
IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 25 (2008) 015011 (14pp) doi:10.1088/0264-9381/25/1/015011

Cylindrical spacetimes with Λ ==/ 0 and their sources

M Žofka1 and J Bičák1,2
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Abstract
We review and investigate some basic properties of static, cylindrically
symmetric spacetimes with nonzero cosmological constant, find non-singular
sheet sources of these spacetimes and discuss their characteristics and clarify
their relation to the 4D black-string solutions.

PACS numbers: 04.20.−q, 04.20.Jb, 04.40.−b, 04.20.Ha

1. Introduction

The present paper is a continuation of our previous work on shell sources of the Levi-Civita
spacetime (LC) [1]. The thin-shell formalism [2] provides insight into the physical meaning of
the parameters appearing in the metric and can set limits on their admissible ranges. Our aim is
to extend the studied spacetimes to include a nonzero cosmological constant �. In the present-
day cosmology, the role of spacetimes with � > 0 has grown significantly since models with a
positive effective cosmological constant describe the inflationary phase and, moreover, recent
observations still seem to indicate that our universe indeed has � > 0. On the other hand,
the anti-de Sitter spacetime (AdS) has come to the fore from a more theoretical perspective in
light of the conjecture relating string theory in asymptotically AdS space to a non-gravitational
conformal theory on the boundary at spatial infinity. However, the motivation for considering
material systems with cylindrical symmetry in asymptotically AdS spacetimes also comes from
‘classical general relativity’. It is well known that with � = 0, the asymptotics of cylindrically
symmetric static spacetimes representing infinite sources is very different from that of spatially
bounded static sources. As we shall indicate below, with � < 0, the asymptotic forms of the
metrics due to material cylinders and bounded sources are closely related. It is therefore of
interest to study the effects of both positive and negative cosmological constants on the matter
sources of cylindrical spacetimes. At present, we restrict ourselves to static spacetimes since
the involved effects are still rich enough while the number of free parameters is lower and thus
it is easier to interpret our results. In general, we admit spacetimes outside and inside the shell
to have different values of �—if the cosmological constant is considered to be vacuum energy,
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such an assumption is not unnatural (and, indeed, has been made in the literature in the case
of spherical shells giving rise to the so-called domain walls [3]). We can also introduce flat
or AdS spacetime inside the cylinder. Although in this work we only consider static metrics
and their sources, we also realize their possible applications as background spacetimes in the
study of gravitational waves produced by material sources—specific simple perturbations of
cylindrical spacetimes allow a rather explicit treatment [4].

The line element of a static, cylindrically symmetric spacetime with a nonzero
cosmological constant (LC�) was independently derived in [5, 6]. In the cylindrical
coordinates t, z ∈ R, r ∈ R

+, ϕ ∈ [0, 2π) (the standard range of ϕ is ensured by the presence
of the conicity parameter C), the metric reads

ds2 = Q(r)2/3
{ − P(r)−2(4σ 2−8σ+1)/3A dt2 + P(r)2(8σ 2−4σ−1)/3A dz2

+ P(r)−4(2σ 2+2σ−1)/3A dϕ2/C2
}

+ dr2, (1.1)

where

A ≡ 4σ 2 − 2σ + 1, (1.2)

σ is related to the linear mass density of the source, and for � > 0 we have

P(r) = 2 tan(
√

3�r/2)√
3�

, Q(r) = sin(
√

3�r)√
3�

, (1.3)

while for � < 0 we substitute trigonometric functions by their hyperbolic counterparts and �

by −�—see appendix A. The trigonometric functions in (1.3) are multiplied by such constants
that in the limit r → 0 or � → 0 the metric smoothly approaches the LC case (� = 0). Thus,
the dimensions of t, z and 1/C are general powers of length as is the case in the standard form
of the LC metric [7]. By redefining P(r) and Q(r) we can convert the coordinates to the usual
dimensions of length.

The advantage of the studied spacetimes over the LC case is that for � < 0, far away
from the symmetry axis, r = 0, they approach the anti-de Sitter solution (AdS) unlike LC
that does not approach the Minkowski spacetime. We show explicitly that if we transform
a Schwarzschild–anti-de Sitter black hole (SAdS) from Schwarzschild to horospherical
coordinates then far away from r = 0, the leading-order diagonal terms are identical to
the LC� expansion (and to the AdS) and the second-order terms have the same dependence
on the radial coordinate, r, which is to the first order the proper distance from the axis. This
indicates that the properties of cylindrical shells with � < 0 might be of importance in the
study of finite massive objects in contrast to the asymptotically Minkowskian spacetimes and
the LC solution.

Moreover, Lemos [8] found an interesting class of cylindrically symmetric 4D solutions
with � < 0 called black strings3. These spacetimes describe the fields of charged, rotating
strings that generally feature singularities and horizons and are asymptotically anti-de Sitter
far away from the axis of symmetry. We clarify here the relation of static, uncharged black
strings to the general LC� solutions and find non-singular sources of such spacetimes.

