons case. Moreover, if one assumes that
also Fij = 0 (no ‘magnetic’ field), the Chern–Simons term then vanishes identically for any
odd D. In particular, null fields are thus ruled out again. Further analysis will be simpler after
looking at the next Einstein equation.

3.4. Equation Rij = 2
D−2�gij + 8πTij + 1

2
D−4
D−2gijFµνF

µν

The Tij components of the energy–momentum tensor are Tij = 1
8π

r2(3−D)Q2hij +
r−2 1

4π

(
FikFjlh

kl − 1
4F 2hij

)
. Using (20) and (23), one can separate terms with different

r-dependences and thus proceed to integrate the corresponding field equation. As detailed in
appendix A, one finds the important simplification

f i = 0 = ei , (33)

so that gri = 0. Then, the Robinson–Trautman metric is simplified considerably and reads

ds2 = r2hij dxi dxj − 2 du dr − grr du2, (34)

where (cf equations (A.2) and (A.3)) the coefficient grr is explicitly given by

grr = R
(D − 2)(D − 3)

+
2(ln

√
h),u

D − 2
r − 2�

(D − 2)(D − 1)
r2 − µ

rD−3

+
2Q2

(D − 2)(D − 3)

1

r2(D−3)
− F 2

(D − 2)(D − 5)

1

r2
. (35)

The function µ(x, u) (which renames the c6 of appendix A) is arbitrary.

5



Class. Quantum Grav. 25 (2008) 025006 M Ortaggio et al

The (D−2)-dimensional spatial metric hij is constrained by (A.4) and (A.5) (with ei = 0):

Rij = R
D − 2

hij , (36)

hij,u = 2

D − 2
hij (ln

√
h),u. (37)

As in [10], relation (36) tells us that at any given u = u0 = const, the spatial metric
hij (x, u0) must describe an Einstein space (M(D−2), hij ). For D > 4 this implies [10] that
the spatial Ricci scalar R can only depend on the coordinate u (and that in the particular case
D = 5 the metric hij (x, u0) corresponds to a 3-space of constant curvature). Equation (37)
‘controls’ the parametric dependence of hij (x, u) on u, and can easily be integrated to obtain
hij = h1/(D−2)γij (x). Consequently, h ≡ det hij = h det γij , so that the matrix γij must be
unimodular. Considering equation (12),

hij = γij (x)

P 2(x, u)
where det γij = 1, P −2 = h1/(D−2). (38)

The spatial metric hij (x, u) can thus depend on the coordinate u only via the conformal
factor P −2.

It follows from (A.8) and the subsequent discussion that the Maxwell field is constrained
by

F 2 = 0 (D = 2n + 1 odd), (39)

hijF
2 = (D − 2)FikFjlh

kl (D = 2n + 2 even). (40)

3.5. Maxwell equations (step two)

Let us now return to the Maxwell equations. As noted above, for any odd D we have F 2 = 0,
i.e. Fij = 0. Thanks to this significant simplification in odd dimensions, the Chern–Simons
term in equation (32) vanishes identically (cf the discussion in subsection 3.3), and from now
on we can thus study both Maxwell and Maxwell–Chern–Simons theories in a unified way.

Since now ei = 0 = f i , cf (33), the dynamical Maxwell equations (26)–(29) simplify to
Q,j = 0, ξj = 0. In view of (22), (21) and (25), we see that for D > 4

Fui = 0, Fru = Q(u)

rD−2
, Fij = Fij (x). (41)

The only remaining Maxwell equations (16), (30) and (31) read

F[ij,k] = 0, (42)

(
√

h hikhjlFkl),j = 0, (43)

(
√

hQ),u = 0. (44)

Note that in even dimensions (cf (39)) relations (42) and (43) are effective source-free Maxwell
equations for the (D−2)-dimensional ‘spatial’ (magnetic) field Fij in the Riemannian geometry
of hij . That is, the 2-form

F̃ ≡ 1
2Fij (x) dxi ∧ dxj (45)

must be closed (dF̃ = 0) and coclosed (d∗F̃ = 0) in (M(D−2), hij ). However, F̃ must
also obey the extra constraint (40), that is the last remnant of the Einstein equation for Rij .

