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ABSTRACT

The latitudinal motion of free test particles outwards from central regions in the Kerr
geometry is investigated analytically and by the numerical integration of geodesic
equations. Compared to particles with parabolic energies, particles with hyperbolic
energies escape closer to the rotation axis, while slower particles tend to fall towards
the equatorial plane. The effect is not large in the case of Kerr black holes, but it is
significant for Kerr naked singularities. In the region even closer to the centre, the
repulsive character of the field near the rotation axis and near the disc spanning the
Kerr ring singularity gives particles outward accelerations and collimates them along
the rotation axis. Here, low-energy particles are more collimated than are those with
high energies. These results might be relevant in the context of the formation and pre-
collimation of cosmic jets.
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1 INTRODUCTION

Although there is no direct observational evidence available,
it is generally believed that cosmic jets emerging from
quasars and active galactic nuclei are initiated on scales of
the order of the size of a central engine. Whatever the
mechanism of their production, the jets are assumed to
propagate along the direction indicated by the central
source, in other words, as is generally believed, along the
rotation axis of a compact relativistic object, most probably a
rapidly rotating Kerr black hole (Begelman, Blandford &
Rees 1984). As experts in the field emphasize, ‘the major
unsolved problem is to understand how and where jets are
collimated’ (Blandford 1987).

In this work, we do not attempt to treat this problem in all
its complexity. However, we wish in this context to examine a
simple question which, perhaps surprisingly, does not yet
appear to have been properly addressed: could not the gravi-
tational field of the central source, ie. — as is generally
supposed - that of the Kerr geometry itself, possibly help in
the (pre-)collimation of particles, ejected from the vicinity of
the source by some process, along the rotation axis? We
discuss this question by studying trajectories, in particular
the latitudinal and radial motion, of free test particles moving
outwards in the Kerr geometry from given positions and
under given initial conditions. We thus deal with idealized
situations in which other complex processes are not con-
sidered, and only the geometry produced by a rotating
compact relativistic source is taken into account.

A great deal of effort has been devoted to studies of the
particle orbits in the Kerr geometry (for reviews, see, for
example, Sharp 1979; Chandrasekhar 1983; Dymnikova
1986; Bicak, Stuchlik & Balek 1989a,b). Although most
authors consider only qualitative features of the motion by
means of effective potentials, some papers also contain
specific trajectories constructed numerically. Leaving aside
equatorial geodesics, we may mention numerical investiga-
tions of the dragging effects (Johnston & Ruffini 1974;
Goldstein 1974; Stoghianidis & Tsoubelis 1987), of the
motion of particles through the ergosphere (Contopoulos
1984) and of causality-violating null trajectories (de Felice &
Calvani 1979). Some numerically constructed trajectories
are also given by Chandrasekhar (1983), including those
around the Kerr naked singularity; in his words, ‘consider-
able interest attaches to knowing the sort of things
space-times with naked singularities are and whether there
are any essential differences in the manifestations of
space-times with singularities concealed behind event
horizons’. In the context of the present paper, we should in
particular mention the work of Floyd & Sheppee (1972),
who studied how the region around the Kerr naked singu-
larity is seen by an observer outside the equatorial plane:
they constructed the photon trajectories and plotted them in
Kerr-Schild coordinates. Finally, the work of Lake, Hood &
Stone (1984) was devoted to the numerical study of the
latitudinal and radial motion of the particles in the Kerr
metric. However, no collimation effects were discovered in
this last work, and the repulsive region around the Kerr ring

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993MNRAS.263..545B

r TI93MRRAS, 2637 ~545B

546 J. Bi¢ak, O. Semerdk and P. Hadrava

singularity, which plays a crucial role in the motion, escaped
notice. In Appendix B, we discuss the conclusions of the
paper by Lake et al. (1984 ) in the light of our results.

In our work we do find collimation effects: particles with
hyperbolic energies tend to move closer to the rotation axis
as compared with slower particles, the effect being fairly
strong in the case of naked Kerr singularities. Moreover, the
repulsive region near the disc spanning the Kerr ring
singularity can collimate (and accelerate) particles consider-
ably.

As is well known, according to the cosmic censorship
hypothesis and the uniqueness theorems for black holes, the
outcome of the gravitational collapse of a sufficiently massive
rotating star is a rotating Kerr black hole, rather than a Kerr
naked singularity. Nevertheless, although cosmic censorship
is a very plausible hypothesis, it remains one of the central
unresolved issues in classical relativity; in recent years there
appears to have grown up a body of evidence against it.
Naked singularities arise in various treatments of spherically
symmetric collapse (for the most recent one, see Lake &
Zannias 1990). In connection with the collapse of rotating
stars, it was primarily de Felice and his co-workers (de Felice
& Yu 1982; Miller & de Felice 1985) who argued that,
although mass shedding and gravitational radiation will
reduce the star’s angular momentum during collapse, it will
not in general be reduced to the value that corresponds to a
Kerr black hole. De Felice (1975) also investigated some
physical properties of the Kerr naked singularity, in particu-
lar its repulsive effects (see also more recent work by de
Felice & Bradley 1988). It appears to follow, from the
extensive 2D numerical work of Nakamura, Oohara &
Kojima (1987), that a rotating, collapsing supermassive star
will not always dissipate enough angular momentum to form
a black hole, but that instead, for rather rapidly rotating
models, a Kerr-like naked singularity might be expected to
develop. Recently, Charlton & Clarke (1990) analysed a
possible scenario for the evolution of a collapsing rotating
star from an initially regular state to a final state described by
the naked Kerr geometry with a ring singularity. Further-
more, Shapiro & Teukolsky (1992, and references therein)
explored numerically the collapse of collisionless gas
spheroids, and found ‘strong candidates for the formation of
naked singularities in general relativity’.

In the present paper, after writing down in Section 2 basic
relations for the test particle motion in the Kerr metric, we
define and analyse possible collimation effects analytically
(Section 3). The Carter equations are used directly, and some
qualitative features of the motion are also deduced from the
effective potentials for the latitudinal motion. In the last part
of Section 3, Kerr-Schild coordinates are introduced in
order to describe properly the inner regions of the Kerr
geometry. As the results of Section 3 show, however, only
direct numerical integration of the geodesic equations yields
the real trajectory and can inform us about collimation
effects. Typical pictures of trajectories obtained numerically
are presented and discussed in Section 4. Concluding
remarks then follow in Section 5. In Appendix A, constants
of motion are expressed in terms of quantities directly
measurable in various local frames tied to observers orbiting
around the centre. In addition, as already mentioned above,
the numerical work of Lake et al. (1984) that is relevant for
the problem of collimation is discussed in Appendix B.

Some of the results contained in this paper were reported
at the Sixth Marcel Grossmann Meeting on General Rela-
tivity in Kyoto in 1991 (Bi¢dk, Semerdk & Hadrava 1992).

2 GEODESIC MOTION IN THE KERR
METRIC

In studying the test particle motion in the Kerr metric, it is
advantageous to use the Boyer-Lindquist (BL) coordinate
system (x#)=(x%, x!, x2, x¥)=(1, r, 6, @), because in these
coordinates the geodesic equations are separable. The BL
coordinates also follow naturally from the symmetries of the
Kerr space-time. The scalars f and ¢ can be fixed uniquely
(up to additive constants) as parameters varying along the
integral curves of (unique) stationary and axial Killing vector
fields & and &, and the scalars r and 6 can be fixed (up to
constant factors) as parameters related as closely as possible
to the — geometrically preferred - principal null congruences
and their projections on to the two-dimensional space-like
submanifolds orthogonal to both § and & (see Stewart &
Walker 1973 for details). BL coordinates represent the
natural generalization of Schwarzschild coordinates in
Schwarzschild space-time.