The paper is organized as follows. In section 2, we discuss various properties of LC�

spacetimes, in particular, their relation to the black-string metrics and their asymptotic form,
we introduce suitable quantities characterizing their spatial geometry and conicity (we also
correct some minor misprints in the literature). The shell sources of LC� are constructed
in section 3, where we analyze the physical properties of matter forming the shells and find
the resulting restrictions on the LC� parameters. We relegate a number of issues into three

3 Not to be confused with higher-dimensional black strings that are direct products of the Schwarzschild spacetime
with R (see section 5 in [9]).
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appendices. In appendix A, we derive the LC� metric following [6] and point out several
interesting details such as its precise relation to the AdS spacetime. Appendix B gives the
resulting form of the asymptotic expansion of (1.1) for � < 0 and compares it to the SAdS
spacetime. Finally, in appendix C, we discuss the admissible range of the mass per unit length
for shell sources of the LC� spacetimes.

2. Properties of the metric

It is important to realize that the LC� solutions (1.1) are not conformally flat unless we put
� = 0—and thus also not conformal to the (anti) de Sitter spacetime—since the Weyl tensor
is nonzero. In general, the solutions are of Petrov type I except for some special values of
σ [10]. In addition to the Killing vectors ∂/∂t, ∂/∂z and ∂/∂ϕ, the metrics admit additional
Killing vectors in special cases:4

σ = ±1/2 → C−1ϕ∂z − Cz∂ϕ,

σ = 0, 1 → t∂z + z∂t,

σ = 1/4 → C−1ϕ∂t + Ct∂ϕ.

(2.1)

In the vicinity of the axis, r
√|�| � 1, (1.1) behaves as the LC solution. After replacing

σ → 1/4σ , we find the roles of z and ϕ interchanged. This indicates that the case σ = ±1/2
corresponds to planar rather than cylindrical symmetry (confer the first Killing vector in (2.1)).

The solution with � > 0 is periodic in r with a period 2π/
√

3�; it contains curvature
singularities at r = kπ/

√
3� ≡ krs, k integer except for special cases of σ [10]; there is no

limit r → ∞ and the metric is not asymptotically de Sitter.
For � < 0, there are no singularities apart from the axis. After a simple rescaling of

t, z, ϕ we find that asymptotically at r → ∞, the metric (1.1) has the form

ds2 = dr2 + exp

(
2

√
−�

3
r

)
(−dt2 + dz2 + dϕ2), (2.2)

which is a part of AdS in the horospherical coordinates (see appendix A). This makes the
asymptotics of cylindrical solutions with � < 0 more realistic than the case � = 0. If
we approach infinity in any direction not parallel to the axis then the leading terms of the
asymptotics of the metric coincide with those of spatially isolated sources. For � = 0 this
is not the case since the asymptotics of the LC solution is not Minkowskian and we have no
natural (asymptotically flat) infinity that would enable us to define static observers. To illustrate
this, we compare the asymptotics of (1.1) and that of the Schwarzschild–AdS spacetime in the
horospherical coordinates in appendix B.

It is of interest that LC� with � < 0 includes the static, uncharged black-string metric
of [8]. If we set σ = 1/2 in (1.1) and introduce new coordinates

τ = 2C

(−�)
t, ρ = 1

C
cosh2/3

√−3�r

2
, φ = ϕ, ζ =

√
− 3

�
Cz, (2.3)

we obtain

ds2 = −dτ 2F +
dρ2

F
+ ρ2 dφ2 + ρ2α2 dζ 2, (2.4)

with α2 = (−�)/3,F = α2ρ2 − 4M/αρ and M = α3/4C3. This is the form of the black-
string metric of equation (2.3) in [8]. M corresponds to the mass per unit length of the black

4 There are misprints in the Killing vectors in [10]. Also, the presented conformal diagrams do not have correct
infinities—compare to [8].
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Table 1. Geometrical properties of LC and LC�. Circumferences of rings r, z, t = constant and
curvature singularities at r = 0 and r → ∞ in the cases � = 0 and � < 0, and at r = kπ/

√
3� for

� > 0. In the following, we shall see that physically meaningful shell sources generate spacetimes
with σ confined only to the interval [0, 1/2].

Sign Value Value Circumference of Singularity?
of � of r of σ rings r, z, t constant (Kretschmann)

σ < 1/2 C = 0 Yes, for σ �= 0
r = 0 σ = 1/2 C finite No

σ > 1/2 C → ∞ Yes
� = 0

σ < 1/2 C → ∞ No
r → ∞ σ = 1/2 C finite No

σ > 1/2 C = 0 No

r = 0 Same as for � = 0, r = 0
� < 0

r → ∞ Arbitrary σ C → ∞ No

r = 2kπ/
√

3� Same as for � = 0, r = 0

σ < −1/2 C = 0 Yes
σ = −1/2 C finite No

� > 0 r = (2k+1)π√
3�

σ ∈ (−1/2, 1/4) C → ∞ Yes

σ = 1/4 C finite No
σ > 1/4 C = 0 Yes, for σ �= 1

string calculated at radial infinity using the Hamiltonian formalism of Brown and York [11].
Therefore, it is instructive to compare M to the mass per unit length of the shell sources we
find in section 3.