6



Class. Quantum Grav. 25 (2008) 025006 M Ortaggio et al

Recalling the block-diagonal canonical form F̃ = c12m
(1) ∧ m(2) + c34m

(3) ∧ m(4) + · · · of a
generic even-dimensional antisymmetric matrix in an adapted orthonormal coframe
(m(1), . . . ,m(D−2)) of hij , the condition (40) requires that in such a coframe one has in
fact

F̃ = F√
D − 2

(m(1) ∧ m(2) + m(3) ∧ m(4) + · · · + m(D−3) ∧ m(D−2))

(D = 2n + 2 even). (46)

This special form of F̃ implies

∗F̃ = (2n)(n−2)/2

(n − 1)!
F−(n−2) F̃ ∧ F̃ ∧ . . . ∧ F̃︸ ︷︷ ︸

(n−1) times

, (47)

where the ∗-duality and ∧-product are (in this paragraph only) those of (M(D−2), hij ). Hence,
for n > 2 (D > 6) imposing that the 2-form F̃ is simultaneously closed and coclosed
requires F,i = 0. For n = 2 (D = 6), instead, F̃ is self-dual, therefore if it is closed it is
also automatically coclosed, without any restriction on F . We will recover the same results
explicitly also below using the Einstein equations, cf equation (51).

Note also that if F̃ is supposed to be regular and non-zero on M(D−2), then equation (40)
requires that the Einstein space (M(D−2), hij ) is an almost-Hermitian (possibly, Hermitian)
manifold [13] with the almost-complex structure J i

j = |F |−1(D − 2)1/2F i
j . In view of the

previous comments, for D = 2n + 2 > 6 the Maxwell equations imply that the 2-form
Jij = hikJ

k
j associated with the almost-complex structure is closed, so that the transverse

space is not only almost-Hermitian but actually almost-Kähler (possibly, Kähler).

3.6. Equation Rur = − 2
D−2� + 8πTur − 1

2
D−4
D−2FµνF

µν

The Ricci tensor component Rur for metric (34) reads Rur = 1
2 r2−D

(
rD−2grr

,r

)
,r

−
r−1(ln

√
h),u, see [10]. Substituting expression (35) we obtain Rur = − 2�

D−2 +
r2(2−D) D−3

D−2 2Q2 + r−4 1
D−2F 2. Using (23) and Tur = 1

16π
FµνF

µν + 1
4π

r2(2−D)Q2 we observe
that the corresponding field equation is automatically satisfied in any dimension.

3.7. Equation Rui = 8πTui

For the energy–momentum tensor, using (6) and (41), we find Tui = 0. The Ricci tensor
component Rui for metric (34) and (35), using Q,i = 0 and relation (37), is

Rui = r−1 (D − 4)R,i

2(D − 2)(D − 3)
+ r2−D µ,i

2
− r−3 (D − 6)(F 2),i

2(D − 2)(D − 5)
. (48)

Comparing the coefficients of different powers of r, we obtain immediately the following
conditions:

(D − 4)R,i = 0, (49)

µ,i = 0, (50)

(D − 6)(F 2),i = 0. (51)

Therefore, (for D > 4) the functions R and µ must be independent of the spatial coordinates,

R = R(u), µ = µ(u), (52)
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and we further find

F 2 = F 2(u) for D �= 6, even, (53)

with F 2 = 0 in any odd D. For D = 6, equation (51) is satisfied identically, with F 2 remaining
a function of both x and u. In D = 4, corresponding to the standard general relativity,
equation (49) is an identity, so that one can have a much more general function R(x, u);
equations (50) and (51) are also modified, cf appendix B.

3.8. Equation Ruu = 2
D−2�guu + 8πTuu + 1

2
D−4
D−2FµνF

µνguu

As explained in appendix A, after some calculations this field equation requires

µ,u = (D − 1)(ln P),uµ (D �= 4, 6), (54)

or

µ,u = 5(ln P),uµ − 1
16�(F 2) (D = 6), (55)

in the two distinct cases D �= 6 and D = 6. We analyze these separately in the next section.

4. Summary and discussion

Starting from the general Robinson–Trautman geometric ansatz (1), in the preceding section
we have imposed all the constraints following from the Einstein–Maxwell equations. The
resulting metric takes a simplified form (34), which is fully specified by the single function grr

in equation (35), along with the transverse Einstein geometry (M(D−2), hij ), as determined by
(36). The specific form of the parameters and functions entering equation (35) and possible
constraints on the Einstein metrics hij depend on the number of spacetime dimensions, as we
will discuss below.

4.1. Even dimensions: the generic case (D �= 6)

For an arbitrary even D > 4 such that D �= 6, by differentiating any of equations (A.12),
(A.13), (A.15) with respect to the spatial coordinates, we obtain (recall that Q = Q(u), F =
F(u), µ = µ(u))

(ln P),ui = 0, (56)

unless µ = 0 and Q = 0 = F 2, which is the exceptional vacuum spacetime discussed in
[10, 11], and [9]. Equation (56) can be integrated immediately, yielding the factorized form
P(x, u) = P(x)U(u), where P and U are arbitrary functions. Without loss of generality, we
can set U = 1 by a suitable coordinate transformation of the form u = u(ũ), r = r̃/u̇(ũ),
under which the form of the metric (34), (35) is invariant and the individual metric functions
are reparametrized as follows:

