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ABSTRACT

We explore the sensitivity of two-point-mass gravitational microlensing to the extended nature of the source star,
as well as the related sensitivity to its limb darkening. We demonstrate that the sensitive region, usually considered
to be limited to a source-diameter-wide band along the caustic, is strongly expanded near cusps, most prominently
along their outer axis. In the case of multicomponent caustics, facing cusps may form a region with a non-negligible
extended-source effect spanning the gap between them. We demonstrate that for smaller sources the size of the
sensitive region extending from a cusp measured in units of source radii increases, scaling as the inverse cube
root of the radius. We study the extent of different sensitivity contours and show that for a microlensed Galactic
bulge giant the probability of encountering at least a 1% extended-source effect is higher than the probability of
caustic crossing by 40-60% when averaged over a typical range of lens-component separations, with the actual
value depending on the mass ratio of the components. We derive analytical expressions for the extended-source
effect and chromaticity for a source positioned off the caustic. These formulae are more generally applicable to any
gravitational lens with a sufficiently small source. Using exactly computed amplifications we test the often used
linear-fold caustic approximation and show that it may lead to errors on the level of a few percent even in near-ideal
caustic-crossing events. Finally, we discuss several interesting cases of observed binary and planetary microlensing
events and point out the importance of our results for the measurement of stellar limb darkening from microlensing
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light curves.
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1. INTRODUCTION

Gravitational lensing by a system of two point masses was
first studied theoretically by Schneider & Weill (1986), who
mentioned that the model may be of some relevance for lensing
of a distant source by a binary star in our Galaxy. At the same
time they stressed that their study was not motivated by its
applicability, the model was investigated rather as a specific
example of a nonsymmetric lens. The applicability of the model
was studied by Mao & Paczynski (1991), who estimated that
~10% of events observed in microlensing surveys of stars in
the Galactic bulge would be strong binary-lensing events. In
addition, they were the first to demonstrate the possibility of
detecting microlensing by a star with a planet, as an extreme
case of the two-point-mass lens.

Although the numbers of observed strong binary-lensing
events are somewhat lower than the first estimate, tens of binary
events have already been published by the MACHO (Alcock
et al. 2000) and OGLE (Jaroszynski 2002; Jaroszynski et al.
2004, 2006; Skowron et al. 2007) projects. Many further un-
published events are listed on the microlensing alert web pages
of OGLE? and MOA,? bringing the estimated number of de-
tected binary events to 120-160. Most of these events can be
described adequately by the point-source + binary-lens model.
However, events with a sufficiently dense sampling of a cross-
ing of the binary-lens caustic require more advanced modeling.
They are sensitive to the non-zero angular size of the source star
as well as its surface-brightness distribution, usually described
by a radial limb-darkening function. The limb-darkening sensi-
tivity of caustic-crossing microlensing events (Witt 1995) turns
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them into a unique tool for studying stellar atmospheres. While
single-point-mass events share the sensitivity (Heyrovsky et al.
2000), the very high alignment necessary for the point-caustic
of the lens to transit the disk of the source reduces their fre-
quency in comparison with two-point-mass events, in which
caustic crossing is highly probable.

In principle, with good photometry and time sampling most
caustic crossings can be used to measure the limb darkening
of the source star. So far seven binary microlensing events
led to a reported limb-darkening measurement: MACHO 97-
BLG-28 (Albrow et al. 1999a), MACHO 97-BLG-41 (Albrow
et al. 2000), MACHO 98-SMC-1 (Afonso et al. 2000), OGLE-
1999-BUL-23 (Albrow et al. 2001a), EROS BLG-2000-5 (An
et al. 2002; Fields et al. 2003), MOA 2002-BLG-33 (Abe et al.
2003), and OGLE-2002-BLG-069 (Cassan et al. 2004; Kubas
et al. 2005). In addition, at the time of writing there are six
reported planetary-mass events, most of which are strongly
influenced by the limb darkening of the source. These in-
clude OGLE 2003-BLG-235/MOA 2003-BLG-53 (Bond et al.
2004), OGLE 2005-BLG-071 (Udalski et al. 2005), OGLE
2005-BLG-390 (Beaulieu et al. 2006), OGLE 2005-BLG-169
(Gould et al. 2006), the two-planet OGLE-2006-BLG-109
(Gaudi et al. 2008), and the latest MOA-2007-BLG-192 (Ben-
nett et al. 2008). A significant fraction of these events have been
analyzed using a simplified model of the caustic crossing, be-
cause most techniques for calculating the exact light curve of an
extended source with realistic limb darkening are too demanding
computationally.

On the theoretical side, the original paper by Schneider &
Weil3 (1986) studied in detail the lensing by a system of two
equal masses, discussing among other aspects the structure of
the caustic and the critical curve, point-source image positions
and amplifications, the geometry of extended-source images,
and local approximations of lensing near a caustic fold and
cusp. The paper also includes light curves of a uniform extended
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source of various sizes crossing the caustic at a fold and a cusp.
Erdl & Schneider (1993) studied lensing by two unequal masses
at arbitrary distances along the line of sight (i.e., in a single lens
plane or in two different planes), while Witt & Petters (1993)
explored the geometry of lensing by two unequal masses with an
additional shear. A range of other general works on two-point-
mass lensing has been published since, of which we mention
here the study by Dominik (1999) of various limiting cases of
binary lensing.

However, there have been fewer theoretical works studying
in more detail the extended-source effects in two-point-mass
lensing. These have been mostly limited to studies of caustic
crossing using a local approximation of the caustic by a linear
fold. Here we point out the works by Rhie & Bennett (1999) on
fold-caustic microlensing of a linearly limb-darkened source,
and the more general explorations of fold crossings by Gaudi &
Petters (2002a) and Dominik (2004).

There are only a few papers dealing specifically with mi-
crolensing near cusps of the caustic. Schneider & Weif3 (1992)
studied the lensing by a generic cusp primarily for a point source,
but presented also a sample amplification map for a uniform
circular source. Zakharov (1995, 1999) contributed simple an-
alytical expressions for the amplifications of individual images
of a point source lensed by a generic cusp. Rhie (2002) studied
point-source lensing near the cusps of a binary lens. Gaudi
& Petters (2002b) explored the microlensing behavior near a
generic cusp for a point source and estimated the microlensing
signature of a small extended source positioned on the two main
axes of the cusp.

The aim of the present work is to explore extended-source
effects in two-point-mass microlensing of limb-darkened
sources more generally, without resorting to local caustic
approximations. Such an approach has been taken so far only
in individual cases to illustrate particular effects, such as color
changes around a sample binary caustic presented by Han &
Park (2001). In Section 2 we briefly introduce the basic setup of
two-point-mass microlensing and the main relevant quantities.
We describe the method we used for computing the microlens-
ing amplification in Section 3 together with the limb-darkening
model we adopted. We explore the sensitivity to the extended
nature of the source in Section 4: numerically in Section 4.1 and
analytically in Section 4.2. The extent of the sensitive area is
used in Section 4.3 to estimate the probability of encountering
an extended-source effect of a given amplitude. We study the
sensitivity to differences in the limb darkening of the source star
in Section 5. In Section 6 we assess the adequacy of the linear-
fold approximation on the example of two observed events, fol-
lowed by more general comments on other events in Section 7.
We discuss the results and future prospects in Section 8, and
summarize our main findings in Section 9. A brief note on im-
age amplifications by a generic cusp is added in the Appendix.

2. AMPLIFICATION OF A POINT SOURCE AND AN
EXTENDED SOURCE

In a two-point-mass gravitational microlensing event the
angular positions of images in the plane of the sky x are related
to the angular source position y through the lens equation

X — Xy

V=X (1)

— UB
X — x4]? Ix —xp|*’

where 1 4 and p p are the masses of the lens components relative
to their total mass M (4 +upg = 1), and x4 and x denote their
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locations. Positions X, y, x4, and Xp are measured in units of
the angular Einstein radius 6g of the compound lens

4GM  Dis
O = T (2)
¢ DosDoL

where Dqos and Dqy are distances from the observer to the source
and lens, respectively, Dy = Dos — DoL, G is the gravitational
constant, and c is the speed of light.

It is often advantageous to rewrite all vectorial positions
appearing in Equation (1) in terms of complex variables 7 =
x1+ixy and § =y, +iy, (Witt 1990; Witt & Petters 1993). The
corresponding form of the lens equation is

E:Z__,MA __MB ’ 3)

Z—Z4 Z—71B

where the lens component positions z4 and zp are defined
similarly as the image position z.