To illustrate some other properties of LC�, we summarize the circumferences C of
the rings r, z, t = constant at special radii r in table 1. For example, with � > 0 and
σ ∈ (−∞,−1/2] ∪ [1/4, 1/2] the circumference remains finite everywhere, including r = 0.
On the other hand, r = 0 represents the axis (zero circumference) for σ < 1/2 and any value
of �. If we also require that r = rs has an infinite circumference for � > 0 then the range
of σ is more limited: σ ∈ (−1/2, 1/4). For � < 0, the circumference is always infinite at
r → ∞ and we find σ < 1/2 again.

In order to characterize the conicity of cylindrically symmetric spacetimes in a geometrical
way, we define the following two quantities:

χ(r) ≡ 2π
R(r)

C(r)
=

∫ r

0

√
grr (r̃) dr̃√
gϕϕ(r)

= 2πr

C(r)
, (2.5)

ψ(r) ≡ 2π
dR

dC
= 2

√
gϕϕ(r)grr (r)

d
dr

gϕϕ(r)
= 1

d
dr

√
gϕϕ(r)

, (2.6)

where R is the proper radius (in our case identical to r) and the circumference C is introduced
above. In the case of cosmic strings with � = σ = 0, both χ and ψ coincide everywhere
with the conicity parameter C. Close to the axis, these quantities behave as follows:

χ(r) ∼ Cr
4σ2

A and ψ(r) ∼ A

1 − 2σ
Cr

4σ2

A , (2.7)

where A > 0 is defined in (1.2). They do not contain � and are identical to the Levi-Civita
case. In general, ψ can even be negative, nevertheless, for � > 0, σ ∈ (−1/2, 1/4) and for
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� < 0, σ < 1/2, ψ is positive everywhere. For � > 0, we find that as we approach the
singularity at r = rs the value of ψ is proportional to (rs − r)4(1−σ)2/3A and thus vanishes
unless σ = 1. For � < 0, we find at radial infinity that χ and ψ are both positive and decrease
as a power of � times r exp(−r

√
�/3) and exp(−r

√
�/3), respectively.

Considering the above properties, we conclude that the intuitive ranges of σ are as
follows: with � > 0, σ ∈ (−1/2, 1/4) and with � < 0, σ ∈ (−∞, 1/2). If we also include
the behavior of geodesics we can further restrict the latter to σ ∈ [−1/2, 1/2).

3. Induced energy–momentum tensor

To construct shell sources of LC�, we imagine two cylindrical regions of the spacetimes with
metrics (1.1) and independent parameters (r � r−, σ−,�−, C−) and (r � r+, σ+,�+, C+).
We shall also consider the Minkowski and AdS solutions as the interior spacetimes. As
required by the Israel formalism [2], we glue the boundaries r = r− and r = r+ together in
such a way that the induced 3-metric on the surfaces with the intrinsic coordinates T ,Z,

is identical from both sides; the induced metric can always be made flat by rescaling the
intrinsic coordinates as the metric only depends on the radial coordinate r. We also require
the proper circumference of the two cylinders to be the same. This identification induces
a three-dimensional energy–momentum tensor on the junction hypersurface. The induced
tensor is diagonal and its components read5

8πST T =
√

�+/3

(
−2 cot(

√
3�+r+) − 4σ 2

+ − 8σ+ + 1

4σ 2
+ − 2σ+ + 1

csc(
√

3�+r+)

)
−

√
�−/3

(
−2 cot(

√
3�−r−) − 4σ 2

− − 8σ− + 1

4σ 2− − 2σ− + 1
csc(

√
3�−r−)

)
,

8πSZZ =
√

�+/3

[
2 cot(

√
3�+r+) − 8σ 2

+ − 4σ+ − 1

4σ 2
+ − 2σ+ + 1

csc(
√

3�+r+)

]
−

√
�−/3

[
2 cot(

√
3�−r−) − 8σ 2

− − 4σ− − 1

4σ 2− − 2σ− + 1
csc(

√
3�−r−)

]
,

8πS =
√

�+/3

(
2 cot(

√
3�+r+) +

4σ 2
+ + 4σ+ − 2

4σ 2
+ − 2σ+ + 1

csc(
√

3�+r+)

)
−

√
�−/3

(
2 cot(

√
3�−r−) +

4σ 2
− + 4σ− − 2

4σ 2− − 2σ− + 1
csc(

√
3�−r−)

)
,

(3.1)

with A±(σ±) defined by (1.2). Note that the (global) conicity parameters C± of the metric do
not appear in these (local) expressions. If we take the limit � → 0 and use the transformation
formulae given in [10] we recover precisely the induced energy–momentum tensor of the
Levi-Civita metric [1], equation (1.3).