In BL coordinates and in geometrized units c =G =1, the
Kerr metric characterized by the mass M and the angular
momentum J takes the form

Az z
ds*= —;dt2+§sin2 0(d¢—wdz)2+Zdr2+2d02, (1)

where

A=r2—-2Mr+a?, S =r2+a?cos? 6,

=(r*+a?PF —Aa’sin? 6, (2)
0=2Mar[V = —8,,/8pp» (3)

and a =J/M; 0<a< M corresponds to a black hole, a> Mto
a naked singularity.

Carter’s equations, the first integrals of the equations of
motion of a free test particle, read

. P F
Si=(rP+a’) ——aTsin ="~ (E—®), (4)

A A
272=R(r)=P2 - A(m?r? +K), (5)
$262=0(0)=K —(macos 62 — T2, (6)

P T 1 = —2Mr

p=aq ————=— +

2N Gn o A(ﬂwE sin’ 0 q)) 7)

(Carter 1968). Here, the particle’s rest mass, m, its energy at
infinity, E, the azimuthal component of its angular
momentum at infinity, @, and the modified Carter ‘fourth
constant’ K (in the Schwarzschild limit this is the square of
the total angular momentum at infinity) are constants of
motion, functions P and T are given by

P=(r*+a?)E—a?®, T=aE sin 86— ®/sin 6,

and the dot denotes differentiation with respect to the affine
parameter A, normalized so that the 4-momentum is p# =X,
Appendix A gives the parametrization of constants of motion
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in terms of quantities measured with respect to different
frames carried by local observers.

3 THE COLLIMATION OF PARTICLES IN
THE KERR GEOMETRY: ANALYTIC
CONSIDERATIONS

Let a particle reach an ‘initial’ position (r,,, 8,,, ¢@;,) outside
the event horizon of a Kerr black hole, or outside a Kerr
naked singularity. Let us assume that a mechanism exists
which gives the particle an initial velocity ¥, in the direction
(Fim, éi"’ as measured in a local frame at the initial position -

see Fig. 1. In the following, standard ‘locally non-rotating
frames’ (LNRFs) (Bardeen, Press & Teukolsky 1972), tied to
the zero-angular-momentum observers, are used most
frequently, but other frames, such as the Carter frame
{Znajek 1977; Carter 1987) or the frame connected with
freely orbiting particles, will also be employed. Quantities
measured in a general frame are denoted by a hat and by a
capital F under the quantity (in particular, in the LNRF we
use just hats), and other symbols are used in the cases of
other frames (see Appendix A for details).

Our main concern is to see how the latitude 8 of the
particle will evolve as a function of the radial coordinate 7,
which characterizes the distance from the central rotating
object. What is the dependence of the shape of the orbit ()
and, in particular, of a possible collimation along the rotation
axis on ry, O, Uy, &, and B, or, alternatively, on 7, 6., E,
@ and K? T F

rcosé

Figure 1. The particle is ejected from a point (r,, 6,), the
azimuthal coordinate g, being suppressed because of axisymmetry.
The particle’s initial velocity is represented by its magnitude 9,,, by
the local latitude @&, and by the local azimuth 8, as measured with
respect to the orthonormal basis {e; e; e;} of the locally non-
rotating frame (LNRF ) at (r,, 6,,).
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Clearly, the shapes of the orbits depend on the co-
ordinates used to illustrate them. BL coordinates represent
the appropriate grid for discussion of the latitudinal
behaviour of the orbits, for several reasons: (i) they are
geometrically preferred, as mentioned in Section 2; (ii) the
surfaces 6=constant represent a natural generalization of
surfaces #=constant in the Schwarzschild space-time:
particles with zero angular momentum, ® =0, fall from rest
at infinity towards the centre along 6= constant; they fall
radially with respect to LNRFs but, of course, are dragged
around with respect to the static observers at ¢ =constant
(see Bitdk & Stuchlik 1976a for more details); and (iii) the
PNC photons, the photons moving along the principal null
congruences in Kerr space-time, which are thus best
‘moulded’ into the Kerr geometry, move along 6= constant
in BL coordinates. Because of all of these facts, a particle
ejected radially with respect to the LNRF (4, =0) at r;,, 6.,
and which then moves towards the rotation axis (i.e. towards
sin @ <sin ,), can be considered as ‘being collimated’. In the
non-rotating (Schwarzschild) case, such a particle would
continue to move along 6= constant.

However, BL coordinates do not properly represent the
Kerr disc =0, 6#x/2 which is spanning the Kerr singu-
larity r=0, 6= m/2; the whole disc is mapped into the origin
in the plots with rsin 6, rcos 6 as axes. In order to describe
the neighbourhood of the Kerr disc properly, we shall
employ Kerr-Schild coordinates; these will be described in
the last part of this section {3.4).

Before presenting numerical results, we shall study some
effects analytically. The general features of the motion of test
particles are usually studied by means of effective potentials
~ we shall discuss them in Section 3.3. First, we shall try to
find out whether some collimation effects can be inferred
directly from the equations of motion, or from their first
integrals.

3.1 Close to the starting point of a particle’s trajectory

Expressing K in terms of the initial values of quantities
measured in a local frame by equations (A4) and (A9), we
find that the equation for latitudinal motion (6) has the form

=262=g%(m? - E¥)(sin? 6 —sin® 6,,)
+®(sin"? 6, —sin~? 6)+ Z;, (£, vh . (8)

It is immediately seen that, for the particles with small initial
angular components of velocity (i.e. small ® and zF){fl ), the
first term on the right-hand side of equation (8) is dominant.
Since the right-hand side of equation {8) must be positive,
such particles will, at least initially, move towards the axis of
symmetry, sin? 6 <sin? 6, if m?—E?<0, ie. their energies
are hyperbolic. This condition is always satisfied by photons
(m=0), and even better by tachyons, which have imaginary
m, Tand {1 -7, and thus ‘move’ along space-like geodesics.
This is not to gay that we attribute a physical meaning to the
tachyons as real particles, but it is of interest to see how
space-like geodesics behave in the Kerr geometry, and that is
why we also touch on tachyons in our discussion and include
them in some of our numerical results. On the other hand,
particles with elliptic energies (m?> E?), or those with large
D, zF){f,, will start to move away from the axis of symmetry.

One can obtain more insight into the role of individual
terms from the ‘latitudinal acceleration’;
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d, . ar, , 2 rcos @ _,
= (1) =2 (m*—EYsin 26+ @
10 =gl —EDsin 20+ 550 5
el1-2) 56427 g2 sin 26 (9)
- 1r — A
3 3

The second and third terms are ‘inherited’, with small
modifications, from the Schwarzschild case or, rather, from
the Newtonian treatment of the motion in a spherically
symmetric force field. These terms become less important as
the rotation parameter g increases. The first and last terms
arise only if a# 0, and they are thus important for collima-
tion. In particular, the first term leads to the collimation of
particles with hyperbolic energies.