P̃ = P u̇, R̃ = Ru̇2, µ̃ = µu̇D−1, F̃ 2 = F 2u̇4, Q̃ = Qu̇D−2. (57)

Choosing u̇ = 1/U and dropping tildes, we obviously achieve

P(x, u) = P(x), (58)

and considering equations (A.12), (A.13), and (A.15), we thus have

µ = const, Q = const, F 2 = const. (59)

8
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Considering (52) and the fact that R is the Ricci scalar associated with the spatial metric
hij = hij (x) = P −2(x)γij (x), cf (38), which now does not involve u, we conclude

R = const. (60)

In addition, we can now always set the constant term K ≡ R/(D−2)(D−3) in the metric (35)
to K = ±1, 0 using the remaining scaling freedom (57), namely u → Cu, r → r/C, xi →
C1/(D−2)xi .

To summarize, the explicit form of even-dimensional (D �= 6) Robinson–Trautman
spacetimes with an aligned electromagnetic field and possibly a cosmological constant is

ds2 = r2hij (x) dxi dxj − 2 du dr − 2H(r) du2. (61)

The function 2H ≡ grr = −guu and the Maxwell field are given by

2H = K − 2�

(D − 2)(D − 1)
r2 − µ

rD−3
+

2Q2

(D − 2)(D − 3)

1

r2(D−3)
− F 2

(D − 2)(D − 5)

1

r2
,

(62)

F = Q

rD−2
dr ∧ du + 1

2Fij (x) dxi ∧ dxj (D �= 6, even), (63)

where K = ±1, 0, and µ,Q,F are constants.3 The transverse manifold (M(D−2), hij )

is a Riemannian Einstein space, see (36), with the Ricci scalar normalized as R =
K(D − 2)(D − 3). If this is taken to be compact, these solutions admit a black hole
interpretation.4 Obviously, � is the cosmological constant, µ parametrizes the mass, and
Q is the electric charge. If the magnetic term Fij is non-zero,

(
M(D−2), hij , J

i
j

)
must be an

almost-Kähler Einstein manifold (cf subsection 3.5). The almost-complex structure gives Fij

(up to a constant factor), which thus satisfies the ‘effective’ (D − 2)-dimensional Maxwell
equations (42) and (43).

Note that when F is non-zero and D > 4, (M(D−2), hij ) cannot be a sphere of constant
curvature,5 as one would require, e.g., for an asymptotically flat spacetime. By contrast,
spherically symmetric magnetic monopole solutions of the Einstein–Yang–Mills equations
have been recently found in [14]. The line element given in [14] coincides with our
equations (61), (62) in the special subcase K = 1,Q = 0, except that (M(D−2), hij ) is a
round sphere there. Note, however, that even in that case the large-r behavior of the F term in
(62) does spoil the standard ‘good properties’ of an asymptotically simple spacetime [14] (in
asymptotically flat spaces in D-dimensions the ‘mass term’ behaves as 1/rD−3, cf [21]—terms
with a slower fall-off give infinite Komar integrals).

From the above form (63) of the Maxwell field, it is clear that it is of type D [22] with
principal null directions given by

k = ∂r , l = ∂u − H∂r. (64)
3 In the special case D = 4 (see also appendix B) the electric and magnetic monopole terms in Q and F become
indistinguishable in the metric. This corresponds to the well-known fact that in D = 4 Einstein–Maxwell gravity all
solutions are determined only up to a constant duality rotation of the electromagnetic field.
4 There is clearly a curvature singularity at r = 0, as one can see, e.g., from the Ricci scalar R = 2D

D−2 �+ D−4
D−2 FµνFµν

(with equation (23)). In general, however, this is hidden behind an event horizon. Various Killing horizons are in fact
possible, as determined by the roots of the function H(r). The appropriate parameter range for the existence (and
number) of such roots has been discussed in detail in [14] (cf also [15] for the case F = 0). For � � 0 the asymptotic
region is static, whereas for � > 0 the Killing vector ∂u becomes spacelike at large r (like in de Sitter space).
5 More generally, it is an old result that Kähler manifolds of constant (Riemannian) curvature must be flat in 2n > 2
real dimensions [16]. It has been demonstrated more recently that this applies also to almost-Kähler manifolds
(see [17] and references therein). In this context, it is also worth mentioning that the celebrated conjecture of [18]
that almost-Kähler, Einstein, compact manifolds must be Kähler has been proven in the case of non-negative scalar
curvature [19]. See, e.g., [17, 20] for some more general properties of almost-Kähler Einstein manifolds and for more
references.
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In addition, in view of (59) the line element (61) and (62) is a warped product of (M(D−2), hij )

with a two-dimensional Lorentzian factor. For such a type of warped spacetimes, the Weyl
tensor is necessarily of type D, unless zero (type O) [9]. However, the latter case cannot occur
here since, e.g., the Weyl component Cruru reads

Cruru = −(D − 2)(D − 3)
µ

2rD−1
+

(2D − 5)

(D − 1)

2Q2

r2(D−2)
− (D − 3)

(D − 1)(D − 2)(D − 5)

6F 2

r4
.