3.1. Photonic shells

Let us turn to the interpretation of the induced energy–momentum tensor. One of the simplest
models is a shell of counter-rotating photons. Then the trace −ST T + S + SZZ = 0 which
implies √

�+

�−
= tan(

√
3�+r+)

tan(
√

3�−r−)
. (3.2)

5 Unless noted otherwise, we write all the following expressions for � > 0. The corresponding formulae for � < 0
are obtained by substituting hyperbolic functions for their trigonometric counterparts and replacing � by −�.
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Table 2. Shells of photons moving with Z = const or  = const and no singularity along the axis
(M = 1/4 cos4/3(

√
3�r−/2)).

σ+ = −1/2 M1 = M azimuthal
k odd

σ+ = 1 M1 = 0 smooth junction
σ− = 0

σ+ = 1/2 M1 = M azimuthal
k even

σ+ = 0 M1 = 0 smooth junction

σ+ = 1 M1 = −M < 0 azimuthal
k odd

σ− = 1
2 σ+ = 1/4 M1 = −M < 0 axial

k even σ+ = 0 M1 = −M < 0 azimuthal

Note that this condition does not involve σ±. If, in addition, we require �+ = �− ≡ � > 0,
we obtain the solutions r+ = r− + kπ/

√
3� with an arbitrary integer k. These solutions are

due to the periodicity of the metric and are difficult to interpret: we either have singularities
outside the shell or, alternatively, we have to construct an infinite series of coaxial cylinders
to cut out all the singularities. However, for a negative cosmological constant, we only have
a single solution, namely r+ = r−, which can be non-singular both inside and outside of the
shell.

Admitting still both signs of �, we now wish to find the form of the induced energy–
momentum tensor that can be interpreted as a shell of photons counter-rotating in the -
direction with Z constant (‘azimuthal’ photons) or, possibly, moving along the Z-direction
with  constant (‘axial’ photons). Since we wish to avoid the singularity along the axis we
must set σ− = 0 or 1/2. Substituting into (3.1), denoting the mass per unit length of the shell
measured by static (geodetical) observers M1 ≡ CST T (with C the circumference of the shell
and ST T its surface energy density), and with M = 1

4
1

cos4/3(
√

3�r−/2)
, we summarize the results

in table 2.
For � > 0, although some cylindrical shells are ‘physical’ (M1 > 0), the exterior metric

always contains singularities. In the case σ+ = −1/2, we need to extend the solution through
a coordinate singularity. However, this is not the case with � < 0, which is also described in
table 2 if we formally only consider k even and put M = 1

4
1

cosh4/3(
√−3�r−/2)

� 1
4 . Clearly, the

only physically acceptable solutions are those with � < 0,M1 > 0, so that σ− = 0, σ+ = 1/2,
which corresponds to the cylinders of azimuthal photons. In the limit � → 0, these results go
over to the LC case of [1], section 3.

As in the simpler � = 0 case, there are no cylinders of purely axial photons. One expects
this for � < 0 due to its attractive character. However, with � > 0, one might have hoped
that the repulsive effects of the cosmological constant might permit such a solution; this was
our original motivation. Nevertheless, the singularities located at r = krs do not allow this.

3.2. Shells of dust and perfect fluid

Since we wish to discuss primarily smooth and physical metrics (1.1), we shall be mainly
concerned with LC� spacetimes with � < 0. Only in these cases we do not encounter
singularities at r = krs . We first assume �− = �+ ≡ � < 0 and put σ− = 0, C− = 1 so
that there is no singularity on the axis; we shall consider also the Minkowski and AdS regions
inside the shells—then the axis is regular automatically. Let us first note that condition (3.2)
is also relevant to the massive-particle interpretation. In this case, we require

S/ST T + SZZ/ST T = v2
 + v2

Z < 1. (3.3)

6
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Φ

Figure 1. Mass per unit length (left) and proper velocity (right) for counter-rotating particles
with σ− = 0, �− = �+ ≡ � < 0, C− = 1. The plotted curves correspond to � =
−10,−1,−1/2, −1/1000 (bottom to top in the left and top to bottom in the right) for a shell
of fixed circumference. For σ+ ∈ [0, 1/2) the proper velocity is finite and positive. The graph
corresponding to � = −1/1000 (full curve) approaches the graph for a LC shell, cf figure 2 of [1].

With � < 0 we obtain a simple condition r+ > r−. (This condition becomes more involved
for � > 0.)

We begin by considering counter-rotating azimuthal streams of massive particles. The
condition SZZ = 0 implies (cf (3.1))

r+ = 1√−3�
arccosh

2E + F
√

F 2 + E2 − 4

F 2 − 4
, (3.4)

where E = (−8σ 2
+ + 4σ+ + 1

)/(
4σ 2

+ − 2σ+ + 1
)

and F = (2 cosh(
√−3�r−) +

1)/(sinh(
√−3�r−)). Fixing r−, i.e., the circumference C, we obtain the mass per unit

length of the cylinder in the form

M1 = CST T = 2σ+(1 − σ+) sinh
(

1
2

√−3�r−
)

cosh1/3
(

1
2

√−3�r−
)

sinh(
√−3�r+)

(
4σ 2

+ − 2σ+ + 1
) . (3.5)

Both M1 and the velocity of particles counter-orbiting in the ±ϕ direction measured by static
observers within the cylinder (see (3.3)) can be expressed as functions of σ+ after substituting
for ST T and SFF from (3.1). The final result is simple in the limit � → 0 when the azimuthal
velocity becomes v = √

σ+/(1 − σ+). This is the result obtained in [1]. We illustrate both
functions in figure 1. The physical properties are described in the figure caption, here we only
note that the velocity of particles approaches the velocity of light for σ+ → 1/2 thus allowing
the interpretation in terms of massive counter-orbiting particles only for σ ∈ [0, 1/2]. Also,
observe that in general M1 = 0 for σ+ = 0 and that the curves M1(σ+) are monotonically
increasing for all values � < 0 and σ+ � 1/2.

