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Abstract. We derive the higher dimensional generalization of Penrose–Tod equation describing
apparent horizons in Robinson–Trautman spacetimes. New results concerning the existence and
uniqueness of its solutions in four dimensions are proven. Namely, previous results of Tod [1] are
generalized to nonvanishing cosmological constant.
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ROBINSON–TRAUTMAN SPACETIME IN D DIMENSIONS

Robinson–Trautman spacetimes (containing aligned pure radiation or vacuum with a
cosmological constant Λ) in any dimension were obtained by [2] using the geometric
conditions of the original articles about the four-dimensional version of the spacetime
[3, 4]. Namely, they required the existence of a twistfree, shearfree and expanding
null geodesic congruence. They have arrived at the following metric valid in higher
dimensions

ds2 =
r2

P2 γi j dxidx j−2dudr−2H du2 (1)

where 2H = R
(D−2)(D−3) − 2r(lnP),u − 2Λ

(D−2)(D−1) r2 − µ(u)
rD−3 . The unimodular spatial

(D−2)-dimensional metric γi j(x) and the function P(x,u) must satisfy the field equation
Ri j = R

D−2hi j (with hi j = P−2γi j being the rescaled metric). In D = 4 the field equation is
always satisfied and R (Ricci scalar of the metric h) generally depends on xi. However,
in D > 4 the dependence on xi is ruled out (R = R(u)). But generally, it still allows a
huge variety of possible spatial metrics hi j (e.g., for R > 0 and 5≤D−2≤ 9 an infinite
number of compact Einstein spaces were classified).

APPARENT HORIZON

Event horizon is a global characteristic and therefore the full spacetime evolution is
necessary in order to localize it. Therefore, over the past years different quasi-local
characterization of black hole boundary were developed. The most important ones being
apparent horizon [5], trapping horizon [6] and isolated or dynamical horizon [7]. The
basic local condition in the above mentioned horizon definitions is the same: these



horizons are sliced by marginally trapped surfaces with vanishing expansion of outgoing
(ingoing) null congruence orthogonal to the surface.

In our case we will be dealing only with the condition of vanishing expansion. For
the historical reasons and because it was already used in [8] we will call the horizon
apparent. Concretely, we will search for the past apparent horizon. Since in D = 4 the
solutions of the Robinson–Trautman equation are generally diverging when approaching
u = −∞ it is not possible to extend the spacetime to past null infinity. Therefore we
cannot use the event horizon. In figure, the schematic conformal picture of Robinson–
Trautman spacetime (for D = 4 and without cosmological constant) is presented together
with the approximate location of the horizons.
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The explicit parametrization of the past apparent horizon hypersurface is r = R(u,xi)
such that its intersection with each u = u1 slice is an outer marginally past trapped
(D−2)-surface.

For the calculation of the expansion of an appropriate null congruence we will use a
straight-forward generalization of the tetrad formalism to arbitrary dimension. Note that
one can no longer use complex vector notation. Using two null covectors la,na (with
normalization lana =−1) and D−2 spatial covectors ma{i} (i = 1, ..,D−2) we suppose
the following decomposition of the metric

gab =−2 l(anb) +ma{i}mb{ j} δ
i j (2)

Null D-ad adapted to the trapped hypersurface (using the above mentioned parametriza-
tion) has the following form:

la = (0,1,0, ..,0); na = (1, [−H + 1
2gi jR,iR, j] ,∇R); ma

{i} = (0, P
r R,i ,

P
r wi) (3)

where D−2 vectors wi diagonalize metric h and ∇R = {R,x1
, ..,R,xD−2}. Fortunately, in

subsequent calculations we do not need the explicit form of the vectors wi, it is sufficient
to know their orthogonality properties.

By straight-forward computation one easily calculates the expansion associated with
the congruence generated by la to be Θl = D−2

r meaning that the outgoing null congru-
ence is diverging. This is exactly what one assumes when dealing with the past trapped
surface.