To obtain the amplification Ay of the flux from a point
source passing behind the lens, we first compute the Jacobian
J(x) = 0y/odx analytically using the lens Equation (1). For a
given source position y we then find n distinct image positions
X;, j = 1...n, by solving Equation (1) numerically. The total
amplification is the sum of the amplifications of individual
images

n

1
Ay =Y ek “)

j=1

The point-source amplification Ay diverges if any of the
images X; appear on the critical curve of the lens, i.e., the curve
along which det J vanishes. The condition for the vanishing
Jacobian can be expressed as

detJ =1—|y)?=0, (5)

where y is the shear of the lens. In the case of a two-point-
mass lens the dependence of the shear on the image position in
complex notation is given by

Mna UB

— iy

-y =

with real phase . Setting |y| = 1 in Equation (6) yields a
fourth-order complex polynomial in z, the roots of which are
points on the critical curve. By repeating the procedure with
Y varying from O to 27 we obtain the full critical curve (Witt
1990).

Two new images appear on the critical curve when the
source enters the caustic of the lens. The caustic is found by a
reverse mapping of the critical curve using lens Equation (1) or,
equivalently, Equation (3). In the case of a two-point-mass lens
the caustic may consist of a single continuous curve, or of two or
three separate components, depending on the lens configuration
(Schneider & Weif3 1986; Erdl & Schneider 1993).

We illustrate the dependence of the point-source amplifi-
cation Ay on the position of the source by the contour plots
in Figure 1. We present nine different lens configurations,
obtained by combining three lens-component mass ratios g =
ma/mpe = {1/9,1/3, 1} with three lens-component separations
d = |xg — x4] = {0.65,1.0,2.05}. The choice of separa-
tions gives us three-component, continuous, and two-component
caustics, respectively, for all three mass-ratio values. In binary



1774 ONDREJ PEJCHA & DAVID HEYROVSKY

Vol. 690

16 32 64 >100

1.5

1.0F

0.5F

~— 00r

-0.5F

-1.0¢

-1.5

A5) 1

1.5

1.0

0.5F

0.0

1/3

-0.5F

-1.0F

-1.5

1.5

1.0

0.5F

1/9

0.0r

q=

05F
-0.5

1.5¢ 1
1.0
0.5
0.0
-0.5

-1.0

1.0F ]
150 ]
-1.5 s s A A \ -1.0 \ \ \ . . .
-15 1.0 -05 00 05 10 15 -1.0 -0.5 0.0 0.5 1.0 -20 -1.0 0.0 1.0
d=0.65 1.0 2.05

Figure 1. Contour plots of point-source amplification A( by different two-point-mass lenses as a function of source position y. Columns correspond to lens-component
separations d marked below, and each has a different scale. Rows correspond to mass ratios ¢ marked on the left. The origin of each plot is placed at the center of
mass of the lens; crosses denote the positions of the point masses with the heavier body placed on the right, and caustics are marked in blue. Contours are plotted for
values Ag = 2K increasing from the outer regions, with dark contours for k = {0.25, 0.5, 0.75, 1} and white contours for more widely spaced values k = {2, 3, 4, 5},

as shown in the color bar.

ELINT3

microlensing terminology, these are known as the “close”, “in-
termediate”, and “wide” binary configurations, respectively. In
Figure 1, as well as throughout the paper, we set the origin
of the coordinate system at the center of mass of the lens and
place the two point masses on the y; axis, with the lighter mass
(A) positioned to the left of the heavier mass (B).

In any of the lens configurations, contours far from the origin
would eventually coincide with the circular contours of a single-
point-mass lens with the same total mass. The point-source
amplification grows asymmetrically from this asymptotic region
and is divergent along the caustic. The increase to the divergence
is continuous only when reaching the caustic at a cusp, elsewhere
Ao converges from outside the caustic to a finite value and
discontinuously jumps to co. The highest amplification outside
the caustic thus occurs at its cusps, with nearby contours ending
abruptly at the caustic. Note the narrow higher-amplification
regions connecting the facing cusps of the caustic components
in the outer columns. Inside the caustic, Ay drops continuously to
a high-amplification “plateau” with Ay > 3 (Witt & Mao 1995).

For actual astrophysical sources (i.e., stars, in our context) the
point-source approximation breaks down in regions where Ag
varies substantially and nonlinearly on angular scales compara-
ble to the source size, in particular close to the caustic. In such
situations the amplification is affected by the extended nature
and, more specifically, the surface-brightness distribution B(y’)
of the source. The amplification A, of an extended source is ob-
tained by integrating the point-source amplification A weighted
by B over the source area Xg and dividing the result by the
unamplified source flux. Alternatively, A, can also be computed
as the ratio of the total flux in the images to the unamplified
source flux. For a source with its center positioned at y. we thus
have

Js, Aoye +¥B(Y )y [5 B(YIX] — yo)d*x
Js, BNy’ s BoHdy’

A(ye) =
@)

Here %; stands for the total area covered by the images and
y' is measured from the center of the source. In the numerator
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of the second expression we map the image position x to the
corresponding position on the source y[x] using Equation (1).
For a source passing sufficiently close to the caustic of the lens,
the spatial dependence of B is thus encoded in the temporal
dependence of A,. In such cases the surface-brightness profile
of the source can be measured, in principle, from the light curve
of the lensing event.

3. COMPUTATIONAL METHOD

Evaluation of the extended-source amplification A, given by
Equation (7) with an arbitrary surface-brightness distribution
of the source is a challenging task. Direct integration using
the first expression in Equation (7) is very inefficient, due
to the root-finding necessary for evaluating Ay for each point
of the source and the need of special treatment of its divergence
in caustic-crossing events. The inverse ray-shooting method and
its variations (Schneider & Weil3 1986; Rattenbury et al. 2002),
based on the second expression in Equation (7), require pro-
hibitively many evaluations of Equation (1) to achieve a relative
accuracy of at least 1073, Such a minimum accuracy is necessary
for analyzing light curves with good-quality photometry, and
is essential for extracting the surface-brightness profile of the
source from observational data. Computational methods based
on Green’s theorem (Gould & Gaucherel 1997; Dominik 1998,
2007) are efficient for uniform sources, but have difficulties in
the more realistic case of sources with general limb-darkening
profiles. Hybrid methods, which use a combination of several
techniques, present a more efficient approach. For example,
Dong et al. (2006) use a combination of ray shooting and Green’s
theorem. We employ an image-plane integration method sug-
gested by Bennett & Rhie (1996) and Vermaak (2000), which
combines elements of the direct and ray-shooting methods.

For a given source-center position we first find the positions
of its images from the lens Equation (3). The image positions
then serve as starting points for a recursive scan-line flood-
fill algorithm that checks points (pixels) in the neighborhood
to see whether they ray-trace back to the source disk through
Equation (3). To obtain the numerator of the second expression
in Equation (7), appropriate image pixel areas are then summed
with a weight given by the surface brightness of their corre-
sponding point on the source. The flood-fill procedure runs until
image boundaries are reached in all directions. When evaluating
the amplification for a given source position, we have to keep in
mind that two new partial images appear whenever the edge of
the source enters the caustic. These may be disconnected from
the source-center images and thus could be potentially missed.
In order to take them into account we calculate the intersections
of the edge of the source and a polygon closely approximating
the caustic, which is obtained as described in the text follow-
ing Equation (6). For initializing the algorithm we then use a
source point just interior of such an intersection instead of the
source-center position, and keep track of the visited image pix-
els in order to not count any repeatedly. This method can easily
yield the amplification of an extended source with an arbitrary
surface-brightness profile, with very few redundant inversions
of Equation (3) and relatively few back-traced rays that do not
hit the source.