(65)

The above Robinson–Trautman spacetimes in D > 4 are thus of type D with WANDs given
again by (64) (cf [9]). Conformal flatness requires µ = 0 and Q = 0 = F , in particular
vacuum spacetimes [10], so that the only possible conformally flat metrics are of constant
curvature.

Note finally that when Fij = 0 (i.e., F = 0), these solutions are electrically charged
black holes. In the simplest case when (M(D−2), hij ) is a round sphere, one obtains the
well-known asymptotically flat/(A)dS spacetimes of [23]. However, (M(D−2), hij ) can now
be any Einstein space (cf also [24], and see, e.g., [25, 26] for related discussions in the vacuum
case Q = 0 = F ). Stability properties of these black holes have been studied in [15].

4.1.1. An explicit example. For the sake of definiteness, as a simple example with F �= 0 we
can consider (M(D−2), hij ) as the Riemannian analog of Nariai-like solutions with geometries
S2 × S2 × · · · or H 2 × H 2 × · · ·, namely

hij dxi dxj =
n∑

I=1

[(
1 − ε

ρ2
I

a2

)
dψ2

I +

(
1 − ε

ρ2
I

a2

)−1

dρ2
I

]
,

1
2Fij dxi ∧ dxj = F√

D − 2

n∑
I=1

dψI ∧ dρI (D = 2n + 2)

(66)

where ε = +1 or ε = −1 (or ε = 0, which gives a flat hij ), a and F are constants, the scalar
curvature is given by K = εa−2(2n − 1)−1 (normalizable to K = ε if desired) and D = 2n + 2
is the number of spacetime dimensions. Note that Fij is covariantly constant in (M(D−2), hij ).

4.2. Odd dimensions

For odd D, as above one can reduce the line element to the form (61), (62). Since in odd
dimensions F = 0 identically (i.e. F̃ = 0, see (45)), a complete solution of the Maxwell
equations is now simply given by a purely electric ‘radial’ field

F = Q

rD−2
dr ∧ du (D odd). (67)

As in even D with F = 0, these are again a generalization of the familiar Reissner–Nordström–
de Sitter spacetimes [23, 24]: the standard Schwarzschild-type form

ds2 = −2H(r) dt2 +
dr2

2H(r)
+ r2hij (x) dxi dxj , F = Q

rD−2
dr ∧ dt, (68)

10
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is achieved via the transformation6 du = dt − dr/2H . Recall also that these represent the
only Robinson–Trautman solutions with an aligned electromagnetic field which obeys either
the Maxwell or the Maxwell–Chern–Simons equations.

4.3. The special case D = 6

The even-dimensional D = 6 case is special in that F 2 may depend also on the spatial x
coordinates, see equation (51). This fact has two consequences. First, one has to solve the
more complicate equation (55). In addition, when Q = 0, one cannot conclude now that
P(x, u) takes the factorized form P(x, u) = P(x)U(u). Let us discuss the two possible cases
separately.

4.3.1. Factorized P(x, u) (generic transverse space). Because of equations (A.12), this
corresponds to the generic situation with Q �= 0. In such a case we can arrive again at (58) so
that hij = hij (x), and equations (A.12) and (A.13) lead to

Q = const, F 2 = F 2(x). (69)

In addition, equation (55) simplifies to µ,u(u) = − 1
16�(F 2)(x) which requires both terms to

be constant. By integration we obtain µ(u) = µ0 + c0u and �(F 2)(x) = −16c0, where µ0, c0

are constants.
If we restrict to the case when (M(4), hij ) is compact, as for black hole solutions, by

standard results (cf, e.g., [27], and [13] on p 338) the only regular solution is

µ = const, F 2 = const, (70)

as in the D > 6 even-dimensional case. Therefore the results of subsection 4.1 apply, and(
M(4), hij , J

i
j

)
is again (almost-)Kähler Einstein (e.g., flat, or S2 × S2, etc).

