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W e  discuss dynamical properties o f  generally non-Kepierian equatorial circular orbits 
and zero-angular-momentum sphericd polar orbits around Kerr-Newman black holes. 
By considering charged test particles, the thrust is represented by the Lorentz force. 
Below photon orbits, the acceleration o f  a given type o f  orbits depends on their orbital 
angular ve l~c i t y  in a counter-intuitive manner. Vile interpret this result in terms o f  
suitably defined forces o f  classical type. 

1 Introduction 

In the Bast decade much interest has been devoted to rotospheres - the strong-gravity 
regions where dynamics of angular motion is related to finematical parameters of 
the orbits in a counter-intuiti-~e manner. The eEect can be seen in its "purest" 
form in the Schwarzschild field: below the radius = 3M of the circular photon 
orbit, for instance, an increase of the angular velocity w of a test particle, forced to 
move on a given circular (non-Keplerian) orbit, requires an increase of the thrust in 
the outward direction. It  has been shown recently that also in general stationary 
misymmetric spacetimes the rotospheres are bounded by photon orbits. In this 
case, however, the "rotosphere effects9' mix with dragging and the picture is no 
longer so simple (e.g., it is diBerent for co-rotating and counter-rotating particles). 

The appearance of rotospheres has served as a challenge to '"explain" the 
counter-intuitive effects in a generally valid and covariant, but also simple and 
intuitive pseudo-classical bnguage. Here we only refer to the most recent papers 
2 > 3 3 4 7 1  for survey and thorough lists of literature. 

The aim of the present contribution is to dennonstrate the effect on charged test 
particles in the field of the Kerr-Newman black hole. We leave the particles' thrust 
to be fully represented by the electromagnetic Lorentz force which in fact is the only 
fundamental macroscopic force available. This force, however, is itself dependent on 
velocity and the question arises of how this dependence interplays with the particle's 
anomalous gravitational and inertial properties in the closest vicinity of the central 
source. We shdl show that near black holes the particles orbiting faster typically 
need larger "repulsive" specific charge to keep them in the orbit, i.e. the behaviour 
opposite to what one (correctly) expects far froan the centre. Mere only main results 
are given, for a full treatment, see 5, We use Boyer-Lindquist coordinates ( t ,  r9 8,4) 
and geometrized units (c = G = I), Greek indices running 0-3. 

2 The rotosphere eEect seen on simple sphericall orbits 

The rotosphere eEects are connected with tangential motion around a central source, 
so it is natural to consider orbits which are purely angular ("spherical9') in some 
sense. In studying the dependence of their characteristics on the angular velocity, 
one can hardly expect to obtdn simple results for a general spherical orbit, along 



which CacceEeratEon and ather quantities change -- both in modulus and in directionn 
-even without a change of w. Thus, usually equatorial (8 = 98') circular ( r  = const) 
orbits are analysed, dong which pxticles move purely in azimuthd direction with 
constaxlt angular velocity c*r .= d4/dt. These are the only orbits whose 4-acceleration 
a" points, for any r and w, in the same spatial direction and, for any fixed r ,  only 
its magnitude varies with w. The radid component of the 4-acceleration reads 

a a' = -- (Mr  - Q2) ((B - aw)" r4w2 
r3 ~2 - (2Mr - Q2) (1 - - (r2 + a2) r2w2 (1) 

m d  the specific charge which is required to ensure the corresponding thrust is 

e - - a ( ~ r  - Q2) (1 - a ~ ) ~  - r4w2 - -- 
m Q(1 - au)  [r2 - (2Mr - $ 2 )  (1 - auI2 - (a" a2) r 2 ~ 2 ] 1 / 2  ' (2) 

rn being the particle's rest mass, M ,  $ and a parameters (mass, electric charge and 
specific angular momentum) of the black hole, and A = r2 - 2Mr + Q2 + a2.  