Given the results for the Levi-Civita spacetimes with � = 0, we expect that there is an
upper bound on M1. This, indeed, can be seen from figure 1: the mass per unit length M1

reaches its maximum value of 1/4 just for the LC case � = 0. As |�| increases the maximum
of M1 (located always at σ+ = 1/2) decreases. This behavior can be proved analytically from
(3.5). It is physically intuitive in view of increased gravity due to the presence of the negative
cosmological constant. A more detailed analysis reveals that the upper bound on M1 = 1/4
holds also in more general cases with different �’s if r+ � r−,�+ � �− as shown in
appendix C.

Next we focus on the perfect-fluid interpretation of the induced energy–momentum tensor.
If we require σ− = 0,�− = �+ ≡ � < 0 and SZZ = S and substitute this into (3.1), we

7
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1_
4
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M1

σ 0

0.2

0.4

0.6

0.5
+

P

σ

Figure 2. The mass per unit length (left) and integral pressure (P ≡ Cp, right) for perfect
fluid with σ− = 0, �− = �+ ≡ � < 0, C− = 1. The plotted curves correspond to
� = −10,−1,−1/2,−1/1000 (bottom to top) for a shell of fixed circumference. Pressure
always diverges for σ+ = 1/2. The graph corresponding to � = −1/1000 (full curve) approaches
the graph for a LC shell, cf figure 3 of [1]. The bold line corresponds to the case µ = p above
which the dominant energy condition is violated for the particular circumference used in the graph.

obtain a simple relation

sinh
√−3�r+ =

(
1 − 4σ 2

+

)
sinh

√−3�r−
4σ 2

+ − 2σ+ + 1
. (3.6)

This enables us to express the density µ = ST T and pressure p = SZZ of the fluid as functions
of r− (or of circumference C), � and σ+. For given C and �, this amounts to an implicit
equation of state given by relations µ = µ(σ+), p = p(σ+). For the graphs of M1 and p, see
figure 2; here we only point out that M1 can exceed 1/4 unless we impose further conditions,
such as the dominant energy condition µ � p for any circumference of the cylinder. The
admissible range of the LC parameter reads σ+ ∈ [0, 1/2) (or σ+ ∈ [0, 1/3] with the dominant
energy condition).

3.2.1. Minkowski inside. We now turn to the case with flat spacetime inside the cylinder.
This corresponds to �− = 0, σ− = 0,�+ < 0, and thus may be considered a ‘domain wall’
in 3+1 dimensions. For perfect fluid, the relation p = SZZ = S (cf (3)) implies

sinh
√

−3�+r+ =
(
1 − 4σ 2

+

)√−3�+r−
4σ 2

+ − 2σ+ + 1
. (3.7)

Substituting this expression back into (3.1), we obtain a relation between density and pressure,

µ + p = 1

2πr−

σ+(1 − σ+)

1 − 4σ 2
+

, (3.8)

which does not depend on �+ and is thus identical to the Levi-Civita case. The expressions
for M1 = µ(2πr−) and the pressure p read

M1 =
4σ+(1 − 2σ+) + 1 −

√
A2

+ − 3�+r
2−
(
1 − 4σ 2

+

)2

6
(
1 − 4σ 2

+

) , (3.9)

p =
2σ+(1 + σ+) − 1 +

√
A2

+ − 3�+r
2−
(
1 − 4σ 2

+

)2

12πr−
(
1 − 4σ 2

+

) . (3.10)

8
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The numerator of the last expression is always positive (�+ < 0) and thus if we require
positive and finite pressure we must have σ+ ∈ (−1/2, 1/2). We have M1|�+<0 � M1|�+=0 =
σ+/(1 + 2σ+)—the last expression corresponds to the LC case, see [1]. For M1 to be positive
we must have σ+ < −1/2 or σ+ � 0. In combination with the restrictions on the pressure we
conclude σ+ ∈ [0, 1/2). In this interval of σ+, we get M1 � 1/4 just like in the Levi-Civita
case (however, M1 becomes negative for sufficiently large

√
�+r−).