4.3.2. Non-factorized P(x, u) (transverse space of constant curvature). From (A.12) we
observe that this case is possible only for Q = 0, so that we can assume F �= 0 (otherwise the
Maxwell field would be identically zero). When P(x, u) is non-factorized, as in [11] one can
argue that the Riemannian metric hij (x, u) describes a family of conformal four-dimensional
Einstein spaces parametrized by u. It is well known that four-dimensional Riemannian Einstein
spaces which admit a conformal (non-homothetic) map on Einstein spaces must be of constant
curvature [28]. Since hij = P −2(x, u)γij (x), this means that we can always find suitable x
coordinates such that

hij = P −2δij , P = a(u) + bi(u)xi + c(u)δij x
ixj . (71)

Here i, j = 1, . . . , 4, and a(u), bi(u), c(u) are arbitrary functions of u related to the constant
curvature K by K = 4ac − ∑4

i=1 b2
i [10]. Recall also that

(
M(4), hij , J

i
j

)
must be almost-

Hermitian. The self-dual ‘spatial’ Maxwell field (cf (47) with n = 2) is proportional to the
almost-complex structure and must satisfy the Maxwell equations (42) (or, now equivalently,
(43)). In addition, there is constraint (55).

Using (24), the (analog of the) Ricci identity applied to the 2-form Fij , the effective
Maxwell equations (42), (43), and the constant curvature equation Rijkl = K(hikhjl −hilhjk),

6 This transformation (which also applies in the even-dimensional case with F �= 0) explicitly shows that the two
WANDs (64) are related by ‘time reflection’, as observed for arbitrary algebraically special static spacetimes in [9].
This also implies that the two WANDs must have equivalent optical properties (e.g., geodeticity). Note, in particular,
that while k is a principal null direction of the Maxwell 2-form by construction, it turned out that also l shares this
property.
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we can write (cf, e.g., [27], for detailed calculations) �(F 2) = 2(4KF 2 +
hmihnjhpkFij‖kFmn‖p) or, by (24) and (71),

�(F 2) = 2P 4

⎛
⎝4K

4∑
i,j=1

FijFij + P 2
4∑

i,j,k=1

Fij‖kFij‖k

⎞
⎠ . (72)

The right-hand side of equation (72) is non-negative for K � 0. Therefore, if we again
restrict to the case of a compact (M(4), hij ), for K � 0 standard results [13, 27] imply that
F 2 does not depend on the x coordinates, and that Fij‖k = 0. In particular, the case K > 0
requires also F 2 = 0, i.e. Fij = 0 and there is no electromagnetic field (we had already
Q = 0). For K = 0, as in subsection 4.1 thanks to F = F(u) we can achieve P = P(x)

(and F = const, µ = const). But now one can rescale and shift the spatial coordinates to fix
P = 1, i.e. hij = δij is manifestly flat and Fij‖k = 0 becomes Fij,k = 0 (this is the solution of
subsubsection 4.1.1 with ε = 0,D = 6).

The exceptional case F 2 = F 2(x, u), P = P(x, u) (non-factorized) can thus possibly
arise only when the transverse space (M(4), hij ) is non-compact, or of constant negative
curvature K = −1 (in which case equation (72) does not prevent it from being compact, in
principle, provided now Fij‖k �= 0). We do not investigate further this very special case here.
Let us only observe that ∂u is no longer a Killing vector field since the metric depends on u.

4.4. Inclusion of pure radiation

It is not difficult to generalize these results to include a pure radiation field aligned with
the null vector k. In this case, the total energy–momentum tensor to insert into the Einstein
equations is given by the sum of the electromagnetic energy–momentum tensor (6) and the pure
radiation contribution T̃αβ = �2kαkβ . In the coordinate system introduced above this means
that only the T̃uu = �2 component is non-vanishing. Moreover, since the covariant divergence
of the electromagnetic energy–momentum tensor (6) vanishes, the Bianchi identities imply
T̃

αβ

;β = 0. For the Robinson–Trautman family of spacetimes this leads to (cf [10])

�2 = r2−Dn2(x, u), (73)

where n is an arbitrary function of x and u.
This additional term modifies the field equation of subsection 3.8. Instead of (54), in the

generic case we obtain the equation

(D − 1)µ(ln P),u − µ,u = 16πn2

D − 2
(D �= 6). (74)

It is thus possible to prescribe the ‘mass function’ µ(u), and relation (74) then uniquely
determines the corresponding null matter profile n2(x, u), provided its left-hand side is positive.
In the exceptional case D = 6 equation (55) becomes

5µ(ln P),u − µ,u − 1
16�(F 2) = 4πn2 (D = 6). (75)

Again, when the left-hand side is positive, this may be considered as the definition of the
function n. We do not study further details of pure radiation spacetimes here. Let us just
observe that purely electric solutions (such that F = 0) contain generalized charged Vaidya
spacetimes, cf [29].