As indicated above, whenever the azimuthal angular
momentum ¢ is large, we can, on already Newtonian
grounds, hardly expect that ejected particles will be
noticeably collimated towards the axis. Hence, in order to
see most clearly the effect of the Kerr geometry, we shall now
consider the particles that are ejected purely radially
outwards as measured in the LNRFs. Such particles have
v =v¢ =0 and thus ®=0, K =a*[(E%—m?)sin’ 0, +m?),
as follows from {A10) and (A4). Equations (8} and (9) then
simplify to

$267=a%(m? - E?)(sin? 0—sin? 6,,), (10)
d, . dr . 27
a(,,9)=2~2—2(m2—E2)sm2<9+(1——2—) 70
azr 2 .
+E0 sin 26. (11)

According to (10), an accessible region of latitudes 8 for
particles with hyperbolic energies is (0, 6,,) (and {m, m — 6,)
as a result of the symmetry with respect to the equatorial
plane), whereas particles with elliptic energies are confined
to the latitudes (6,,, T — 6,,). Particles with parabolic energies
continue to move along 8= 6, , as would all particles in the
Schwarzschild geometry regardless of their energy. At the
starting points of the trajectories of those particles ejected
radially outwards in LNRFs, #, =0, and the latitudinal
acceleration (11) is simply given by

2
{d (ré)] =r 6 =200 E?Vsin 20, (12)

di 252
We see again that particles with hyperbolic energies are
deflected towards the axis of symmetry ~ the larger E is, the
greater the collimation to be expected.

It is instructive to see how latitudes change if the particles
are cjected radially with respect to frames tied to observers
with some angular momentum (and thus orbiting in the ¢-
direction with respect to LNRFs). The Carter frame (CF) is
one of the privileged frames of this type. The PNC photons
move radially in the CFs, and we would thus intuitively
expect that particles with non-zero rest mass ejected
radially outwards as measured in the CFs would start to
move away from the rotation axis, whereas tachyons would
still be collimated towards the axis. Indeed, this is so. A
particle ejected radially in the CF will have vi=97=0 and

thus ® = aFE sin? 6, and K=(ma cos 6,)% as follow from
(A12),(A13)and (A4). Equations (8) and (9) then yield

$202=g*(m? —E?+ E?*sin? 0, /sin? §)(sin? 8—sin? 8,,), (13)

d . a’rcos® . .
d_i (r0)=szin3—0[(m2 *Ez) sin® 6 + E*sin* 6]

( 2r2) oatr o
+{1——|F8+—6"sin26. (14)

b =

According to (13), an accessible region of latitudes for
tachyons {m?<0) is (§,, 6,) (and (8,,7— 6,)), where
6, =arcsin(E sin 6,,/VE* —m®)< 8,, whereas, for particles
with 1202 21—(A,/Z;) cos? 6, (which implies that
E=mf|cos 0, |=m), the latitudes are confined to (8, 6,)
(and {m— 6, 6,,)) and, for still less energetic particles,
9€(8,,, t— 6,). In addition, the latitudinal acceleration {14)
at the starting point of the trajectory reduces to

2

d . ar, .
{a(re)L:’ﬁn 0= 22i2n m’ sin 26,

(15)

which shows that tachyons (m?<0) are bent towards the
rotation axis, while massive particles (2> 0) start to move
towards the equatorial plane; and, as expected, the photons
{m?=0) - which are just the PNC photons - escape along
constant 8= 6,,.

The same conclusions may be drawn directly from
the shape of the particle’s trajectory in the {p, z)-plane,
where p=rsin 6§, z=rcos . Its first curvature, C=
(07 —p2)/(62+ 2202, at the starting point of a particle
ejected with 6, =0, is just equal to C,, = —r,, 6, /F%. In the

case of a particle gjected radially in the LNREF, this becomes
C,=a*r (E*—m?)sin 26, /(2A, 2, E102),

in“in™~in%in

while, for a particle ejected radially in the CF, one finds
C,=—a’r,m?sin 26, /(2A, 2, EL02).
Particles with parabolic energy represent the ‘dividing’
{uncollimated) line in the first case, whereas (PNC) photons
do so in the second case.

3.2 Close to the ‘end-point’ of an unbound trajectory

In order to understand possible collimation effects in the
Kerr field, it would be useful to find some global charac-
teristics of the particle motion that are directly connected
with the latitudinal angle, 6., with which a particle (with
E = m) arrives at infinity. Conserved quantities E, ® and K
suggest themselves in this respect. Thus the question arises
as to whether 6, cannot be determined in terms of these
constants of motion. In Appendix A, the constants of motion
are expressed in terms of quantities measured locally in
frames tied to observers orbiting along the ¢-lines. We shall
now use the LNRFs in our discussion, but any set of frames
orbiting along (7, 6)=constant, which go over into the frames
of static observers at r— , could be considered. At first
sight, it might appear that the four relations (A3), (A4), (A10)
and (A11), when considered in the limit r— , might enable
us to express 6., (and, possibly, also d., and B,,) in terms of
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E, ® and K, just as the asymptotic value ¥, can be
expressed, by using (A11), in terms of just E as
U, =(1—m?/E2)V2, (16)
In this manner, 6, could be determined by means of the
particle’s initial position and velocity.

Let us introduce

d=rsin &, (17)

which determines the impact parameter

d,= lim d (18)
=

for trajectories reaching infinity. We easily see that, as r— o,
(A10),(Al11)and (A4) imply that

®O=FE_b,d,sin B, sin 6, (19)
E=E.=m/1-0%, (20)
K ={(macos 6,,)*+{aEsin 6, — ®/sin 6,

—(E o0 dy c0s o) (21)

By expanding functions of r entering (A3) for r— oo, we first
obtain

K=EXr+2Mr+4M*+a%) —2aE® —(m2 + E22)r?
+E25%(d? —a% cos? 6)+ O(1/r). (22)

Using (A11) to find an asymptotic relation between E and E,

Er?=EX(r?+2Mr+4M*) + O(1/r),

and substituting this back into (22), we can make sure that all
terms in (22) that depend on positive powers of r cancel out.
At infinity, we therefore obtain

K=a*E?-2gE® +E?*0%(d% —a*cos? 0,,). (23)

Expressing 9., in (19), (21) and (23) in terms of E by use of
(16), we arrive at the following three relations:

® =(E2—m?)'\?d,, sin B, sin 8., (24)
K =(macos 0, +{aEsin 8, — ®/sin 6,,)

~(E2—m?)d% cos? B, (25)
K=a2E? -2aE®+(E?*—m?)d% —a?cos? 8,,). (26)

Together with (16), the last three results do not, however,
determine all asymptotic quantities &, O, B, d. in terms
of constants of motion, because (24), (25) and (26) are not
independent. Equations (26) and (24) yield!

a’E*—2aE®-K

27
P @7)

1
cos’,=— |d% +
a

The asymptotic latitude, 8., is just expressed in terms of the
constants of motion and the impact parameter d.,, which
remains unknown.