We model the stellar source disk by a circle with angular
radius 6, = p,6g and surface brightness described by a radially
symmetric limb-darkening profile B(y’) = I(r), with the
radial coordinate r = |y’|/ps scaled to the source radius.
We perform most of our computations for two different source
radii p, = {0.002,0.02} in units of the Einstein radius,
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roughly corresponding to typical bulge main sequence and red
giant microlensed source stars, respectively. Limb darkening is
usually described by the linear limb-darkening law,

1) = Io[1 — v(1 =1 —r2)]. ®)

However, the linear law often gives a poor approximation
of limb-darkening profiles of model atmospheres. Such an
inaccurate model would hinder the study of details of the
caustic crossing. Instead, we model the limb darkening (r)
using the first two terms, fi(r) and f>(r), of an orthonormal
basis obtained by principal component analysis (PCA) of limb-
darkening profiles of Kurucz’s ATLAS model atmospheres
(Heyrovsky 2003, 2008),

I(r) = a1 fi(r) + ay fo(r) = ai[ fi(r) + ()] . (9)

The first basis function f;(r) already gives a weighted-average
limb-darkening shape of the set of model profiles, while the
second term with parameter « provides the first correction for
variations in the shape. The basis functions f; and f, are plotted
in Figure 2 together with the range of limb-darkening profiles
I(r) obtained by their linear combination. Such a model is much
better suited for a realistic description of limb darkening, even
though it has the same number of degrees of freedom as the
linear law.

4. SENSITIVITY TO AN EXTENDED SOURCE

In this section we explore the sensitivity of the microlensing
amplification to the extended nature of the source. Our primary
interest here is to find out how far from the caustic the effect
can be felt. The variation of amplification with limb darkening,
which is of primary importance during caustic crossing but
of secondary importance further off the caustic, is studied in
Section 5. In most of this section we therefore set « = 0 and use
only the first principal function f;(r) for the limb darkening.*

We first compute in Section 4.1 maps of the sensitivity for
different lens configurations and illustrate its general properties.
In Section 4.2 we derive an analytical estimate of the effect
valid for any source not lying directly on the caustic. Finally,
in Section 4.3 we compare the probability of events with an
extended-source effect of a given amplitude with the probability
of caustic-crossing events.

4.1. Region of Sensitivity

For a source centered at y. we describe the sensitivity by the
relative amplification excess over the point-source amplifica-

tion,
A*(Yc) - AO(YC)
Sex(ye) = —otel 0T (10)
Ao(ye)

Figure 3 shows contour plots of . for the lens geometries
used in Figure 1 and a source star with radius p, = 0.02. As
anticipated, most of the area sensitive to the resolved source is
concentrated near the caustic curves. However, the |§ex| = 0.001
and 0.01 contours depart in some cases substantially from the
caustic, as discussed further below and in Section 4.3.

4 Such a profile is similar to that of various ATLAS models, for example the
B-band profile of a model with effective temperature Terr = 12500 K and
surface gravity log g = 2.5 or the R-band profile of a model with Tegr =
8000 K and log g = 1.5 (both with solar metallicity and microturbulent
velocity v; = 2km s™1).
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Figure 2. Limb-darkening model used in this work. Left panel: the first two terms fi(r) and f>(r) of an orthonormal basis obtained by principal component analysis
(PCA) of Kurucz’s ATLAS stellar atmosphere models (Heyrovsky 2008). Right panel: full range of limb-darkening profiles I(r) described by the first two principal
components following Equation (9). All profiles are normalized to unit total flux, 27 fo I(r)rdr = 1. The bold inner curve corresponds to x = 0, the outer solid
curves are determined by limiting values «px = —0.1620 and kg = 0.0902. The inner dashed curves correspond to « values spaced from 0 by 0.03, with positive

values characterizing flatter profiles and negative values more peaked profiles.
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Figure 3. Extended-source effect 8¢ for a source with radius p, = 0.02 and ¥ = 0 limb darkening as a function of source-center position y.. Panels correspond to the
same lens configurations as in Figure 1. Solid contours are plotted for dex = £0.001, £0.01, and £0.1; the dot-dashed contour corresponds to §ex = 0. As marked in
the color bar, positive values are mapped in shades of green with black contours, negative in shades of red with white contours. Areas with |5ey| < 10~% are left white.
The open circle in the upper left corner of each panel illustrates the size of the source (note the different scales in each column).



No. 2, 2009

The dot-dashed contour extending from the cusps corre-
sponds to a zero excess, with the extended-source amplifica-
tion equal to the amplification of a point source positioned at
its center. In the dominant positive green areas the amplifica-
tion exceeds Ao(y.). This is to be expected, since for a source
positioned fully outside or inside the caustic a large part of
the limb lies closer to the caustic than the source center, and
the point-source amplification increases convexly toward the
caustic.

The limited negative red areas, in which the amplification
is lower than Ay(y.), can be seen as compact lobes of varying
extent along the outer axes of all cusps. Further away from
any cusp along its axis §ex changes back to positive. The more
subtle reason for this effect is caused by the concave drop of
amplification in both directions perpendicular to the axis, which
is initially stronger than the outward convex decrease along
the axis. The off-axis parts of the extended-source limb thus
decrease the total amplification below the value corresponding
to its center. Further from the caustic, the relation reverses and
the perpendicular drop becomes weaker than the radial drop. On
a surface plot corresponding to the point-source amplification
maps in Figure 1 these regions would appear as sharp ridges
extending outward from the cusps and eventually merging
with the surroundings. Neglecting the change of amplification
perpendicular to the cusp axis can lead to misleading results,
such as the positive extended-source effect obtained by Gaudi
& Petters (2002b) along the full extent of the outer axis of a
generic cusp. For details see Section 4.2.

The smallest negative lobes can be found along the lens axis:
for non-equal-mass binaries (¢ < 1) the smallest lies around
the heavier lens-component; for an equal-mass binary (¢ = 1)
the two lobes closest to either component are the smallest. In-
terestingly, it is in this region that the increase of point-source
amplification toward the caustic is the strongest. However, as
indicated by the more circular contours in Figure 1, in this case
the extending ridge is more blunt, nearly radially symmetric in
some cases. The perpendicular drop soon becomes comparable
with the radial drop, which then dominates and leads to a positive
excess.

The most interesting and unexpected feature can be seen in
the outer columns with the compound caustics. The negative
sensitive area connects facing cusps of the caustic components,
extending many source radii along the axis from the caustic.
These regions correspond to the narrow higher-A features of
Figure 1 noted earlier in Section 2. The amplification excess can
reach well over 1% in these regions and is thus observationally
significant. For a given lens separation d the significance or
strength is dependent on the mass ratio g. With decreasing ¢
the caustic components become more separated, the regions
become more diffuse perpendicularly, and the maximum |§e |
decreases. Similarly, for a fixed g the importance of this region
depends on d. For instance, for g = 1/3 (middle row of Figure 3)
the connecting area splits into opposite lobes for d < 0.41
and for d 2 3.55. Note that in the small-separation limit
the two-point-mass lens converges to a single-point-mass lens
with the same total mass, while the large-separation limit
leads to two independent point-mass lenses. Many events in
both regimes are hard to distinguish from single-point-mass
microlensing.

In the top panel of Figure 4 we present an enlargement from
Figure 3, namely, the bottom right lens with d = 2.05 and
q = 1/9. Details of the structure close to the caustic are better
visible in this blow-up. On the inner side of the caustic we may
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begin to discern a very narrow negative region, where the diverg-
ing point-source amplification dominates over the non-divergent
extended-source amplification, bringing §.x in the limit to —1
along the inner side of the caustic. Just outside the caustic,
at a sufficient separation from cusps, the higher positive con-
tours converge to a curve parallel to the caustic at a distance
of one source radius. Here the extended-source limb enters the
caustic while the point source remains outside, thus only the
extended-source amplification starts to grow rapidly. The area
between this curve and a similar parallel curve inside the caus-
tic is the key region where extended-source effects have been
considered seriously so far. From our results it is clear that at
the 1% level this region should be substantially expanded close
to cusps, especially along the axis connecting the caustic com-
ponents. In this example the region around the smaller caustic
component on the right is fully dominated by cusp proximity,
so that the one-source-radius parallel curve is relevant only at
the 10% level. At the level of 0.1% the sensitive region broadly
covers the entire caustic structure including the area between
the components.

In order to demonstrate the large extent of the sensitive zone
we included an inset plot illustrating the 8.« variation with time
for a source traveling along the arrow marked in the main plot.
The maximum effect reaches nearly —1% when the source is
located along the axis 17.6 p, from the nearest caustic point
(—1% would be reached 16.2 p, from the cusp). Hence, even in
such entirely non-caustic-crossing events, neglecting extended-
source effects may lead to inaccurate light-curve fits and biased
event parameters.

In the bottom panel of Figure 4 we illustrate the scaling of
3ex With source size by using the same lens parameters and a
10 times smaller source, p, = 0.002. Here even the outer 0.1%
contour closely follows the caustic. As expected, in comparison
with the 1% and higher contours from the top panel, the distance
of the contours from the caustic generally scales with the source
size. Nevertheless, the scaling is not uniform, as can be noticed
from the somewhat more elongated non-zero contours along the
cusp axes. Indeed, for a source crossing the caustic axis a —1%
effect occurs as far as 28 p, to the right of the cusp of the larger
caustic component.