Let us yet mention solutions with Minkowski inside and azimuthal particles. In this case,
we obtain

M1 = 3σ+(1 − σ+)

2A+ cosh(
√−3�+r+) − 8σ 2

+ + 4σ+ + 1
, (3.11)

v2
 = A+ cosh(

√−3�+r+) + 2σ 2
+ + 2σ+ − 1

6σ+(1 − σ+)
. (3.12)

The numerator of (3.12) is always positive and thus σ+ ∈ (0, 1). Since v2
 � 1 we must

further have σ+ ∈ [0, 1/2]. Then, σ+(1 − σ+)
/(−8σ 2

+ + 4σ+ + 1
)

� M1|�+<0 � M1|�+=0 =
σ+(1 − σ+) � 1/4. The bounds on σ+ and M1 are just the same as in the Levi-Civita case.

3.2.2. AdS inside. We now consider the anti-de Sitter spacetime in the horospherical
coordinates (A.12) inside the cylinder with �− = �+ ≡ � < 0. First fact to mention
here is that the circumference at r = 0 is 2π and to reach the axis (zero circumference), we
need to go farther, to r → −∞. Therefore, the radial proper distance (measured directly
by r) from the axis to the surface of the cylinder is always infinite. We thus include within
the cylindrical shell a vast part of the AdS space and we can expect the influence of � to
be strong. Indeed, unlike in LC�, there are, for example, no circular geodesics at constant
horospherical coordinates r, z in AdS. In addition, we find that we cannot interpret the shell
energy–momentum tensor in terms of either massive particles or photons. The perfect fluid
requires σ+ = 1/2 necessarily. Equation (3.1) implies

p = µ
6πµ +

√−3�

2(
√−3� − 12πµ)

. (3.13)

Inverting the last expression in the form of a series

µ = 2p − 24π
√

−3/�p2 − 1152
π2

�
p3 − · · · , (3.14)

we note that for small pressure, p = µ/2, which corresponds to ‘2D null fluid’. Note that

M1 = 2πµ exp
(√−�

3 r−
)

is not bounded for large r−. This is not very surprising as the
anti-de Sitter metric inside of the shell is the asymptotical form of the metric (1.1) and thus
this shell is equivalent to a shell with the same form of metric on both sides of the cut and
with r− → ∞. This, however, is in sharp contradiction to the assumption r+ � r− which is a
necessary condition for M1 � 1/4 (see appendix C).

3.3. Black strings

Another interesting case is the black-string metric of [8]. This is a typical example where we
can explore the physical meaning of the parameters by finding non-singular sources of the
spacetime. Let us thus use the AdS spacetime inside our cylindrical shell and the black-string
spacetime (2.4) with the same cosmological constant outside. This yields an induced energy–
momentum tensor that corresponds to the perfect fluid. The shell must necessarily be located

9
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above the horizon (r+ = 3
√

4M/
√−�/3, see (2.4)). The proper mass per unit length of these

cylinders, M1 = 2πµr+, reads

M1 = αr+

2

(
1 −

√
1 − 4M

(αr+)3

)
, (3.15)

with α2 = −�/3. If we let r+ → ∞,M1 vanishes while it reaches its limiting value (M/3)1/3

for cylinders just above the horizon and we are not able to construct more massive cylinders.
As shown in [8], M is the mass of a cylindrical strip of spacetime defined by unit coordinate
length along the z-axis which is coordinate-dependent and the corresponding proper length
vanishes on the axis and diverges at radial infinity. If we define M̃ as the mass of a section
of a unit proper length, we obtain a different maximum value M1 = (2/3)1/3

√
M̃ . In both

cases, however, it turns out that M1 is proportional neither to M, nor to M̃ , confirming that it
measures a different physical property of the solution.

4. Conclusions

We considered static, vacuum, cylindrically symmetric spacetimes with a nonzero
cosmological constant, their geometrical properties, and their sources formed by cylindrical
shells of counter-rotating photons or dust and of perfect fluid. We have shown that even with
� �= 0, the LC parameter must be confined to the interval σ ∈ [0, 1/2], i.e., the same range
as for � = 0. To the first order, it determines the mass M1 per unit length of the source. The
range of M1 is no longer bounded by 1/4. This fact thus represents the main difference from
the Levi-Civita case.
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Appendix A. Derivation of the metric

Following [6] and denoting the proper radius by r, we may write a static cylindrically symmetric
metric as

ds2 = − exp A(r) dt2 + dr2 + exp B(r) dz2 + exp C(r) dϕ2, (A.1)

where t, z ∈R, r ∈R
+, ϕ ∈ [0, 2π). Solving the Einstein equations in vacuum with a nonzero

cosmological constant �, we get

d 2�(r)

dr2
+

1

2

(
d�(r)

dr

)2

+ 6� = 0, (A.2)

where �(r) = A(r) + B(r) + C(r). The solution for � > 0 reads

�(r) = const + 2 ln sin(
√

3�(r + R)), (A.3)

with R the other integration constant. In the following, we only need its first derivative (there
are two solutions: the other solution is shifted along r which can always be incorporated
into R)

d�(r)

dr
= 2

√
3� cot(

√
3�(r − R)). (A.4)

10
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For negative �, we find
d�(r)

dr
= 2

√−3� coth(
√−3�(r − R)), (A.5)

d�(r)

dr
= 2

√−3� tanh(
√−3�(r − R)), (A.6)

d�(r)

dr
= ±2

√−3�. (A.7)