5. Conclusions

We have derived systematically all higher dimensional spacetimes that contain a hypersurface
orthogonal, non-shearing, and expanding congruence of null geodesics, together with an
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aligned electromagnetic field. These are solutions of the coupled Maxwell(–Chern–Simons)
and Einstein equations (for any value of the cosmological constant). As already noted in the
vacuum case [10], there arise important differences with respect to the standard D = 4 family
of Robinson–Trautman solutions [1–3]. In particular, for D > 4 there is no analog of radiative
spacetimes such as the charged C-metric, and the aligned null Maxwell field is not permitted.
After integrating the full set of equations, one is essentially left only with (a variety of) static
black holes (exceptional subcases possibly arise in D = 6). These are characterized by mass,
electric charge and cosmological constant, and by the topology and geometry of the horizon,
which must be an Einstein space. In even spacetime dimensions an additional magnetic
parameter is permitted provided the horizon is not only Einstein but also (almost-)Kähler.
Some of the presented solutions were already known (see the references mentioned above),
but we have obtained them systematically as elements of the Robinson–Trautman class, which
was the purpose of our work.

Our contribution also makes contact with recent studies of the algebraic classification
of the Weyl tensor and of geometric optics in higher dimensions. For instance, it has been
recently shown [9] that arbitrary D > 4 static spacetimes can be only of the algebraic types G,
Ii , D or O. Using another result of [9], we have demonstrated that our specific static solutions
are restricted to the type D, and we have also given the corresponding WANDs with no need to
compute the Weyl tensor. In addition, along with various previous results [5, 6, 8–10], the new
features pointed out above for D > 4 indicate that in some cases the shear-free assumption
might be too strong for expanding solutions in higher dimensions. In future work it would
thus be worth investigating spacetimes with shear and expansion, at least with some alternative
simplifying assumptions.

Acknowledgments

We are grateful to Alessio Celi for useful discussions. Part of the work of MO was carried
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Appendix A. Some technical details

Equation Rij = 2
D−2�gij + 8πTij + 1

2
D−4
D−2gijFµνF

µν

The Ricci tensor component Rij for metric (1) was calculated in [10]. With (10) this reads

Rij = Rij − r4−D(rD−3grr ),rhij − r2(2−D) (D − 1)2

2
hikhjlf

kf l

− r

[
D − 2

2

(
2hk(ie

k
,j) + ekhij,k − hij,u

)
+

(
ek
,k + ek(ln

√
h),k − (ln

√
h),u

)
hij

]

+ r2−D

[
1

2

(
2hk(if

k
,j) + f khij,k

) − (
f k

,k + f k(ln
√

h),k
)
hij

]
, (A.1)

where Rij is the Ricci tensor associated with the spatial metric hij , and indices in small round
brackets are symmetrized. Using (20) and (23), one can separate terms in the field equation
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with different r-dependences. By contracting with hij , we obtain a differential equation for
grr which can be integrated immediately. For D > 5 this yields

grr = c1 + c2r + c3r
2 + c4r

2−D + c5r
2(2−D) + c6r

3−D + c7r
−2 + c8r

2(3−D), (A.2)

where c1, . . . , c8 are functions of (x, u) as follows,

c1 = R
(D − 2)(D − 3)

, c2 = 2

D − 2

[
(ln

√
h),u − ek

,k − ek(ln
√

h),k
]
,

c3 = − 2�

(D − 1)(D − 2)
, c4 = D − 3

D − 2

[
f k

,k + f k(ln
√

h),k
]
,

c5 = 1

2

D − 1

D − 2
hklf

kf l, c6 arbitrary,

c7 = − F 2

(D − 2)(D − 5)
, c8 = 2Q2

(D − 2)(D − 3)
,

(A.3)

where R = hijRij . For D = 5 the only difference is that in (A.2) one should replace c7r
−2

with the term − 1
3F 2r−2 ln(c7r) where c7 is an arbitrary function of (x, u) with the dimension

of an inverse length. Next, substituting the above expressions back into the Einstein equation
for Rij , we determine for any D > 4 the following constraints on the metric hij and the
functions ei and f i :

Rij = R
D − 2

hij , (A.4)

2hk(ie
k
,j) + ekhij,k − hij,u = 2

D − 2

[
ek
,k + ek(ln

√
h),k − (ln

√
h),u

]
hij , (A.5)

2hk(if
k
,j) + f khij,k = 2

D − 2

[
f k

,k + f k(ln
√

h),k
]
hij , (A.6)

(hklf
kf l)hij = (D − 2)(hikf

k)(hjlf
l), (A.7)

hijF
2 = (D − 2)FikFjlh

kl. (A.8)

As we note, (A.7) is identical to the vacuum case discussed in [10] and it requires

f i = 0. (A.9)

In analogy to [10], we also use the coordinate freedom (3) to achieve

ei = 0, (A.10)

so that gri = 0 = gui and equations (A.6) and (A.7) are now satisfied identically.
In addition, constraint (A.8) requires F 2 = 0 for any odd D. Indeed, taking the determinant

of (A.8), we obtain (F 2)D−2h2 = (2−D)D−2(det Fij )
2, but det Fij = 0 for any antisymmetric

matrix Fij and odd dimension D − 2 since det Fij = det(−Fij ) = (−1)D−2 det Fij .
Consequently, the logarithmic term in D = 5 is zero, and we need not treat the D = 5
case separately.