This can be seen also in Figure 5, which includes a detail
of the top center panel of Figure 3 (withg = 1 andd = 1)
and a further blow-up of Figure 4, each for source radii 0.02
and 0.002. In the top left panel we include cuts through the
plot along three marked source trajectories crossing the caustic.
In the top right panel we include cuts for the smaller source
along the same straight lines extending the same number of
source radii from the caustic (i.e., in this panel the arrows would
be shrunk 10 times toward the caustic). The A trajectories
correspond to the well-studied fold-crossing regime. As the
source approaches the caustic from inside, the positive effect
peaks just after the limb touches the caustic and drops to
8ex = —1 at the caustic. The peak value is only slightly higher
for the smaller source. Once the source center is outside the
caustic, the corresponding point-source amplification jumps to
a low value and the extended-source amplification dominates
by a factor roughly proportional p, 12, Nevertheless, §cx drops
rapidly practically to zero when the source limb fully exits
the caustic. Thus, the region with [§¢| = 0.01 is limited to
a band from 2.4 p, inside to 1 p, outside the caustic. For the
region with |8x| = 0.001 the outer limit remains the same,
but the character of the inner region in this particular situation
depends on the source size. While for the smaller source the



1778 ONDREJ PEJCHA & DAVID HEYROVSKY

-1 -0.1 -0.01 -0.001 -10*

Vol. 690

10° 0.001 0.01 0.1 >1

o
o

L L I L B B B B B
/x

\‘Jlllllllllllll\‘\

0.4

0.2

0.0

-0.2

-0.4

|
|
o
|
|
b
Ly
iy
\‘\\\‘\\\‘\\\‘\\\‘\

\‘\\\‘\\\‘\\\‘\\\‘\
A
\
[
/

-2.0 -1.5 -1.0

-0.5 0.0 0.5
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lines have the same meaning as in Figure 3 with four additional dotted contours at £10~2 and +10~'-_ Inset in the top panel: cut along the source track marked with
the orange arrow. The time axis is parameterized with ¢ expressed in units of source-radius crossing time 7, and # = 0 corresponding to the crossing of the caustic axis
y2 = 0. Values corresponding to 8ex = 0, 1073, and 1072 contours are marked in the inset by gray lines.

inner limit of the band lies at 7.8 p,, for the larger source
the width of the entire caustic is less than double (only 15 p,)
along the horizontal line extended from A. The 8.« value thus
remains larger than 0.001 along the line inside the caustic. The
validity of the fold-caustic approximation is discussed further in
Section 6.

Sources moving along trajectories B directly exit the caustic
through the cusp along its axis. The character inside the caustic
is similar to A with a few important differences. The peaks
are substantially higher than those of the corresponding A
trajectories. The positive peak occurs already 2.4 p, from the
cusp for the larger source, when the limb of the source touches
the inclined parts of the caustic above and below the axis.
Due to the curvature of the caustic, for the smaller source
the peak occurs as far as 4.9 p, from the cusp. Outside the
caustic the curves are entirely different from A, slowly rising
from —1 toward zero, the larger source passing dex = —0.1
at 2 p,, 8ex = —0.01 at 4.4 p,, and 6., = —0.001 at 7.6 p,
from the cusp. The rise is even slower for the smaller source,
which passes 6.x = —0.1 at 4.6 p,, §ex = —0.01 at 11 p,,
and 8¢ = —0.001 as far as 23 p, from the cusp. Inside the
caustic the larger source crosses de = 0.01 at 5.9 p, and
dex = 0.001 at 14 p, from the cusp, the smaller source at 12 p,
and 26 p,, respectively. The important result that the smaller
source size leads to a larger extent of the sensitive region in
terms of source radii on both sides of the cusp contradicts one
of the analytical findings of Gaudi & Petters (2002b), who
concluded that the extent was independent of the source size
for sufficiently small sources. We discuss this point further in
Section 4.2.

Source-center trajectories C pass through the cusp perpendic-
ular to its axis. Except for the immediate vicinity of the cusp,
the values are positive, peaking at §ex =~ 1 at positions 0.65 p,
from the cusp, dropping to 0.1 at 1.2 p, from the cusp, to 0.01
at 3.1 p,, and to 0.001 at 8.2 p, from the cusp. The decay rate
is thus intermediate between cases A and B. In this case the
curves for the two source sizes are nearly identical, differing
only slightly in the peak height.

The source-size dependence of the extended-source effect
is illustrated in more detail in Figure 6 for the three cuts
from Figure 5 and a source-center-crossing single-point-mass
lens for comparison. The graphs for cuts A, C, and for the
single lens are plotted as a function of time in units of the
source-radius crossing time ¢,. For cut B, time is shown in
units of fg(ps) = (04/0.02)"'/3¢,, in order to account for
the changing characteristic scale along the cusp axis discussed
above. In each panel the curves with increasing peak height
correspond to decreasing source size. For cut A, the values
of p, = {0.1,0.05,0.02, 0.01, 0.005, 0.002, 0.001}, with the
previous caustic entrance visible in the inset for p, = 0.1; for
cuts B and C, p, = {0.1, 0.05, 0.02, 0.01, 0.005, 0.002}; for the
single lens, p, = {2, 1, 0.5, 0.2}. The §.x curves converge for
p« — 0 nearly everywhere to limit curves, so that curves for
smaller source radii would be indistinguishable in the plots. The
only obvious exception occurs for a source centered within one
radius outside the caustic in cut A, where A(¢/t,) converges to a
constant while A, (7/1,) and thus also 8¢ (f/t,) diverge as p, 172,
It is interesting to note the rapidity of the convergence in the
case of the single-point-mass lens, in which the limit curve is an
analog of the uniform-source B(z) curve of Gould (1994). In the
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Figure 5. Details of the extended-source effect 8ex(yc) forad = 1, ¢ = 1 lens (top panels), and a d = 2.05, ¢ = 1/9 lens (middle and bottom panels) for source
radii p, = 0.02 (top left and middle panels) and p, = 0.002 (top right and bottom panels). Meaning of symbols and lines as in Figure 4. Top left inset: cuts for
source tracks marked by arrows; top right inset: cuts for the same number of source radii along the same tracks. Caustic crossing of the source center occurs at time
t = 0; t, is the source-radius crossing time. Gray horizontal lines in the insets mark contour values §ex = 30.1.

case of the three presented binary-lens cuts the limit curves are
valid for sources at least two orders of magnitude smaller than
in the single-lens case. For instance, along the fold-crossing cut
A, the t < 0 part of the §.x curve is independent of the source
radius only for p, < 0.001, and the shape of the ¢ < #, part of

~

the corresponding A, light curve is independent of p, only for
0+ < 0.005 (not shown here?).

5 The faster convergence of the light-curve shape is caused by the partial
compensation of the steeper drop of ¢x at # — 0~ for a smaller source by the
steeper rise of Ag closer to the caustic.
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Even though we explored the source-size dependence only region inside the caustic with a negligible extended-source effect
for three specific caustic crossings of a specific lens, due to [6ex| < 0.001 lies within the innermost contour.
the universality of the local lensing behavior the cut A limit To summarize the influence of source size, a smaller source
curve is valid for any fold crossing, provided we replace t, reaches higher amplification close to the caustic. Typically, the
by the source-radius caustic-crossing time in non-perpendicular amplification excess |Sex| also increases, but for sufficiently
crossings. Similarly, the cut B and C limit curves are valid small sources on the inner side of folds and in any direction from
for any parallel and perpendicular cusp crossings, respectively. cusps it remains constant. While the extended-source effect for a
However, in all cases the rate of convergence as p, — 0 does smaller source is relevant in smaller regions around the caustic in
depend on the geometry of the particular crossing, primarily on terms of Einstein radii, it extends substantially further outward
the local curvature of the caustic, cusp shape, and vicinity of from cusps in terms of source radii p,. Along the axis connecting
(other) cusps. caustic components a 1% effect may occur tens of p, from cusps
The opposite large-source regime is illustrated in the middle for the smaller source, and significantly over 10 p, even for the
panel of Figure 5, where the source size is comparable with the larger source.
size of the caustic component. Hence, the proximity of all cusps
has an influence on any caustic-crossing event, as demonstrated 4.2. Analytical Estimate of Extended-Source Effect

by the smooth deformed contours, very different from those in

. 4.2.1. G [ Result.
the top left panel. Along the lens axis the §.x = —0.01 contour ererat et

extends 14.6 p, out from the leftmost cusp, but only 1.29 p, out For any sufficiently small source we may study the ampli-
from the rightmost cusp. The structure for the smaller source in fication excess J¢x analytically by expanding the point-source
the bottom panel looks more familiar. Here the ratio between amplification appearing in Equation (7) around y,. In principle,
the §ox = —0.01 left and right contour extent is relatively such an approach should give us good results for any region
less extreme but still large: 26.2 p, from the leftmost cusp and where A (y) is analytic within a source radius p, of point y,,

4.8 p, from the rightmost cusp. Note that the only significant which means anywhere except within a source radius of the
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caustic. The extended-source amplification can then be written
as

Js, Vi B(yHdy'
J. BGOPy'
L 22: 92 Ag ( )fzsy}yLB(y’)dzy’
2 9 Js, By’

2
dA
A(¥e) = Ao(¥e) + ) :W%yc)
j=1

_ j

+0(p).