"The formula (27) is in agreement with the equatorial and axial
components of the impact parameter as given by Bardeen (1973),
Dymnikova (1986) and Yakovlev (1975) (denoted by a and §, o,
and p,, and p, and p,, respectively). The relations are —a=p, =
’olz=d°° sin zﬁ‘” agd B=p,=p,=d, cos B, giving d%,=a’+ =
pitpei=pit+pl.
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3.3 Effective potentials

The qualitative features of the test particle motion in the
Kerr metric are usually studied by means of effective
potentials, i.e. the functions of r and 6 obtained by solving
R(r)=0and ©(0)=0 (cf. equations 5 and 6) for the constant
of motion (for E, say). The first analysis of the latitudinal
motion was given by de Felice & Calvani (1972), and was
completed by Bi¢dk & Stuchlik (1976b). Since the results are
summarized in the literature, we shall not recapitulate them
here. We should, however, emphasize that the effective
potentials, just as do the right-hand sides of equations (5) and
(6) themselves, only in principle determine an accessible
region of r- and f-motion. In the case of {spatially) bound
orbits, both radial and latitudinal motion may indeed halt
only at those » and 6 for which R(r) and ®(6) vanish or,
equivalently, where the particle strikes the curve of its corre-
sponding effective potential. However, an unbound trajec-
tory can end up at any 6, permitted by the condition
©(6)=0, since 6, é,... vanish asymptotically with r— <« as a
result of the factor Z — oo, which enters the left-hand side of
(6), rather than because of the vanishing of @ itself. The root
of ©(80), i.c. the turning ‘point’ §,, may become the asymp-
totic value of latitude only if, in addition, ,=0. It can be
inferred from (9) that this is the case for 8, =m/2 or 6, satisfy-
ing sin? 6,=|®|/(ayE* —m?).

That the forms of the effective potential cannot deter-
mine asymptotic values of 6 of unbound trajectories can be
seen at first sight on trajectories not having the turning points
at all (fs that annul ® do not exist), although 6,5 along
which particles arrive at radial infinity do exist. The same can
also be easily understood in the simple example of flat
Minkowski space~time in which oblate spheroidal BL
coordinates are used. With M =0, a # 0, the forms of ® are
the same as in the curved (Kerr) case. However, plotting a
trajectory in Cartesian Kerr-Schild (KS) coordinates (see the
next subsection), we immediately deduce the value of 6., that
the trajectory will acquire, since it is just a straight line (and
. is the same in both BL and KS coordinates); but we
cannot derive 6, from the effective potentials. This is best
seen for @ =0 when, by choosing various initial conditions,
we arrive at various values of 6,,, while ©(8) or the effective
potential would at first sight imply 6., =0 for all trajectories
with decreasing 6, since there is no turning point up to =0
{see Appendix B for a more detailed discussion).

As mentioned before, the effective potential generally
gives us information on what @-motion is permitted in
principle. In fact, in our discussion in Section 3.1 of particles
ejected radially with respect to LNRFs and CFs, we used
essentially effective potentials when we determined
accessible regions of 8 for these particles. As another
example, consider the particles ejected from the point given
by r, and 6,,=0, i.e. from the axis of symmetry, with initial
velocity 4, and angle d;,, as measured in an LNRF on the
axis. A short calculation using ©(8)= 0 and given initial con-
ditions then implies that the value of 6 of the particles may
increase until the turning point, 6,, given by the relation

[(rizn + 02>l}m Sin din]z
a’((rh+a’)oh—2Mr,)

For example, as r,, >0, 6,~ d,,. As the last example, notice
the simple case of particles launched from the equatorial

sin® 6, = (28)
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plane with ® =0 (f,, =n) when the latitudinal motion is not
limited, however small (but non-zero) d,, might be.

We see that, as much as effective potentials can tell us
about some qualitative features of the latitudinal motion, and
the above discussion has revealed to us something about
possible collimation effects in the Kerr geometry, it is only
the direct (numerical) integration of the geodesic equations
which yields the real trajectory and, in particular, implies the
asymptotic value of 8.

Before presenting the numerical results we first introduce
Kerr-Schild coordinates, which will be important in describ-
ing trajectories close to the Kerr disc.

3.4 Trajectories in Kerr-Schild coordinates and the Kerr
disc

We shall use two coordinate systems to plot the trajectories -
Boyer-Lindquist (BL) and Kerr-Schild (KS) coordinates. As
was pointed out in Section 2 and at the beginning of Section
3, BL coordinates can be geometrically introduced; only in
these coordinates do the geodesic equations separate; and
BL coordinates go over into the Schwarzschild coordinates if
a—0. Their astrophysical relevance is apparent: for
example, free particles with ® =0 at rest at infinity fall down
to the centre along constant BL latitudes 6. Indeed, BL
coordinates are commonly used in discussing processes
around Kerr black holes {e.g. Thorne, Price & Macdonald
1986). However, the inner parts of the Kerr space-time are
better described in KS coordinates, in which the real nature
of the central ‘point’ r=0 emerges. Moreover, KS co-
ordinates become standard Cartesian (Lorentzian) co-
ordinates when M-—0, whereas BL coordinates remain
oblate spheroidal - rather than becoming spherical - coordi-
nates in flat space-time.

BL coordinates (¢, r, 6, ¢) and KS coordinates (7, x, y, z)
are related by (see e.g. Chandrasekhar 1983)

Mr 2Mar

2
d7=dt——dy, dy=d¢——5—=—dr,
A 5 y=do (r2+a2)A £ (29)
x={r’+a’sinOcosy,  y={r’+a’sin Gsin y,
z=rcos 6. (30)

Notice that, if M—~0, equations (30) do not change, and
equations (29) become d7=ds, dy=dg. One may also
introduce a flat-space-type cylindrical coordinate o; and
spherical coordinates r;, ;, by

pf=«}x2+y7=rfsin 0;,=Jr*+a*sin 6, (31)
n=Ax*+y’+22=Jpi +27={r" +a*sin’6, (32)

cos O =z/Jx” +y’ +z° =z/r;=cos O[1 +(a*/r*) sin® 6] 2.
(33)

Equations (32) and (33) are just the relations between oblate
spheroidal and spherical coordinates in flat space. Passing
from BL to KS coordinates, the spheres r=constant turn
into confocal rotational ellipsoids:
Ty

I L

(34)

The point r=0 is mapped into a disc given by x*+y?=
a’sin? 6<4?, z=0. The cones 6=constant turn into
confocal rotational hyperboloids:

x2 +y2 z2

2 .2, 2 2,7
a‘sin“ 8 a“cos 6

1. (35)

In particular, the axis (#=0, x) is mapped into x =y =0 and
the equatorial plane (§=m/2)into z=0, x2 +y?=r2 +g% 242
The real curvature singularity, r=0 and 8=m/2, is given by
x?+y?=a?, z=0: it forms the rim of the equatorial disc =0
(cf. Chandrasekhar 1983).

Carter (1966) noticed that the gravitational force exerted
on a particle falling down the axis becomes repulsive when
|r| <a. Israel (1970) constructed the source of the causally
maximal extension of the vacuum Kerr metric in the form of
a layer of mass with a negative surface density spread over
the disc r=0, with its singular rim having positively infinite
mass so that the total mass of the Kerr space-time is positive.
More recently, repulsive effects in the Kerr field were con-
sidered by de Felice & Bradley {1988, see also references
quoted therein). We shall observe these effects most clearly in
the next section.