Einstein equations further imply

d 2f (r)

dr2
+

1

2

d�(r)

dr

df (r)

dr
+ 2� = 0 (A.8)

for each of the functions A(r), B(r) and C(r). For � > 0, we can thus write

exp(f (r)) = β tanα x sin2/3 2x, (A.9)

where x = √
3�(r + R)/2 and α, β are integration constants. By rescaling the coordinates,

we can get rid of β (however, this changes the range of ϕ and we must introduce the conicity
parameter C, which also takes care of the units of gϕϕ). If we now insert the solutions back
into the Einstein equations, we obtain conditions on the three constants α:

0 = αA + αB + αC, −4/3 = αAαB + αAαC + αCαB. (A.10)

Now let us introduce the following parametrization by the Levi-Civita parameter6

αA = 4σ/A − 2/3, αB = 4σ(2σ − 1)/A − 2/3, αC = 2(1 − 2σ)/A − 2/3,

with

A ≡ 4σ 2 − 2σ + 1. (A.11)

This yields (1.1) (we put R = 0 to place the axis at r = 0 for σ < 1/2—but we can also
place the axis somewhere else). We obtain an analogous solution for � < 0 by following
the same lines with equations (A.5) and (A.6). However, we do not obtain a real solution
from (A.6) (only complex solutions since in equation (A.10) we now have a positive lhs) and
the only possible metric has P(r) = 2 tanh(

√−3�r/2)/
√

3�,Q(r) = sinh(
√−3�r)/

√
3�.

We thus only need to substitute the trigonometric functions by their hyperbolic counterparts
and � → |�|—see [10]. C is the conicity parameter related to the missing angle that enables
us to restore the range of ϕ to [0, 2π)—see equation (2.5).

Equation (A.7) yields another independent solution for negative �, namely

ds2 = dr2 + exp

(
±2

√
−�

3
r

)
[dz2 + dϕ2 − dt2], (A.12)

where ϕ has been rescaled from [0, 2π) to a new interval and r ∈ [0,∞). As r = 0 represents
no special hypersurface, we can also extend the range of r to (−∞,∞) and write the metric
with the ‘+’ sign only. Spacetime with metric (A.12) constitutes a part of the anti-de Sitter
spacetime with the metric written in the horospherical coordinates. This follows from the
transformation

r = ∓
√

− 3

�
ln

(
x

√
−�

3

)
or x =

√
− 3

�
exp

(
∓r

√
−�

3

)
,

exp

(
±2

√
−�

3
r

)
= − 3

�x2
⇒ dr = ∓

√
− 3

�

dx

x
, (A.13)

ϕ ∈ [0, a) → y ∈R,

6 The Levi-Civita parameter is denoted by σ in the present paper. Its relation to the standard value σ = m/2 follows
from the transformation to the Levi-Civita metric in the limit � → 0; see, e.g., [10].
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which gives the conformally flat form of the AdS metric

ds2 = 3

(−�)x2
[−dt2 + dx2 + dy2 + dz2]. (A.14)

Solution (A.12) with the ‘+’ sign covers that part of the anti-de Sitter hyperboloid where
x ∈ (0,

√−3/�] while the ‘−’ solution is valid for x ∈ [
√−3/�,∞). However, the axis of

(A.12) is not located at r = 0 (circumference C = 2π )—rather, it is at r → ∞ for the ‘−’
sign which corresponds to x → ∞ and is not present in the spacetime at all for the ‘+’ sign as
follows from the expression for the circumference C = 2π exp(±r

√−�/3) = 2π
√−3/�/x.

Finally, we had to extend the range of ϕ to R otherwise we would only have a strip of the
resulting spacetime. To cover the entire anti-de Sitter manifold, we need four such coordinate
systems with r ∈ [0,∞) or two systems with r ∈ (−∞,∞).

Appendix B. Asymptotic comparison of Schwarzschild–anti-de Sitter and LCΛ
with Λ < 0

We first give the transformation of the anti-de Sitter metric from the Schwarzschild coordinates
(T , R,�,) to the horospherical coordinates (t, r, z, ϕ)

T = α arctan
α2 − t2 + ϕ2 + z2 + α2 exp(±2r/α)

2αt
,

R = exp(∓r/α)

α

√
α2(ϕ2 + z2) + [α2 + t2 − ϕ2 − z2 − α2 exp(±2r/α)]2/4,

(B.1)

� = arctan
2α

√
ϕ2 + z2

α2 + t2 − ϕ2 − z2 − α2 exp(±2r/α)
,

 = arctan
z

ϕ
,

where α2 = 3/(−�). The inverse transformation reads

t = α
√

R2 + α2 cos T
α

R cos � +
√

R2 + α2 sin T
α

,

r = ±α ln
α

R cos � +
√

R2 + α2 sin T
α

,

(B.2)

z = αR sin � sin 

R cos � +
√

R2 + α2 sin T
α

,

ϕ = αR sin � cos 

R cos � +
√

R2 + α2 sin T
α

.