At the %ewer limit wmZn of permitted u 9 s ,  the dependence of a" on &LI at certain 
fixed r is "'intuitive" above the radius of the counter-rotating (outer) photon orbit 
rph- , whereas it is '"counter-intuitive9' below rph- : for any fixed r > rph- , a' goes 
to -m for u --+ w,,, , i-e. the particle needs greater and greater inward thrust as its 
velocity approaches the velocity of light; for r < rph- on the other hand, a' goes to 
+m for w --+ wmln, i.e. the particle needs greater and greater outward thrust as its 
velocity approaches that of Bght. At the upper limit urn,, of permitted w9s, we find 
an andogous behaviour - with co-rotating (inner) photon orbit rph+ now dividing 
the "intuitive" and "counter-intuitive" regions. The nature of the curves of e(w; r )  
is given by the interplay between the velocity dependence of a' and that of the 
Lorentz force. At the limiting wlues of w ,  however, the rotosphere eEect appears 
clearly and the behaviour of e lm  is similar to that of a'. Figures are given in 5 .  

Another simple type of orbits are those which are spherical (r = const), have 
zero angular momesltum with respect to the axis - thus "co-rotate with the geome- 
try" with the azimuthal angulx velocity w = -gt+/g++, and have some latitudinal 
angular velocity Pe =-d@/dt. If (QI is constant, the radial. acceleration is 

where C = r2 +a2 cos2 B and A = (r2 -t a2)2 - Aa2 sin"&). It  exhibits a reversal in the 
dependence on jRI of the same nature as was found above at  aT(w) for circular orbits: 
far from the source, the dependence of a' on (01 is intuitive, i.e. dar/dlRI < 0, but 
it becomes counter-intuitive (i.e. daV/aJRI > 0) below the radius r , of the photon 
spherical polar orbit, given by the equ&ion r (A + Q2j - M (r2 - a') = 0. The sign 
of dar/8JRI does not depend on 8, so the boundary of the region where dar/d1981 
is positive (i.e. counter-intuitive) is given by r = mnst .= rpA. Since these is no 
dragging in the 8-direction, the curves of a'(Q r )  are symmetric about 0 .= 0. 

Fbr the charge e which can keep the particle on a given zero-angular-momentum 
spherical polar trajectory, diEerent components of the equzltion of motion imply 
digerent junctions e(8): a given charge can provide the prescribed acceleration only 

at  some specific B. Fbr example, at  the axis sf symmetry, B = 0' or B80°, we find 
at = aB = a@ = O and the required e/m to be given unambiguously by 

e - - - 0 M (r" a') - rQ2 - r (r2 - -t a2I2Pe2 

m Q(r2 -- a2 j ') 
(4) 

3 Interpretation in terms of forces 

The results described above can be well understood in terms of quantities measured 
by the zero-angular-momentum observers (ZAMOs) with respect to their local or- 
thonormal frames (Iocdly non-rotating frames, LNRFs). According to the definition 
of forces given for a motion in a general spacetime in f we can rewrite the equation 
of motion in the 3-vector "classicd" form as a bdance between the gravitational, 
the dragging, the Codolfs, the centrifugal, the ""Lngent-inertial-resista~~ce", and the 
Lorenrtz forces, rn(4 + & + Zc + ticf + &,) = $L (the arrows denote the spatid pasts 
of the csrresponr$ing + 4 contravasiant 4-vectors). The Iiorentx force has the usual form 

= ye (k + 5 x I?), 5 denoting -. the - particle's relative velocity meaured by ZAMO, 

.$/ = (I - 62)-P/5 and f i  and l!? are the electric and the magnetic fields felt by 
ZAMO. The terms on the left-hand side also have simple, "classical9' forms. -, For 2 

circular orbits (not necessarily equdorial), tig = ;jl%zA,o, Zd = zc = y2 a,,,, x v. 
- 2 - 2 -  -. 

Zcf = y v n, Zt, = 0. For zero-angular-momentum spherical polar -. orbits, % ;2 

and Zc, are -.+ again given as above, vvhde Zd = --aC = - ( u ~ , , , ) ~ ~ ~  PELNRF x w ,  
8tt = y3 (Go + 6ZzANO) d6ld.r. In the above expressions, uEA,, is the 4-velocity 
and Z,,,, the acceleration of the ZAMO, f?,,,, the angular velocity of the LNRF 
relative - -+ to the (Fermi-Walker transported) gyroscopes carried by the ZAMCB, and 
Go = 6/6. The interior normal to the projection of the trajectory into the local 
ZAMO's 3-space, 5, is given by = rZ++/g4+ in the case of a circular orbit, and 
by nZ = l?ZBB/gBB in the case of a zero-angular-momentum sphericd polar orbit. 
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