Obviously, the form of the same trajectory may appear
very different when depicted in BL coordinates from its form
in KS coordinates, particularly in the innermost regions of
the Kerr field (near the disc) where both coordinate systems
differ considerably. For example, the trajectories following
the lines 6=constant in the (o=rsin 6, z=r cos G)-plane
appear deflected towards the equatorial region in the
(0¢=1; sin 6, z)-plane; and those with 6;=constant in the
(¢, 2)-plane will appear collimated towards the axis in the
{0, 2)-plane. On the other hand, an ‘opposite’ effect may also
arise: for example, orbits starting from the axis of symmetry
under some angle (g'in <m/2, which are straight lines in the
{105, 2)-plane, will appear deflected towards the equatorial
region in the (o, z)-plane. We should also bear in mind that
straight trajectories in the 3-space may appear curved in the
meridional projection, and vice versa. The outgoing PNC
photons move along outgoing spiralling curves in the 3-space
of BL coordinates, though their trajectories project on to
straight lines given by 6#=constant in the {0, z)-plane.
However, they move along straight lines in KS coordinates
(in fact, along the straight generators of hyperboloids
0=constant), although their trajectories project on to the
hyperbolae (8 = constant) in the (o;, z)-plane.

4 NUMERICAL RESULTS

In this section, we present some typical pictures of trajec-
tories obtained by the numerical integration of equations {5)
and (6). All of the figures represent trajectories, projected on
to the meridional plane, either in BL coordinates, i.e. in the
{0, z)-plane, or in KS coordinates, i.e. in the (o;, z)-plane. In
these figures, we use dimensionless quantities o ={r/M) sin 6,
p;=(r/M) sin 6; and z=(r/M) cos 6=(r,/M) cos 6; (cf.
Section 3.4). The Bl-coordinate mesh, the lines of
r=constant and #=constant, is illustrated by dotted lines in
all of the pictures, the latitudes =0, 15°,...,90° being
indicated explicitly. We should remember that in general the
figures describe different space-times; however, the fact that
all radially ejected particles in the Schwarzschild geometry,
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and particles ejected radially with parabolic energy in the
Kerr geometry, move along 6= constant results in the same
‘reference lines’ in all figures. In Fig. 2 the stationary limit
surfaces [r =M £(M? —qa? cos? 6)!/?] and the event horizons
[r=M £(M?—a?)'?] are indicated. In all figures with naked
Kerr singularities, the lines r=alcos 6|, inside which the
repulsive features of the field prevail (see e.g. de Felice &
Bradley 1988), are shown by dashed lines (these are just
circles given by p?+z%=a? in KS coordinates, and are two
circles in BL coordinates). In KS coordinates the Kerr discs
are indicated, and the stationary limit surfaces are also
shown by solid lines (which always go through the ring
singularities. In Figs 2-4, 7 and 8§, several trajectories of
‘tachyons’ (projections of the space-like geodesics) are also
plotted in order to get more insight into the character of the
Kerr geometry. These are also illustrated by dashed lines.

Since all of the details are given in the figure captions, we
confine ourselves to some more general comments here. In
the case of a rotating black hole, particles ejected radially
with respect to the LNRFs (i.e. along 8= constant and with
angular momentum ®=0) and with hyperbolic energies
escape — in comparison with particles of lower energies -
closer to the rotation axis, but the effect is not very large (Fig.
2). It is interesting to note how the orbits of the tachyons
(projections of space-like geodesics) smoothly join the high-
energy orbits of the real particles, and are collimated towards
the rotation axis much more significantly. The picture looks
similar in KS coordinates.

20.00
16.00
12.00 | 60°
Z  8.00

4.00

0.00

1 H 1 { 1

H
4.00 8.00 20.00

P

Figure 2. Trajectories of particles ejected radially (4, = 0) from the
INRF at r,=1.15M, 6,=45° from a Kerr black hole with
a=0.99M, plotted in BL coordinates. Local initial velocities {from
bottom to top in the figure): #,,=0.9992, 0.99947, 0.999 52,
0.99965, 1.0, 1.001, 1.0035. 1.01, 1.03. Corresponding specific
energies at infinity: E/m=0.745577, 0.915946, 0.962458,
1.127079, ; E/Im{m)=0.666564, 0356071, 0.210314,
0.120 825. The orbits of tachyons are indicated by dashed curves.
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In the case of naked Kerr singularities, the effect is more
pronounced (Fig. 3a). This is primarily due to the fact that
particles may be strongly influenced by the Kerr field in the
regions close to the disc, and may then move towards more
distant regions. However, if the same trajectories are drawn
in KS coordinates (Fig. 3b), we observe that, although the
orbits corresponding to different energies differ consider-
ably, even the particle with the highest energy does not move
along the orbit that would appear to be ‘collimated’ towards
the axis. A first intuitive interpretation suggests that less
energetic particles are bent more towards the equatorial
plane by the Kerr ring singularity, while the most energetic
particles escape little affected. This interpretation works well
for radially emitted particles with zero angular momentum.
However, we should bear in mind that such a ‘Newtonian’
picture is not always applicable. For example, as we have
already pointed out in Section 3, the PNC photons start in
the disc inside the ring singularity, and move outwards to
infinity along straight lines in the 3-space of KS coordinates -
they are not bent by the ring singularity at all. These photons
have angular momenta equal to aF sin? 6, and each of the
photons moves along #=constant (in BL coordinates).
Hence in our (two-dimensional) figures they are moving
along straight lines, 6= constant, going through the origin in
the (o, z)-plane, while in the {o;, z)-plane their trajectories
project on to hyperbolae given by 8=constant. The orbit of
the PNC photons moving along the hyperbola #=45° in the
(o5, z)-plane is shown in Fig. 4, where trajectories of other
particles ejected radially with respect to the Carter frame are
also given. All of these particles have a non-vanishing
angular momentum, which makes them less collimated
towards the axis than are particles with ® =0. Again, tachy-
ons get closer to the axis than do real particles, as was antic-
ipated in Section 3.1. The fact that the effect of some
non-zero angular momentum on the motion, and on collima-
tion in particular, is not too large is exhibited in Fig. 5: here
we consider two ‘cones’ of particles — one ejected with hyper-
bolic velocities, the other with elliptic velocities - which are
symmetrical around the radial direction in the LNRFs.

If we were to plot the trajectories of free particles in BL
coordinates in flat space-time, we would also find a ‘colli-
mation’ towards the z-axis; however, for a given initial
position and velocity direction, only one orbit would exist
along which all particles with different energies move. (A
similar picture would arise if we were to plot radial trajec-
tories in the Schwarzschild space-time in spheroidal co-
ordinates.)

In Figs 6(a) and (b} we can see how differently the same
trajectories may appear in the BL and KS coordinate
systems. Although a collimated jet-like structure in Fig. 6(a)
may, in view of Fig. 6(b), appear to be caused just by
choosing ‘appropriate’ initial conditions, we should
emphasize again that in both coordinates analogous outgoing
particles with parabolic energies would move along
6=constant and hence would fill in the whole quadrant
‘aniformly’.