QY

The first correction to the point-source amplification is given
by the dot product of the point-source amplification gradient and
the position of the center of brightness of the source measured
from source center,

_ J5 ¥'BO)AY'
J. B4y

where y;, is the position of the center of brightness measured
from the origin of the global coordinates. The following terms
in Equation (11) involve higher-order derivatives of the point-
source amplification and higher-order moments of the brightness
distribution.

In the special case of a circularly symmetric brightness
distribution B(y’) = I(r), which is of primary interest here,
we have y, = y. and all terms of odd order drop out and the
first three terms of the resulting expansion are

Ybe =¥ — Yc: (12)

fol I(r)ridr
fol I1(r)rdr

1 5
1 I(r)r dr
+ — N Ao(yo)py Jo 1)rdr &
64 fo I(r)rdr

1
Aulye) = Aolye) + 7 AAo(ye)p?

+0(0%), (13)

where A is the Laplacian and A> = AA is the biharmonic opera-
tor. For a symmetric source the leading-order approximation of
Equation (10) therefore is

AAo(ye) ) Jy 1ryrdr
4A0(ye) " [ T(ryrdr

Sex(¥e) ~ (14)

This expression provides an easy way to estimate the sensitivity
to an extended source merely from the knowledge of the point-
source amplification.®

Except for the immediate vicinity of the caustic, the relative
amplification excess can thus be approximated by a product of
three terms, each depending on different parameters. Only the
first term depends on the source-center position and the lens
parameters, therefore it fully determines the contour geometry.
The contour shape away from the caustic is thus independent of
the source size and limb darkening. The second term defines the
quadratic scaling with source radius, i.e., doubling the source
size at a given position will increase d.x four times. The last
term depends purely on the limb darkening of the source and
varies only weakly. For the linear law given by Equation (8) the
term equals (1.5 — 0.7v)/(3 — v), for our PCA model given by
Equation (9) we get (0.2155+0.3097«)/(0.4665+0.3272«). For
either model these values range from 0.4 to 0.5 from the most
peaked to the flattest possible profile. Such a weak dependence

6 Its Laplacian can be easily computed numerically from a map of Ao(y) such
as those in Figure 1.
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Figure 7. Comparison of the extended-source effect 8¢y (yc) and its approxima-
tion given by Equation (14) for the lens and source from the top left panel of
Figure 5. The caustic is marked by the bold blue line, exact contours are plotted
in black and approximate contours in red; contour levels are the same as in
Figure 5.

on the limb darkening away from the caustic justifies our usage
of a fixed limb-darkening profile in this section. Its parameter
k = 0gives us 0.462 as the value of the last term. For orientation,
the most peaked profile would have [§.c| lower by 13%, the
flattest would have |8x| higher by 8% away from the caustic.

In Figure 7 we compare this approximation to the true Jex
using the detail in the top left panel of Figure 5. The agreement
is remarkable anywhere more than a source diameter from the
caustic and very good up to a source radius from the caustic
except near the cusp. In the outer vicinity of the caustic the
exact contours bend and run parallel to the caustic at a distance
of p,, while the approximate contours extend directly to the
caustic as if §ex continued analytically. The slight discrepancy
closer to the cusp corresponds to the change of contour geometry
with source size in this region, as noted earlier in the discussion
of Figures 4-6. Adding the higher-order term from Equation
(13) would improve the agreement here.” Finally, note that all
outer approximate contours extend directly to the cusp, while
all exact contours extend to points slightly offset to both sides
of the cusp.

The zero-effect contour clearly has a special significance.
Equation (14) shows that away from the caustic §x = 0
corresponds to points with AAp(y.) = 0, independent of the
source properties. This explains the similarity of the zero
contours for both values of p, in Figure 4 or Figure 5. In fact, the
similarity allowed us to use the zero-Laplacian curve instead of
the zero-8¢x curve in several of the previous plots further from
the caustic, as it is less sensitive to low-level numerical noise.
We also point out specifically that away from the caustic the
zero-effect contour remains the same for any limb-darkening
profile I(r), as discussed further in Section 5.

For completeness, we briefly turn to the case of an asymmetric
brightness profile, relevant in our case for example for a
spotted source star. We can simplify Equation (11) similarly
by expanding Ay around the center of brightness y;, instead of
the source center y.. This approach again leads to the elimination

7 This was demonstrated after the manuscript submission by Gould (2008),
whose hexadecapole approximation is a numerical implementation of
Equation (13) including the O(o%) term.
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of the first correction and we are left with
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where yp. is given by Equation (12). The amplification of an
asymmetrically bright extended source lying off the caustic is
thus equal to the amplification of a point source placed at its
center of brightness plus a correction of second order in source
radius.

We emphasize here that the expansions in Equations (11)
and (15) are valid for any gravitational lens and a small
source of any shape and brightness distribution, not just a
binary lens and a circular source. Similarly, Equations (13) and
(14) are valid for any lens and any small source with a circularly
symmetric brightness distribution. For instance, in the special
case of a single-point-mass lens and a circular or elliptical
source, Equation (11) yields the analytical result obtained by
Heyrovsky & Loeb (1997). Equation (13) applied to a single-
point-mass lens and a circular symmetric source reproduces the
analytical result given by Heyrovsky et al. (2000).

- ch,»)’bck:| + 0(10:) k) (15)

4.2.2. Extended Source Near a Cusp

In order to examine the peculiarities of extended-source
effects near cusps, we start from the analytical expressions
for the amplification of images formed by a generic cusp,
in the form derived by Zakharov (1995, 1999) and presented
here in the Appendix. For a sufficiently small source lying off
the cusp we may then utilize Equation (14) derived above to
obtain §.x. We express the results here in terms of the source
position (y|, y1 ) measured in a local coordinate system centered
on a given cusp, with the first axis identified with the cusp axis
and the second perpendicular to it. As noted in the Appendix,
without loss of generality we rotate the coordinates so that
the cusp is pointed toward negative y; and opened toward
positive yj.

We are primarily interested in getting expressions for Jex
of a small source placed along the cusp axis (y; = 0) outside
(v < 0)orinside (y; > 0) the cusp, or perpendicular to the cusp
axis (with y; = 0). For this purpose we compute the Laplacian
of the total amplification A™", express 8ex using Equation (14),
and get our results by setting y; = 0 or y; = 0, as required.

Outside the caustic, the generic cusp approximation yields a
single image and A™" is given by Equation (A7). Starting with
the most interesting region along the outer cusp axis, we arrive
at the exact expression

AA™ 8K 2

0L=0y<0)=-5+3, (16)

A®! i i

where the cusp parameter K defined in Equation (A3) is always
positive in our coordinate system. Note that the first term, which
dominates in the vicinity of the cusp and originates from the
second derivative in the perpendicular direction, is negative,
because y; < 0 along the outer cusp axis. From the leading
order term we readily get

2K, [y 1()ridr

Sex(yL = 0)~ — Py 1 ’
Jo 1(r)rdr

17
9y (17)
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a negative extended-source effect along the axis dropping off
with the inverse cube of the distance from the cusp. The effect
is directly proportional to the cusp parameter K, hence §¢x is
suppressed near broad cusps with small K (such as the cusp
close to the heavier component of the binary) and boosted
near narrower cusps with large K, which explains the large
extent of the sensitive zone between the narrow facing cusps
of multicomponent caustics. Expressing the distance in source-
radius units, we see that at a given number of source radii from
the cusp, 8¢ is inversely proportional to the source radius p.
By inverting Equation (17) we get the scaled contour extent

i 2k [Hreyar ]
My, =0~ : .
9 0+0ex Jo 1(ryrdr

*

Hence, even though for smaller sources the extent of a given Jex
contour along the outer cusp axis shrinks as pf /3 when measured
in Einstein radii, it grows as p, /3 When measured in source
radii, explaining our observations from Section 4.1. Measured
either way, the extent also scales as 8;(1/ 3.