Applying this transformation to ds2 = −(1 + r2/α2) dt2 + dr2/(1 + r2/α2) + r2 d�2 yields
metric (A.12). We now take the Schwarzschild–anti-de Sitter metric ds2 = −(1 − 2M/r +
r2/α2) dt2 + dr2/(1 − 2M/r + r2/α2) + r2 d�2 and transform it using (B.1) with the lower

12
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signs. Asymptotically, we have for gµν in [t, r, z, ϕ]⎛⎜⎜⎝
−e(2 r

α
) + e(− r

α
)M(· · ·) + M[. . .] Mt e(−3 r

α
)(· · ·) + Mt[· · ·]

. 1 + M e(−3 r
α
)(· · ·) + M[· · ·]

. .

. .

Mtz e(− r
α
)(· · ·) + Mtz[· · ·] Mtϕ e(− r

α
)(· · ·) + Mtϕ[· · ·]

Mz e(−3 r
α
)(· · ·) + Mz[· · ·] Mϕ e(−3 r

α
)(· · ·) + Mϕ[· · ·]

e(2 r
α
) + e(− r

α
)Mz2(· · ·) + Mz2[· · ·] Mzϕ e(− r

α
)(· · ·) + Mzϕ[· · ·]

. e(2 r
α
) + e(− r

α
)Mϕ2(· · ·) + Mϕ2[· · ·]

⎞⎟⎟⎠ . (B.3)

The LC� metric gives⎛⎜⎝−e(2 r
α
) + e(− r

α
)(−4/3 + 8σ) + [· · ·] 0

. 1

. .

. .

0 0
0 0

e(2 r
α
) + e(− r

α
)(4/3 + 8σ) + [· · ·] 0

. e(2 r
α
) + e(− r

α
)(−8/3 + 16σ 2) + [· · ·]

⎞⎟⎠. (B.4)

The radial dependence of the individual metric components expanded in a series thus coincides
up to e(− r

α
). For a discussion, see pages 2 and 3.

Appendix C. Bound on M1

In our previous work, we proved that M1 � 1/4 in all cases with Minkowski inside and a
general LC outside, cf equation (6) in [1]. For � �= 0, we presented in the main text above
several examples with an upper bound on M1, e.g., if the shell is composed of counter-rotating
particles and we further assume �− = �+ ≡ � < 0 and put σ− = 0, C− = 1 so that there is
no singularity within the entire spacetime, see figure 1. Here, we generalize this result without
assuming a specific form of Tµν and admitting even different values of �− and �+. We only
assume �− � �+ and r− � r+.

We proceed from the general form of the induced energy–momentum tensor with
σ− = 0, C− = 1 (cf (3.1))

ST T =
√−�+/3

8π sinh(
√−3�+r+)

[
−2 cosh(

√
−3�+r+) +

−4σ 2
+ + 8σ+ − 1

4σ 2
+ − 2σ+ + 1

]
+

√−�−/3

8π

(2 cosh(
√−3�−r−) + 1)

sinh(
√−3�−r−)

. (C.1)

Circumference C is given by 2π
√

gϕϕ(�−, r−) and M1 = C(�−, r−)ST T (σ+,�±, r±) is thus
a function of five independent parameters. Evaluating dM1/dσ+, we find the extremum at
σ+ = 1/2. We can thus write

ST T |σ+=1/2 =
√−�+/3

8π

(−2 cosh(
√−3�+r+) + 2

)
sinh(

√−3�+r+)

+

√−�−/3

8π

(
2 cosh(

√−3�−r−) + 1
)

sinh(
√−3�−r−)

. (C.2)
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This function reaches its maximum value at r+ = 0:

ST T |r+=0 =
√−�−/3

8π

(2 cosh(
√−3�−r−) + 1)

sinh(
√−3�−r−)

. (C.3)

Introducing a new variable X = √−3�−r−/2, we find

M1 = (2 cosh 2X + 1) sinh X

6 cosh1/3(X) sinh 2X
= 4 cosh2 X − 1

12 cosh4/3 X
. (C.4)

This is not bounded. However, we already found a physically plausible condition limiting the
range of r+, namely r+ � r− (see the discussion below (3.3)). Hence, instead of maximizing
(C.2) by r+ = 0, we set r+ = r−. Analogously to the situation with r+ and r−, we find that for
�+ and �− completely independent, M1 can diverge again. However, assuming r+ � r− and,
in addition, �+ � �−, we finally arrive at

M1 = 1

4

1

cosh4/3(
√−3�−r−/2)

. (C.5)

Thus for any values of r− and �− we always have M1 � 1/4. It can be shown that the bound
M1 � 1/4 applies to the case �− > 0 and �+ < 0 as well.

Let us summarize: with a vanishing cosmological constant, �+ = �− = 0, the bound
M1 � 1/4 holds always if the entire spacetime is regular as proved in [1]. Here we have
shown that admitting a nonzero cosmological constant, we have to require not only a regular
spacetime but also additional conditions, such as r+ � r− and �+ � �−.
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