GENERALIZED PENROSE–TOD EQUATION

Ingoing null congruence expansion can be calculated using the formula (sometimes a
(D− 2) factor is used in the definition, but we are going to evaluate it to zero anyway)
Θn = na;b pab, where the tensor pab = gab + 2 l(anb) corresponds to the hypersurface
projector. From Θn = 0 (called Penrose–Tod equation in four dimensions) we get the
trapped surface condition

R− 2(D−3)
D−1

ΛR2− (D−2)(D−3)
µ

RD−3 −2(D−3)∆(lnR)− (4)

−(D−4)(D−3)(∇ lnR) · (∇ lnR) = 0

It is a nonlinear PDE, where both the Laplacian and scalar product in the last term
correspond to the Einstein metric hi j. Interesting property of this equation is that for
D > 4 its nonlinearity is much worse since the term quadratic in derivatives appears.

D = 4 : Existence of the solution
In four-dimensional case one can no longer use the existence proof given by Tod [1]
when the cosmological constant is present. We will use the version of sub and super-
solution method adapted to Riemannian manifolds given by Isenberg [9].

Theorem. Sub and Super-solution method for equation ∆ψ = f (x,ψ)
Let Σ be a compact Riemannian manifold without boundary, and let f : Σ×R+→ R be
a smooth function. Assume that there exist functions φ−,φ+ : Σ→ R+ such that:

• 0 < φ− < φ+, ∆φ− ≥ f (x,φ−), ∆φ+ ≤ f (x,φ+)

then there exists a function φ : Σ→ R+ satisfying:

• φ− < φ < φ+, ∆φ = f (x,φ)

Using the substitution R = C e−φ (C > 0) in equation (4) we obtain

∆φ =−R

2
+

Λ

3
C2e−2φ +

µ

C
eφ (5)

Now the equation for horizon has the form appropriate for the application of the theorem.
To apply the theorem it is necessary to find the sub and super-solutions. The easiest
choice is to look for the constants (making the left-hand side zero) that has to satisfy
0 ≥ f (x,φ−) and 0 ≤ f (x,φ+). We divide the cases according to the cosmological
constant value:

1. Λ≤ 0 : Suppose φmin > 0 (it can be always arranged by selecting high enough
value of C), then φ− = ln

(
C
2µ

Rmin

)
and φ+ = ln

(
C
2µ

Rmax− Λ

3µ
C3
)

satisfy the

conditions of the theorem if we choose C > 2µ

Rmin
. This last condition is consistent

with the previous demand that φmin > 0.
2. Λ > 0 : In this case we can satisfy the conditions only when Λ < 4

9µ2 and Rmin <

2. For Schwarzschild–de-Sitter the first condition means an under-extreme case,
which is correct restriction since the over-extreme one is naked.



D = 4 : Uniqueness
For the proof of uniqueness we use the modification of Tod’s proof incorporating the
cosmological constant. Suppose R1 and R2 are solutions of (4), subtract the correspond-
ing equations for R1 resp. R2 (introducing V = R1

R2
) to obtain

∆ lnV =− µ

R1
(1−V )+

Λ

3
R2

2(1−V 2) (6)

Multiplying equation (6) by (1−V ) and integrating it over the compact spatial surface
(here we use the assumption that these surfaces are diffeomorphic to S2) we get

−
∫

Σ

(
µ

R1
(1−V )2− Λ

3
R2

2(1+V )(1−V )2
)

=
∫

Σ

|∇V |2

V
(7)

Analysing the signs of both sides of this equation we have the following conclusions

1. For Λ ≤ 0 the signs are opposite and so the only possibility is V = 1 implying
uniqueness.

2. For Λ > 0 we obtain opposite signs among the solutions satisfying R ≤ 3
√

3µ

2Λ
. It

means that solution fulfilling this condition is only one. Interestingly, for extreme
Schwarzschild–de-Sitter (9Λm2 = 1) we have R≤ 3m. One can then argue that this
proves the uniqueness for the lower of both horizons.

CONCLUSION

We have seen that existence and uniqueness results for the Penrose–Tod equation given
by Tod can be generalized to nonvanishing cosmological constant. The limitations aris-
ing for positive Λ are shown to be naturally related to the more complicated horizon
structure of relevant spacetimes.
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