The expressions derived above are in good agreement with the
numerical results presented in Section 4.1. Their disagreement
with the results obtained along the outer cusp axis by Gaudi &
Petters (2002b) and Gould (2008) comes from our accounting
for the change of the amplification in the direction perpendicular
to the axis in its immediate vicinity. As mentioned earlier in
Section 4.1, close to the cusp this change dominates over the
relatively slow drop along the axis. The approach of Gaudi
& Petters (2002b) and Gould (2008) takes into account only
the radial drop and thus yields only the smaller second term
in Equation (16), which in turn incorrectly implies a positive
extended-source effect that is independent of cusp properties.
The obtained contour-extent scaling would be the same as at a
fold, i.e., linear with the source radius if measured in units of
Einstein radii, or independent of the source radius if measured
in units of source radii.

Staying outside the cusp and studying the effects of a small
source displaced from the cusp perpendicularly to its axis, we
arrive at the exact result

AA™ 10
Aot =0 = m . (19)
For the extended-source effect we get
1 3
5 1(r)r dr
Sex(y) = 0) & 2 o (20)

p; :
18y1 7 [N I(ryrdr

a positive effect dropping off as the inverse square of the
perpendicular separation from the cusp, in agreement with
Gaudi & Petters (2002b). Expressing the scaled perpendicular
contour extent as

[yol

*

s flaeriar]”

=0~ 7 ) (21)
18 Sex fo I(r)rdr

we see it is independent of the source radius, in agreement with

our C cuts in Figure 5. Unlike the inverse-cube-root scaling

with §.x along the axis, perpendicularly from the cusp the extent

—-12
scales as Jex 2,
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Inside the cusp there are three images with total amplification
given by Equation (A5). Repeating a similar procedure as above,
we get exactly

AA™ v 0,y > 0) S8 K + 2 (22)
—c WL =0,y =+,

Atot 9 yﬁ )’ﬁ

the same as the result in Equation (16) for the outer axis.
However, along the inner part of the cusp axis y; > 0, thus
both terms are positive. The corresponding result of Gaudi &
Petters (2002b) includes only the smaller second term.

Not surprisingly, Equations (17) and (18) are valid even inside
the cusp, the only difference being the positive values of §ex.
Sources positioned along the axis symmetrically on opposite
sides of a cusp thus have an opposite value of §, provided they
are far enough to lie off the caustic. The required distance can
be estimated by computing the position on the axis of a small
source tangent to the cusp from inside,

an K 1/3
Yian [—} . (23)

P P

The tangent position of the source thus also scales as p, 1/3
when expressed in source-radius units. This explains another
observation from Section 4.1, namely, the change with radius
of the position of the first peak along cut B in Figure 5. Even
though the peak does not lie exactly at the tangent point, it
lies only slightly closer to the cusp where a larger part of the
limb is aligned with the caustic. We note that the requirement
Y| 2 Yiun implies that inside the cusp Equation (18) holds for
values §ex < 0.08.

Usage of the formulae derived above in actual gravitational
lensing scenarios requires more than just satisfying the condi-
tions of Equation (14), i.e., having a small source lying off the
caustic. Additional constraints are placed by the applicability
of the generic isolated cusp model, primarily putting limitations
on the distance from the cusp. For instance, in binary lensing
there are three images of a source positioned outside the caustic
and five of a source inside, as opposed to one and three images,
respectively, in generic cusp lensing. At a greater distance from
the cusp the additional images cannot be neglected. The case of
facing cusps also places obvious distance limits.

4.3. Probability of Extended-Source Effect

Having shown that the region sensitive to the source size may
be considerably larger than the region occupied by the caustic,
we now quantify the increase in detection probability. As in all
similar cases, rigorous estimation of the probability of detecting
an extended-source effect would require a light curve by light
curve analysis, based on measuring the residuals from a best-fit
point-source binary-lens light curve. Nevertheless, understand-
ing that the actual probability will tend to be lower, we may
estimate the sought probability increase simply by computing
the number of random straight-line source trajectories that cross
a given |8.x| contour. For trajectories oriented at a given angle «
from the lens axis (y), the number is proportional to the perpen-
dicularly projected extent of the contour. Specifically, we define
1,,() as the total projected width® perpendicular to the trajectory
orientation « of the contour |dex| = w. Similarly, to estimate
the frequency of caustic-crossing events, we define /..(«) as the

8 Sum of projected widths of all components of the contour with any possible
regions of overlap counted only once.
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lines, respectively. Solid lines mark the projected width of the caustic-crossing
region /(o). The symmetry around o = /2 arises from the axial symmetry
of the lens.

3n/4 T

total projected width perpendicular to trajectory orientation o
of the outer parallel curve of the caustic at a distance p.

Sample /,, (o) and /.. (o) functions are displayed in Figure 8 for
lenses with ¢ = 1/3 and source radius p, = 0.02 (middle row
of Figure 3). Clearly, the greatest increase over caustic-crossing
events occurs when contours connecting multiple caustic parts
are crossed perpendicularly to their maximum elongation. For
instance, for horizontal (¢ = 0, ) trajectories and the three-
component d = 0.65 caustic, the 1% effect region is 2.3 times
wider than the caustic-crossing region. For vertical (« = 7 /2)
trajectories and the two-component d = 2.05 caustic, the 1%
region is 1.9 times wider than the caustic-crossing region.

Note that there is a slight difference between the quantities
used here and similar ones found in the literature. The width
Ap used by Mao & Paczyriski (1991) and the equivalent s
used by Night et al. (2008) are similar to /... However, unlike
l.. these quantities purely measure the size of the caustic, thus
including only trajectories for which the source center crosses
the caustic instead of all caustic-crossing trajectories. For tiny
sources the difference is negligible, but even for the p, = 0.02
source used in Figure 8, s..(r/2) in the top panel is 16%
(four source radii) lower than [..(7/2). In addition, when the
caustic shrinks to isolated points in the very wide d >> 1 or very
close d < 1 binary limits, s.. drops to zero while /.. converges
to two or three source diameters, respectively.’

The relative probability of achieving at least a [§ex| = w
extended-source effect in comparison with the probability of

9 For any orientation except for angles perfectly aligned with lines
connecting the caustic components.
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Table 1
Probability P,, of Occurrence of Extended-Source Effect of Amplitude |§ex| > w in Multiples of Caustic-Crossing Probability
q d
0.65 1.0 2.05 [0.5,3.0]
Po.oo1 Poot Py Po.oo1 Pooi Po.i Po.oo1 Poor Po. Pyt Py Py
P« = 0.02
1 2.01 1.89 1.40 1.27 1.14 1.04 1.57 1.41 1.32 1.94 1.43 1.15
1/3 2.24 2.09 1.33 1.30 1.15 1.05 2.00 1.77 1.38 2.09 1.50 1.17
1/9 2.78 2.08 1.27 1.40 1.19 1.06 3.13 1.95 1.25 2.54 1.63 1.19
px = 0.002
1 1.76 1.27 1.07 1.09 1.04 1.01 1.42 1.37 1.11 1.30 1.14 1.04
1/3 1.65 1.27 1.09 1.10 1.05 1.02 1.68 1.23 1.08 1.35 1.17 1.06
1/9 1.67 1.30 1.10 1.13 1.06 1.02 1.55 1.24 1.08 1.47 1.24 1.08
2 = T T T-TTT ‘ N T TTT] 5 T T TTT mTTTT
FE g=1 X E L =1 ' J
1.5 a ///\x %{\ = 4r a i
AR A 158 .
\V; £ X e - B . -
Eo N\ o | Ko
0.5 =7 1B e e — — ]
O E= 1 1 1111 ‘ 1 | 0 = F\/ 1 | | ‘ 1111 \_
2 - T T T T TTT ‘ T TTT] 5 T T TTT ‘ T TTT
TR VA B 3 ap q=1/3 ]
. C / = r B
A 2 D At i =3[ -
v 1 — o~ - | L . _ -1
E g 2 ,4,.><—>()<¥ Koxs— = ]
0.5 f -~ 3 1B T e — — ]
- K= — = - P — i
= | O C 1 1 | | ‘ | |
T TTT] 5 N T T TTT ‘ T TTT
E 4 q=1/9 _
,,,,, ><>€ 3 2 3 ‘ =
............ E o [ R &\ ) ,"?g%x»x *x— |
= 1 B e — ]
X—— — o . — i
O E— — 1 Il Il | | ‘ Il Il Il | T O C_ Il Il Il | | ‘ Il | |
0.1 1 10 0.1 1 10
d d