We may therefore say that, in general, particles with
hyperbolic energies get closer to the axis of rotation (‘are
collimated’) in comparison with the PNC photons (which
represent a natural generalization of outgoing radial photons
in the Schwarzschild geometry) and, in particular, in
comparison with particles with parabolic energies. Imagine,
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Figure 3. (a) Trajectories of particles ejected radially (d;, =0) from the LNRF at r,,=1.1M, 6,,=45°, from a Kerr naked singularity with

a=TM, plotted in BL coordinates. Local initial velocities (from bottom to top in the figure):

v

0.0,0.2,0.247,0.37, 1.0, 4.0. Corresponding

in

specific energies at infinity: E/m=0.958 05, 0.977 806, 0.988 684, 1.031 235, «; E/Im(m)=0.247 367. (b) The same trajectories as in (a) but

plotted in XS coordinates [with the BL (r, 8)-grid also indicated].
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Figure 4. Trajectories of particles ejected radially (4, = 0) from the
CF at r,=0.3M, 6,,=45°, from a Kerr naked singularity with
a=1.000 001M, plotted in KS coordinates. Local initial velocities
(from bottom to top in the figure): ¥, =0.0, 0.3, 0.55, 0.78, 1.0,
1.25, 1.65. Corresponding specific energies at infinity: E/m
=0.911323, 0.955327, 1.09119, 1456301, ; E/Im{m)
=1.215098,0.694 373.
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Figure 5. Trajectories of two cones of particles ejected non-radially
{d,=10° B,=0, 22°5,...,337°5) from the LNRFs at 7, =0.8M,
0, =45° (with ¢,, = 0.8, giving E > m: typically E = 1.641m), and at

tin =8M,

6,,=45°

(with ¢;,,=0.3, giving E<m: typically

E=0.975m), respectively, from a Kerr naked singularity with
a=10M, plotted in BL coordinates.
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Figure 6. (a) Trajectories of particles ejected radially (d;, = 0) from the LNRFs at r,, = 0.7M, 6,, =87, 84°,...,6°, 3°, with the same local initial
velocity 7, =0.77, from a Kerr naked singularity with a=10M, plotted in BL coordinates. Corresponding specific energies at infinity:
E[m=0.926 988, 1.137 898,...,1.556 215, 1.556 305. Except for the first (bottom) particle, which has elliptic energy and falls back towards
the centre, all other particles have hyperbolic energies and are bent towards the rotation axis, as compared with particles having parabolic
energies. (b) The same trajectories as in (a), but plotted in KS coordinates [with the BL (r, 6)-grid also indicated].

for example, that particles fall from rest at infinity with
approximately zero angular momentum; assume that at
infinity they were distributed isotropically. Now let a
mechanism exist in the central regions of the Kerr field,
which reflects the particles back into the same directions as
measured locally, but also adds some energy to the particles.
In the Schwarzschild geometry, the particles would appear at
infinity distributed isotropically once more, except that their
energies would be higher. In the Kerr geometry, the particles
would be collimated towards the rotation axis.

In Fig. 6(b), the repulsive character of the gravitational
field in the region close to the axis above the disc is already
appearing, since all particles are ejected with the same initial
velocity but those ejected from positions closer to the axis
arrive at infinity with higher energies than do those starting
closer to the ring singularity.

The repulsive character of the Kerr field above the disc is
clearly demonstrated in Figs 7-15. The trajectories con-
structed in these figures also show that the gravitational field
in this region can collimate particles considerably. Figs 7(a)
and (b) indicate how particles with lower energies become
collimated along the axis more than do high-energy particles.
As seen in Fig. 7(b), such collimated particles with elliptic
energies may escape to distances of ~ 500, where perhaps
a non-gravitational force (a radiation drag, say, coming from
an accretion disc in the equatorial plane) may accelerate
them further along the axis towards infinity. Fig. 8 illustrates
how particles ejected towards the disc from the region above
the equatorial plane outside the disc and the ring may be

repelled above the disc and then start to move upwards .

closer to the axis. The repulsive effects of the disc and then

the attractive effects of the singular ring are clearly seen in
Fig. 9, in which trajectories of particles falling from rest
towards the disc are presented, as well as in Fig. 10, in which
particles with parabolic energies are launched from the axis
towards the disc. Fig. 11, in which particles with parabolic
energies start from the axis in the directions along the disc,
demonstrates how the trajectories are more and more bent
towards the axis as their starting points are chosen to be
closer and closer to the centre of the disc. Clearly, here the
collimation may be described in a completely coordinate-
independent way: particles ejected with parabolic energics
from the axis in all directions along the disc span locally a
solid angle of 2 steradians, but they are collimated into an
angle at infinity which is smaller {being zero in the limit) the
closer the starting point lies to the centre of the disc. A very
suggestive picture of the collimation is seen in Figs 12(a) and
(b). Particles with parabolic energies and zero angular
momentum ejected from a point situated above the disc (but
not on the axis) into the directions spanning 180° locally are
collimated into an angle of about 60° at infinity. Fig. 13
shows that such a collimating effect will not be as
pronounced for more energetic particles, in particular for
photons. However, a non-zero angular momentum will not
significantly diminish the collimation of particles with
approximately parabolic energies. In Fig. 14, trajectories of
particles ejected with the same velocity (as measured in the
LNRF) into a solid angle of 2z from the point above the disc
support such a conclusion. Finally, in Fig. 15 we see the
trajectories of particles with approximately parabolic
energies ejected with the same velocity into the ‘plane’ con-
taining the rotation axis, as measured in the frame tied to the
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Figure 7. (a) Trajectories of particles launched from the LNRF at r;, =0.1M, 8, = 3°, almost along the Kerr disc (d,, = 85°, 8, =0) with a =7M.

i

Local initial velocities (from top to bottom): 5;, = 0.0, 0.064, 0.16, 0.32, 1.0, 5.0. Corresponding specific energies at infinity: E/m=0.997 952,
1.000002,1.010 976, 1.053 339, o; E/Im(m)=0.203 706. Particles with lower energies are collimated significantly along the axis, and receive
outwards acceleration as a result of the repulsive field above the disc. (b) The same trajectories as in (a), followed up to » ~ 1000 M.
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Figure 8. Trajectories of particles launched from the LNRF at
r,=0.5M, 6,=75°, at the local angles @, =170°, B,=180°
towards the Kerr disc with a=1.000 01M. Local initial velocities
{from right to left): d;,,=0.945, 0.9535, 0.9613, 0.9677, 0.974,
0.9794, 0.984, 0.989, 0.994, 1.0, 1.01, 1.025, 1.047 316. Corre-
sponding specific energies at infinity: E/m=0.746 553, 0.810 156,
0.886 287, 0.968 548, 1.077 809, 1.209 21, 1.370 475, 1.650 777,
2232358, »; E/Im(m)=1.722281, 1.085224, 0.784 523. The
Kerr ring singularity attracts the particles, but the field above the
disc repels them along the axis.
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Figure 9. Trajectories of particles falling from rest (¢,,=0) from
the LNRFs at r, =120M, 6, =87°, 84°,...,3°, towards a Kerr naked
singularity with ¢ =50M. All particles are elliptical, with specific
energies at infinity ranging from ~0.992 to ~0.993. The repulsive
effect of the disc and the attractive effect of its singular rim are
clearly visible.
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Figure 10. Trajectories of the fan of parabolic particles, launched
in various directions (d;, = 90°, 95°, 100°,...,170°, 175°) from the
local frame at r,, =0.5M on the axis (68,, =0), towards the disc with
a=3M. The local initial velocity is 7, = 0.328 798.
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Figure 11. Trajectories of the set of parabolic particles, launched
along the central disc { d;, = 90°) with g =1.5M from the local frames
on the axis (6,, = 0). Starting radii: r,,/M=1.5,1.4,...,0.2,0.1, 0.03,
0.001. Corresponding local initial velocities: 7, =0.816 497,
0.815526,0.812 341, 0.806 478, 0.797 395, 0.784 465, 0.766 965,
0.744 065, 0.714 807, 0.678 064, 0.632 456, 0.576 151, 0.506 370,
0.417938,0.297 482,0.163 267, 0.029 815.
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Figure 12. (a) Trajectories of the fan of particles with parabolic energies, ejected above the Kerr disc (@ =2 M), with the local initial velocity
0, =0.150 264 from the LNRF at r,, =0.04M, 6,, =20°in all directions spanning 180° locally: (going from right to left) &, =90°, 75°,...,15°, 0
(with g, =0), 15°, 30°,...,75°, 90° (with 4, = 180°). (b) The same trajectories as in (a) followed up to 7~ 300 M. Identification with the trajec-
tories in (a): (from the axis to the equatorial plane) trajectory numbers 10, 11, 9, 12,13, 8,7, 6, ..., 1; the number is taken from right to left in (a).
See also the text for details of this perhaps most illustrative example of collimation.
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Figure 13. Similar trajectories to those in Fig. 12(a), but with
photons (7,,=1).
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Figure 14. Trajectories of approximately parabolic particles,
ejected above the Kerr disc (@ =2 M), with the local initial velocity
7,=025566 from the LNRF at r,=0.1M, 6,=30° in all
directions along the disc r=0 (d;, =90°): Bin=0, 22°5,...,90°,...,
180°,...,270°,...,337°5. Corresponding specific energies at infinity:
E/m=1.0,1.00333,...,1.008703,...,1.0,...,0991297,...,
0.996 669. ‘Approaching’, i.e. counter-rotating, particles (corre-
sponding to 180°< B,, < 360°) leave the figure a little to the left of
their ‘receding’, ie. corotating, counterparts (corresponding to
0< B, <180°).
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Figure 15. Trajectories of the fan of roughly parabolic particles
(E=1.001m), launched at the angles q,.,=10° 20°...,170°,
B, = 180° from the local tetrad tied to the particle that freely orbits
in the ‘prograde’ marginally stable orbit (at #,=0.87935M,
8., = 90°) around a Kerr naked singularity with @ =1.5M. The local
initial velocity is 7,,, =0.871. Here the influence of the source is
combined with the centrifugal influence of ® {=0.47mM), which