Equation Ruu = 2
D−2�guu + 8πTuu + 1

2
D−4
D−2FµνF

µνguu

First, we evaluate the Ricci tensor component Ruu. Using the general expression (31) of [10],
relation (35) for grr = −guu, equations (37), (38) implying

√
h = P 2−D , and (52), we obtain
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Ruu = 2

D − 2
�guu −

(
r−4 F 2

D − 2
+ r2(2−D) D − 3

D − 2
2Q2

)
guu

+ r2−D D − 2

2
[(D − 1)µ(ln P),u − µ,u] − r5−2D 2Q

D − 3
[(D − 2)Q(ln P),u − Q,u]

+
r−3

2(D − 5)
[4(F 2)(ln P),u − (F 2),u] − r−4�(F 2)

2(D − 2)(D − 5)
, (A.11)

where � is the covariant Laplace operator with respect to the spatial metric hij , i.e.
�(F 2) ≡ (F 2)

‖j
‖j = [(F 2),ih

ij ],j + (2 − D)hij (F 2),i(ln P),j . Note that we also dropped
the term proportional to r−1, which vanishes identically, see [10] (equations (33) and (B4)
therein).

Now, the coefficient of the r5−2D term vanishes provided the Maxwell equation (44) is
satisfied, and the coefficient of r−3 is zero thanks to Fij = Fij (x) and equations (24) and
(38)—indeed these conditions can be re-expressed as

Q,u = (D − 2)(lnP),uQ, (A.12)

(F 2),u = 4(lnP),u(F
2). (A.13)

Moreover, using (23) and (41), we have

8πTuu +
1

2

D − 4

D − 2
FµνF

µνguu = −
(

r−4 F 2

D − 2
+ r2(2−D) D − 3

D − 2
2Q2

)
guu. (A.14)

We thus now only need to make sure that in (A.11) the coefficients of r2−D and of the last
term in r−4 vanish. Note that, by (53), (F 2),i = 0 for D �= 6 so that the latter is automatically
zero. On the other hand, in the special case D = 6 both terms are non-zero and they combine
in a single expression. The field equations thus require

µ,u = (D − 1)(ln P),uµ (D �= 4, 6), (A.15)

or

µ,u = 5(ln P),uµ − 1
16�(F 2) (D = 6), (A.16)

in the two distinct cases D �= 6 and D = 6.

Appendix B. The special case of D = 4

For comparison, we will present here a summary of the results in the familiar case D = 4
[1, 3]. We first note that the trace (8) of the energy–momentum tensor of the electromagnetic
field is now zero, T µ

µ = 0. Maxwell’s equations still imply (20)–(22), which now read

Fij = Fij (x, u), Fru = r−2Q(x, u), Fui = r−1Q,i − ξi(x, u), (B.1)

where i, j = 1, 2, so that F12 is the only independent Fij component. The invariants of the
Maxwell field are thus

FµνF
µν = r−4(F 2 − 2Q2), Fµν

∗Fµν = 4r−4P 2F12Q, (B.2)

so that there can be null Maxwell fields when Q = 0 = F (i.e., Fru = 0 = Fij while Fui =
−ξi). The source-free equation (16) is now an identity. We further have the relation (25).
Finally, the remaining Maxwell equations (18), (19), when expanded in powers of r using
previous results, yield the following set of relations:

Fjkf
k = Qhjkf

k, (B.3)
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√
h hijQ,j = (

√
h hikhjlFkl),j , (B.4)

(
√

hQ),u − (
√

hQei ),i = (
√

h hij (ξj − Fjk ek)),i . (B.5)

Note that the remaining condition (
√

hhijQ,j ),i = 0 is satisfied identically as a consequence
of (B.4) and the antisymmetry of Fkl .

Applying now the field equation for Rij , we observe that the powers of r in (A.2) coincide
in the terms corresponding to c4, c7 and c8. The expansion of grr then only contains the first of
these terms, yet (A.7) remains unchanged so we obtain f i = 0, and we can again set ei = 0.
The expression for c4 is thus modified to c4 = Q2 + F 2/2. We further find that (A.4) and
(A.8) remain unchanged. However, for D = 4, they are both identically satisfied so they do
not provide additional constraints on hij and on the electromagnetic field. Thus the expansion
of grr is the same as in (35) but the last two terms are combined (cf also footnote 3).

Let us also emphasize that in the D = 4 case the spatial metric hij is two-dimensional, so
that it can always be written in the conformally flat form hij = P −2(x, u)δij , with

√
h = P −2.