Figure 9. Angle-averaged projected widths (/,,) of regions with absolute extended-source effect |[§ex| > w (left column) and relative probabilities P,, (right column)
of achieving an |dex| > w effect as a function of lens-component separation d for three mass ratios (as marked in each panel) and a p,, = 0.02 source. Curves for
w = 0.001, 0.01, and 0.1 are marked by dotted, short-dashed, and long-dashed lines, respectively. Solid lines in the left column mark the angle-averaged projected
width of the caustic-crossing region (l..). The relative probabilities P,, are computed in comparison with the probability of caustic crossing, P, = (ly)/{lcc). The
values of d used in the computations are marked by crosses along the w = 0.01 curves.

caustic crossing is given by the ratio of the angle-averaged
projected widths,

2
P, = (Lw) _ ()2 ly(a)da . (24)
(lec) On lec(a) da

We present the values of P, for the nine lens geometries of
Figure 3 in the left part of Table 1 for source radii p, = 0.02
and 0.002. The obtained values demonstrate that the probability
of an extended-source effect can be much higher than the
probability of caustic crossing. In the case of the larger source,
the probability ratio for a 1% effect exceeds 2 in two of the nine
studied geometries. For the smaller source, Pyo; > 1.3 also in
two of the nine. Apart from the obvious decrease of P, with
decreasing p, and increasing effect amplitude w, few trends in
the values can be easily generalized. From the tabulated data we
can at least see that for a given combination of ¢, p,, and w the
value of P,, is lowest for the d = 1 single large caustic case.
Such a caustic also has the lowest number of protruding cusps
when averaged over projection angles.

To get a better understanding of the dependence on lens
geometry, we include in Figure 9 plots of the angle-averaged
widths (/,,), {l.c), and the relative probability P,, as a function
of the lens-component separation d for the three mass ratios g
and the larger source (p, = 0.02). The angle-averaged caustic-
crossing-region width (l..) is the highest in the single-caustic
regime, where it approaches or exceeds one Einstein radius,
and drops to the limits mentioned above after the caustic splits
into several components (see also Mao & Paczyniski 1991;
Night et al. 2008). The contour widths (/,,) for decreasing
w are progressively higher and peak later after the splitting,
but generally follow a similar trend. For small d these widths
converge to the corresponding contour widths of a single-point-
mass lens, because the contours surrounding the small three-
cusp caustics shrink to a point together with the caustics. For
large d the widths converge to double the respective value.

The right panels in Figure 9 illustrate the change of the
relative probability P,, with d, thus clarifying the interpretation
of Table 1. We first note that the character of the curves is the
same for all three values of g. In the single-caustic regime the
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values of P, are low. Still, for example, Pyo; does not drop
below 1.1 for any of the mass ratios. P,, increases rapidly to
a peak when d moves out of the single-caustic interval, and
progresses to asymptotic values in the d > 1 and d < 1
regimes. In the wide-binary limit the value of P, is simply
given by the corresponding single-point-mass contour width
expressed in units of source diameter. For the three included
contours and « = 0 limb darkening, we get Pp; = 1.2,
Pyo1 = 3.4, and Pypy = 11. In the close-binary limit the
relative probabilities are one third of the corresponding wide-
limit values, i.e., Py = 0.42, Pyo; = 1.2,and Pyop; = 3.6. The
quoted values are valid for all three mass ratios and both source
sizes.!? In fact, they remain constant for any source sufficiently
smaller than the Einstein radius of the lower-mass component of
the binary. More specifically, from single-point-mass extended-
source computations we find that for the 1% effect this requires
ox < 0.24/q/(g + 1), while for the 0.1% and 10% effects the
factor before the square root is approximately 0.05 and 0.5,
respectively.

The character of the (l,,)(d) and P, (d) curves for the small
source (p, = 0.002) is similar to the large-source results, except
for reaching generally lower values. It is worth noting here that
the scaling of Equation (14) with p, implies that for instance
(lp.01) for a source with p, = 0.02 should be the same as (ly 901 )
for a source with p, = 0.002, keeping ¢ and d fixed. This can
also be noticed in Figures 4 and 5. The scaling does not hold
for (ly.1), because the corresponding contour lies closer to the
caustic than the domain of validity of Equation (14). In either
case, P,, will include an additional variation due to the increase
of (l.c) with p,.

In order to condense the information from Figure 9, we
average the value of the relative probability over the main range
of separations in observed two-point-mass microlensing events,
d € [0.5, 3.0]. The obtained values of P,, for both source sizes
are listed in the last three columns of Table 1. For the larger
source we see that encountering a > 1% extended-source effect
is on average 1.43—1.63 times more probable than crossing the
caustic, the values increasing from ¢ = 1 to ¢ = 1/9. For
the smaller source we get a factor of 1.14-1.24 increase in
probability. It is clear from Figure 9 that these average values
are particularly sensitive to setting the upper endpoint of the
averaging interval in d, at which P, ; keeps on increasing.

5. CHROMATICITY

Equation (14) demonstrated that the amplification depends
on the limb-darkening profile even away from the caustic,
albeit fairly weakly. In general, the variation of stellar limb-
darkening profiles with wavelength introduces a chromatic
effect in microlensing. In this section we explore the dependence
of the microlensing amplification on the limb-darkening profile
using the two-term PCA model given by Equation (9).

By introducing a model of this form in Equation (7) we obtain
a limb-darkening-parameter « dependence of the extended-
source amplification A.(yc, ). The rate of its change with «
is given by the derivative

DA ) _ o SirIrdr fy f(ryrdr
i { LA +kfarlrar)’

Dy(ye, pi), (25)

10 The curves for w = 0.001 can be expected to turn over for d < 0.1, the
lowest computed separation.
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where we introduced the geometry-dependent function

Jz, Ao(ye + pur) fo(r)d’r
2 fol fHo(ryrdr
f;s/ Ao(ye + pur) fi(r)dr
2w [N ferdr

D(ye, px) =

(26)

The integrals in the numerators of the expression are com-
puted over the unit disk of the source Xg. The function
D4(y., ps) canreadily be interpreted as the amplification differ-
ence between hypothetical sources with limb darkening given
by f>(r) and fi(r), respectively. Of course, the function f, alone
does not describe the limb-darkening profile of any realistic
source.

More interestingly, for a given two-term limb-darkening basis
the dependence on individual parameters is separated, with the
factor preceding D4 (y., ps«) in Equation (25) depending purely
on the limb-darkening parameter «, and D4(y., ps) depending
on the source position y. and source radius p,. Equation (25)
implies that at any source position y. the amplification changes
monotonously with the limb-darkening parameter k. The sign
of the derivative changes along a curve y. = y,.(7) implicitly
defined by setting D 4(Yac, px) = 0. The parameter separation
obviously persists in higher-order derivatives, and is retained
even when computing the amplification difference between
sources with different limb darkening (or a source observed
at different wavelengths),

A*(YCa Kl)_A*(yc’ KZ) =l’l(K1, KZ) DA(yCa ,0*), (27)

with the x-dependent factor

(k1 —K2) fy fi(ryrdr [} fo(ryrdr

JoLA@) + k1 (0rdr [{LAE) + k2 fo(r)Irdr

(28)
We conclude that for a given source size and a given two-
term limb-darkening model of the same form as the law in
Equation (9) there exists a unique achromatic curve y,.(t)
obtained by setting D4(Yac, 0«) = 0. The amplification of
a source located anywhere along this curve is independent
of the specific value of its limb-darkening parameter. Note
that the curve does depend on the source size and on the
specific functions f;(r), f>(r) of the limb-darkening model. For
example, it is somewhat different for linear limb darkening and
for the PCA model. The p, dependence disappears away from
the caustic, as shown below.