prevents the particles reaching the axial region.

particle that is freely orbiting along the ‘prograde’ marginally
stable circular orbit in the equatorial plane. Al of the
particles have the same non-zero angular momentum, the
‘centrifugal’ effect of which is combined with the repulsive
character of the region above the Kerr disc. Nevertheless, the
particles ejected towards the axis get repelled and are
collimated ‘upwards’ along the rotation axis.

5 CONCLUDING REMARKS

Our calculations indicate that latitudinal anisotropy of the
geometry around a rotating source influences the latitudinal
motion of particles ejected from central regions. In general,
it leads to the collimation of particles with higher energies
towards the rotation axis, as compared with particles with
parabolic or lower energies. Although, in this sense, relativis-
tic particles are collimated by a rapidly rotating black hole,
the effect appears not to be large enough to be astro-
physically very important in the case of the Kerr hole. On the
other hand, our calculations show that, even if some cosmic
jets originate close to a central, rapidly rotating black hole,
the influence of Kerr geometry will not significantly disturb
collimation effects resulting from other (non-geometrical)
causes. (In this context, let us mention that, in principle,
geometrical effects of the magnetic field around a Schwarzs-
child black hole might imply collimation effects, as indicated
recently by Karas & Vokrouhlicky 1990).
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Furthermore, our results show that there are essential
differences between the manifestations of space—times with
naked singularities and those of space-times with singu-
larities hidden inside horizons. We have seen that, if the
repulsive region around the disc spanning the Kerr ring
singularity can manifest itself to a distant observer, it may
collimate the particles along the rotation axis very signifi-
cantly. Here, low-energy particles become more collimated
than do those with high energies, as the ‘Newtonian intuition’
suggests. Moreover, the repulsive effects of a naked Kerr
geometry occur close to the rotation axis (rather than in the
equatorial plane), so that a mechanism is provided for
particle acceleration along this axis. A Kerr naked singularity
can also be understood as a prototype of the ‘source’ of an
asymptotically flat stationary geometry with angular
momentum, so that it might be expected that the geometries
around more general, rotating naked singularities will exhibit
similar effects as well. Of course, naked singularities would
be expected to have a ‘quantum nuclear region’, and only
outside it might classical solutions describe the space-time
geometry.

An unorthodox conclusion would be to suggest, on the
basis of the ability of the field of a Kerr naked singularity to
collimate (and accelerate) particles close to the disc spanning
the singularity, that this type of object could account for the
initial collimation of cosmic jets. Despite the work of
Nakamura et al. (1987), indicating that not all collapses with
rotation lead to the formation of a Kerr black hole, and
despite the very recent work of Shapiro & Teukolsky (1992,
and references therein) indicating that naked singularities
may form in general relativity, such a suggestion is, needless
to say, speculative. The cosmic censorship conjecture
remains a plausible - though difficult to prove ~ hypothesis.
In their recent paper, ‘On the outcome of Kerr-like collapse’,
Charlton & Clarke (1990) draw an appropriate conclusion:
‘the development of numerical work ... should soon provide a
complete answer to the question of whether there is a
physically significant range of cases in which gravitational
collapse leads to a ring singularity, as opposed to a black
hole’.
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APPENDIX A: PARAMETRIZATION OF
CONSTANTS OF MOTION IN THE LOCAL
FRAMES

Constants of motion, E, ® and K, can be expressed in terms
of more intuitive quantities - the components of the
4-momentum of the particle as measured in a frame (tetrad)
at a given point at which the particle is instantaneously
located. In the Kerr geometry, the frames { e} carried by (tied
to) observers orbiting uniformly along circles (‘¢-lines’) at
given 7, 6 are usually chosen, with the observers’ 4-velocity
u = ey and unit spatial vectors e; pointing in the directions of
global space (e.g. Boyer-Lindquist) coordinates.

In this Appendix, we shall write down the final results for
several sets of frames arising naturally in the Kerr field - in
the (commonly used) locally non-rotating frame tied to zero-
angular-momentum orbiters (e.g. Bardeen et al. 1972), in the
Carter frame (e.g. Znajek 1977; Carter 1987), and in the
frames connected with the ‘static’ observers and with
observers orbiting freely at (r, 8)=constant. More details
about these frames and about their interrelation will be given
elsewhere (Semerdk, in preparation).
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The quantities measured in a general frame at a given
point will be denoted by a hat above and a capital F below
the quantity - e.g. v' l;f stand for the locally measured
velocity and energy of the particle. In particular, we shall use
just the hats (without F below the quantity) to denote the
quantities in the locally non-rotating frame (LNRF ); we shall
use tildes to denote quantities with respect to the Carter
frame (CF), bars to represent quantities with respect to the
static frame (SF), and breves to denote quantities with
respect to the frame tied to the freely orbiting observer at
given r, 0 (the FF frame). Given any frame e%, there exists a
dual frame e such that e%ef = 64 and e%el= 6% the frame
indices are shifted by the Minkowski metric #,,,.

Now, by projecting the 4-momentum of the particle on to
a frame p, =e; Pa> the constants of motion ®, E and K (see
e.g. Misner, Thorne & Wheeler 1973; Chandrasekhar 1983,
for their definition) can be rewritten as follows:

o=p,= —e;€i+ eﬁlg‘i’, (A1)

E= —p,=ef[i_f—e?;”=—,pi+ we®P, (A2)
: P? .