In fact, for D = 4 we can achieve this by a transformation xi = xi(x̃) involving only the spatial
coordinates x, since the u-dependence is factorized out as in equation (38). Consequently,
R = 2� ln P = 2P 2[(ln P),11 + (ln P),22].

We can thus summarize that the Robinson–Trautman metric in D = 4 can be cast in the
form

ds2 = r2P −2(x, u)((dx1)2 + (dx2)2) − 2 du dr − 2H du2, (B.6)

and the aligned electromagnetic field is given by

F = Q

r2
dr ∧ du +

(
Q,1

r
− ξ1

)
du ∧ dx1 +

(
Q,2

r
− ξ2

)
du ∧ dx2 + F12 dx1 ∧ dx2. (B.7)

The various functions and parameters above are constrained by the conditions

2H = R
2

− 2r(ln P),u − �

3
r2 − µ

r
+

Q2 + 1
2F 2

r2
, (B.8)

where µ = µ(x, u), 1√
2
F = P 2F12, and (from (B.4), (B.5) and (25))

Q,1 =
(

1√
2
F

)
,2

, Q,2 = −
(

1√
2
F

)
,1

, (B.9)

(QP −2),u = ξ1,1 + ξ2,2,

(
1√
2
FP −2

)
,u

= ξ1,2 − ξ2,1. (B.10)

Unlike in higher dimensions (cf equations (28) and (29)), in D = 4 we have Q(x, u) depending
on the spatial coordinates x, and ξi(x, u) �= 0.

The field equation for Rur in now satisfied. Also equation (49) for Rui is satisfied
identically, so that one can have a much more general function R(x, u). Using (B.9), Rui

yields only two remaining equations

µ,1 = 4
(
Qξ1 − 1√

2
Fξ2

)
, µ,2 = 4

(
Qξ2 + 1√

2
Fξ1

)
. (B.11)

Finally, the field equation Ruu gives(
Q2 + 1

2F 2)
,11 +

(
Q2 + 1

2F 2)
,22 = 4

(
Q2

,1 + Q2
,2

)
, (B.12)

P 2(µ,11 + µ,22) + 8(ln P),u
(
Q2 + 1

2F 2
) − 2

(
Q2 + 1

2F 2
)
,u

= 8P 2(Q,1ξ1 + Q,2ξ1), (B.13)
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and

�R + 12µ(ln P),u − 4µ,u = 4P 2
(
ξ 2

1 + ξ 2
2

)
, (B.14)

where � is the covariant Laplace operator on a 2-space with metric hij , i.e. �R =
P 2(R,11 + R,22).

We have thus recovered the well-known results summarized in theorems 28.3 and 28.7
of [1] with the identification ζ = 1√

2
(x1 + ix2), h(ζ, ζ̄ , u) = 1√

2
(ξ1 + iξ2), and the complex

function Q(ζ, u) related to Q(x, u) and 1√
2
F(x, u) as its real and imaginary parts, respectively.

Indeed, (B.9) are the Cauchy–Riemann conditions so that Q(ζ, u) must be analytic in ζ .
Consequently, Q,11 + Q,22 = 0 = F,11 + F,22, and (B.12) is an identity. Equations (B.10) and
(B.11) correspond to equations (28.37e) in reference [1], (B.13) leads to (28.37d), and (B.14)
is exactly the equation (28.37c) in [1].

Recall that for D = 4 electrovacuum Robinson–Trautman solutions can be of the Petrov
types II, D or III [1].
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[10] Podolský J and Ortaggio M 2006 Robinson–Trautman spacetimes in higher dimensions Class. Quantum Grav.

23 5785–97
[11] Ortaggio M 2007 Higher dimensional spacetimes with a geodesic, shearfree, twistfree and expanding null

congruence Preprint gr-qc/0701036
[12] Gauntlett J P, Myers R C and Townsend P K 1999 Black holes of D = 5 supergravity Class. Quantum Grav.

16 1–21
[13] Kobayashi S and Nomizu K 1969 Foundations of Differential Geometry vol 2 (New York: Interscience)
[14] Gibbons G W and Townsend P K 2006 Self-gravitating Yang monopoles in all dimensions Class. Quantum Grav.

23 4873–85
[15] Kodama H and Ishibashi A 2004 Master equations for perturbations of generalized static black holes with charge

in higher dimensions Prog. Theor. Phys. 111 29–73
[16] Bochner S 1947 Curvature in Hermitian metric Bull. Am. Math. Soc. 53 179–95
[17] Armstrong J 2002 An ansatz for almost-Kähler, Einstein 4-manifolds J. Reine Angew. Math. 542 53–84
[18] Goldberg S I 1969 Integrability of almost Kaehler manifolds Proc. Am. Math. Soc. 21 96–100
[19] Sekigawa K 1987 On some compact Einstein almost Kähler manifolds J. Math. Soc. Japan 39 677–84
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