K="c=m’r’=Apl=——m’r~X(p"’, (A3)

or, in terms of the latitudinal component of the particle’s
momentum,

K=T*+(macos 02+ p3=T2+(macos 02 +Z(p®?. (A4)
F

Here, A, 2, P and T are given in Section 2, and
wF=(d(p/dt)Fs ul=( _gtt_szglq)_wlz?ng))_I/Z (AS}

denote the (coordinate) angular velocity and the dilation
factor of the observers who orbit along the ¢-lines and to
whom is tied a set of frames, in particular one of those
mentioned above. The frame components of the particle’s
4-momentum can be written in terms of quantities directly
measurable in the given frame. The usual 3-velocity of the
particle is

[ P2=p..vivi A6
¥ le? ’ F n”F F’ (A6)
where

F= 5 =sin d n?=sin ¢ sin A7
n'=cos g, sin ¢ cos é r a /2, (A7)

a, [2 denoting local latitudinal and azimuthal angles in the
observer’s frame (see Fig. 1); and the locally measured
energy of the particle is simply

§=m//1—§2. (A8)
In terms of these quantities, we have
p'=E,  p'=Ey' (A9)

Now, in the case of LNRFs tied to zero- angular—
momentum orbiters, we have wp= w, where w is just given
by equation (3). The relations (A1) and (A2) then take the
form

7 .
b= /= Fv¥sin 6,
\g v¥sin

(A10)

A

™M

E= |[—E+o® All
Lo (Al1)
In the case of the Carter frame (CF), wp=af(r*+a?). One
then finds that
0 . |
=529 51, /A sin 0+( +a%) %) (A12)
J=
E -
== (/A +av’sin 6). (A13)

=

For the frames connected with the observers who are static in
Boyer-Lindquist coordinates, we have wy=0. This implies

that
ing _ M,
p=—n E(\/AZU‘P——rasin 0), (A14)
s —-2Mr J=
2Mr _
E= 1—?’15_ (A15)

Finally, let us consider frames tied to observers who are
falling freely along ¢-lines. Neglecting (unstable) positions at
rest on the symmetry axis at »= =+ a, only circular orbits in
the equatorial plane {either prograde with ® >0, or retro-
grade with ¢ <0) exist. We find that the constants of motion
then read as follows:

E,

o= WMt (F* +d?) ZaJ_ +JA( 2+ a{M) yoil,
Iz,
(A16)
E=—% (/" —2Mm[rtalM+ [MAV?Y), (A17)
Zy
where
Z. =r(r*=3Mr+2a/Mr+4M>), (A18)

with the plus (minus) sign for prograde (retrograde) orbits.
Note that the constant K is expressed by {A3) and (A4)in
all orbltmg frames considered, since the frame vectors
=J(A/Z)0/or), e 1/J_)(a/ae are the same in these
frames.

APPENDIX B: CRITICAL REVIEW OF
PREVIOUS NUMERICAL RESULTS

As mentioned in the Introduction, only the work of Lake et
al. (1984, hereafter LHS) was devoted to the numerical study
of the latitudinal and radial motion of the particles in the
Kerr geometry, which is relevant to the collimation effects. In
that work, however, no such effects were discovered, and the
repulsive region around the ring singularity remained
unnoticed. In this Appendix, we briefly discuss the con-
clusions of LHS in the light of our results described in the
main text of this paper. We assume that an interested reader
has the paper by LHS at his disposal.

First of all, LHS present all of their numerical results in BL
coordinates, so that it is not very surprising that the region
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around the ring singularity was not treated properly. Never-
theless, regarding our results, we can understand their figs 2,
3 and 6 as the effect of the choice of 7,,, & and K rather than
of aand E. LHS plot log(r/M) sin 6 and log(r/M) cos 6 along
‘x, y'-axes. (Note that they erroneously write log[(r/M) sin 6],
log[(r/M) cos 6] on p. 544. Note also that the logarithmic
projection itself deforms the trajectories and makes their
intuitive interpretation harder.) Now, in their figs 2 and 3, the
trajectories with given constants of motion are plotted for
different values of the Kerr parameter g; all trajectories start
‘at the origin’ (ie. at r,=M) and at ,=13°. As the para-
meter a increases {for example, in fig. 2, a=0.1-1000), the
trajectories get ‘quickly’ bent towards the equatorial plane.
This, according to LHS, should demonstrate the effect of the
angular momentum of the source on the latitudinal motion.
Such a conclusion is, however, not correct. First, by plotting
trajectories for different values of g, they compare different
space-times in the same figure. Secondly, by increasing a, but
keeping r, =M, one effectively changes (decreases) r,

because in KS coordinates (in which the innermost region is
represented properly) the Kerr ring is located at p; =a. (For
example, in fig. 2 of LHS, r,, decreases by a factor of 10* with
respect to a.) In KS coordinates, it is intuitively seen that,
with 6,, = 13°, the increase of a (r, being kept fixed) makes
the attraction of the ring more effective in bending the trajec-
tories towards the equatorial plane. One might object that
this could be compensated by the repulsion of the disc, which
gets stronger with decreasing r,. However, there is a third
effect, which must be taken into account. When changing a,
LHS keep their constant L (given in their equation 3) fixed,
and thus increase ® and K. {(For example, in their fig. 2, ®
increases by a factor of 10* and K by a factor of 108: from
®=0.0102mM, K=0.00995m*M? to @=102mM,
K=995000m* M2.) Such an increase of ® and K implies
that the trajectories turn away from the axis and that their
latitude varies more, as one can understand from our
analytical considerations (cf. Section 3.1), from numerical
simulations and, in fact, from fig. 7 of LHS.
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The effect of increasing ® and K leads to another mis-
understanding when LHS compare their fig. 3 (‘high-energy
trajectories’) with their fig. 2 (‘low-energy trajectories’) and
conclude that here the influence of the energy of the test
particles on their latitudinal motion is revealed. (A similar
interpretation of ‘the effect of energy’ is made from figs 5, 6
and 9.) The high-energy trajectories contained in these
figures appear to be more influenced by the Kerr field than
are those corresponding to particles with low energies —
against both intuition and our results presented in this paper.
The explanation comes again from the fact that LHS, when
increasing energy, keep their constant L fixed, and hence
increase ® and K: e.g. @ increases by a factor of 110 and K
by a factor of 1516 when going from their fig. 2 to fig. 3,
while the energy increased by a factor of 45.

Furthermore, it is clear that LHS did not even notice the
‘collimation effects’ that we found in BL coordinates (cf. our
Figs 2-6). Specifically, they choose 6,, to be equal to (or very
close to) 6., i.e. at the turning points of the latitudinal
motion, from which the particle’s latitude § cannot decrease.
Since LHS always choose 6, =6, it is not helpful to
compare their figs 5 and 9, which differ only in the sign of 6,,.

Some additional statements of LHS should be corrected:
for example, ‘neither the sign of ® nor the initial value of
r/M has an important effect on the evolution of the trajec-
tories in the r-8 subspace’ — see the discussion above, and
the role of ® in equations (5) and (6) in the main text of this
paper, or consider, for example, two particles ejected from
the symmetry axis with the same constants of motion but
from very different r,s. Equation (5) of LHS is valid for
hyperbolic trajectories only; the equality in (5) holds neces-
sarily at the axis of symmetry also, etc.

We should emphasize that the trajectories constructed
numerically by LHS are correct; however, they are not
representative of the latitudinal and radial motion in the Kerr
field, and their interpretation, as given by LHS, is either false
or not clear.
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