For the PCA model we use, the variation of /i(k1, k) with k »
is dominated by the (k| — k;) proportionality of the numerator of
Equation (28), while the x-dependence of the denominator has
only a weak influence. Hence, the largest value is achieved for
the largest difference in limb-darkening parameters. As shown
in Figure 2, the extreme physically permitted « values for our
model are kpx = —0.1620 for the most centrally peaked limb-

darkening profile,'! and kg = 0.0902 for the flattest profile.'?

h(ky, k2) =

1T Closely resembling the B-band profile of a range of cool K and M giants,
e.g., the solar-metallicity ATLAS model with T = 3500 K, log g = 1.5,
v, =2kms L

12 Resembling the I-band limb darkening of a range of O dwarfs, e.g., the
solar—me]tallicity ATLAS model with Teir = 48000 K, log g =5, v, =
2kms™.
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Based on the preceding, we use these extreme values of
the limb-darkening parameter « to define the microlensing
chromaticity

A(ye, ka) — Ax(¥e, k51)
A*(st O)

where we divided Equation (27) by the amplification of a source
with k = 0 used in Section 4. Thus defined, the microlensing
chromaticity determines the maximum relative variation of
the microlensing amplification with the parameter of a given
limb-darkening model. In other words, §cp(yc) is the minimum
photometric precision necessary for distinguishing between the
steepest and the flattest limb-darkening profiles of a source
located at y.. Note that 6., depends on nondivergent extended-
source amplifications, and its behavior close to the caustic is
therefore quite different from J¢x. In particular, the change of
Scne across the caustic is continuous, and its value varies even
along the caustic.

In order to understand the variation of 8, away from the
caustic analytically, we expand Equation (29) for a small source
in regions where Ay is analytic, similarly as in Section 4.2.
We obtain, to first order in pZ,

Schr(YC) = s (29)

fol H(r)ridr fol fi(ryrdr
[y fyrdr [} fitrrddr

Senr(Ye) & h(ka7 Kf1) |: - 1j| Sex(¥e) »

(30
where we utilized the approximate expression for the extended-
source effect dox from Equation (14) for a source with a
brightness distribution /(r) = fi(r). The entire expression
preceding dex in Equation (30) depends only on the limb
darkening, hence the source-position dependence and source-
size scaling is exactly the same as for 8. At a distance
from the caustic (and its cusps in particular), the geometry
of Scnr(yc) contours is thus exactly the same as that of the
extended-source effect d.x(y.) contours. This also means that
the achromatic curve y,.(7) coincides in this region with the
dex = 0 contour, as implied earlier in Section 4.2, and thus it
also becomes independent of p,. Using our PCA basis and its
kpk and kg parameters, we obtain —0.197 as the value of the
factor preceding d.x in Equation (30). The contours of §.x away
from the caustic thus coincide with contours of a five times
lower value of chromaticity, §cp(Yc) & —0.2 Sex(Ye)-

It is worth noting here that when defining §.,, in Equation
(29), one could just as well divide the amplification difference
for example by the amplification corresponding to Ky, &g,
or the average of these two amplifications. In fact, away
from the caustic any of these choices would lead exactly to
the same approximation given by Equation (30). The advantage
of the choice we made is apparent after rewriting Equation (29)
in the form

J5, AoWe + pur) fo()dPr
fzs, fz(l")dzl’
Js, fitrd®r e
f, Aoye + pr) filr)dr |
Such a separation of the limb-darkening-parameter dependence
from the position dependence cannot be achieved by the other
possible choices of the denominator of Equation (29). Only

with the present choice does the full geometry of the contours
remain unchanged even when comparing the amplification of

Senn(Ye) = h(ka, Kt1) |:
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Figure 10. Contour plot of the h(k1, k2)/ h(kpk, kq) factor for multiplying Scpy
according to Equation (32) in order to get the relative amplification difference
812 of two arbitrary PCA limb-darkening profiles with parameters «; and «».
More specifically, all chromaticity values in the following three figures can be
rescaled as required in this way. The factor ranges from 1 in the upper left corner
to —1 in the lower right, and is numerically given by Equation (33).

sources with two arbitrary values of . This reason aside, from
the preceding analysis we see that the computational differences
obtained when using other choices would be limited to minor
variations of effect amplitude in the vicinity of the caustic rather
than causing substantial changes.

The relative amplification difference &, for two arbitrary pro-
files can be trivially computed from &, by a simple rescaling,

Ai(Ye, k1) — As(Ye, k2) _ h(ky, k2)
A*(Yc’ 0) h(kaa Kfl)

5chr()’c) P

(32)
in view of Equations (27) and (29). With values ranging from —1
to 1, the h-factor ratio can be used to recompute contour values
in the subsequent chromaticity plots, as deemed necessary. More
specifically, for our PCA basis the ratio is given by

S12(ye) =

h(ki, k2)/ h(kpk, kn) = — (k1 — k2)/[0.2676 + 0.1876(k + k2)
+ 0.1316 k1 k3] (33)

and is plotted in Figure 10.

Before proceeding to numerical results, we emphasize that all
formulae and equations in this section except Equation (33) are
valid not just for the two-point-mass lens, but more generally
for any lens and any small source with a circularly symmetric
brightness distribution of the form given by Equation (9). In the
case of quasar microlensing, however, one should keep in mind
that much of the chromaticity is caused by the different extent
of the emitting region at different wavelengths (Wambsganss &
Paczyriski 1991).

When computing §.p,(y. ) or, more generally, when computing
A, (y., k) for different values of k, it is sufficient to separately
evaluate fluxes corresponding to f; and f>, and combine them
in the numerator and denominator of Equation (7) to get the
amplification. In this way we obtained A, for ky, kg, and « =0
and plotted Sch,(yc) in Figure 11 for the nine lens geometries of
Figure 1 and a source with p, = 0.02.
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Figure 11. Chromaticity §cnr(yc) for a source with radius p, = 0.02 and PCA limb darkening. Panels correspond to the same lens configurations as in Figures 1 and 3.
Solid contours are plotted for §cpr = £0.001, £0.01, and £0.1 (the latter localized close to the caustic and hardly visible here); the dot-dashed contour corresponds
to the achromatic curve dchr(Yac) = 0. As marked in the color bar, positive values are mapped in shades of orange with black contours, negative in shades of blue with

white contours. Areas with |Sene| < 1074

As discussed above, the geometry of the &q,, contours is
similar to the geometry of 8¢x &~ —35dc contours and the
dot-dashed achromatic curve 8., = O coincides with the zero-
effect curve of Figure 3, except in the immediate vicinity
of the caustic. Staying away from the caustic, regions with
positive 8., where the amplification of a source with a peaked
limb-darkening profile exceeds that of a flat-profiled source,
thus coincide with 8x < O regions of Figure 3, where the
point-source amplification is higher than the extended-source
amplification. Similarly, regions with negative é, coincide with
8ex > 0 regions of Figure 3. The explanation of the positive/
negative region pattern is analogous to the explanation of the
dex pattern in Section 4.1, taking into account that the peaked
profile gives relatively more weight to the source center and less
to the limb than the flat profile. Just as in Figure 3, extended
areas sensitive, in this case, to limb-darkening differences can
be found connecting the components of compound caustics,
even though with lower amplitude |8|. Not surprisingly, the

are left white. Circles in panel corners illustrate the source size and the scale difference between columns.

dependence of these areas on d and ¢ is the same as for the 8ex
areas discussed in Section 4.1.

The detailed views presented in Figure 12 correspond to the
same two lens geometries as in Figure 5 with source sizes
px = 0.02 (top left and middle panels) and p, = 0.002 (top
right and bottom panels). The contour geometry close to the
caustic is clearly different from the extended-source effect §ex
contours, as seen best in the middle panel. Unlike the é.x = 0
curve, the outer branch of the achromatic curve does not coincide
precisely with the caustic and the d.,, > 0 band along the caustic
is substantially broader than its §ex < O counterpart in Figure 5,
especially close to cusps. The most striking feature in Figure 12
is the negative break at y.,; = 0.146 across the positive
chromaticity bands in the middle panel. A source on a vertical
trajectory extended through the break would cross the caustic
without changing the negative sign of its chromaticity. At the
break, the center of the source is highly amplified due to its
position on the fold caustic. However, the limb of the source
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Figure 12. Details of chromaticity Scp(yc) forad = 1, ¢ = 1 lens (top panels), and a d = 2.05, ¢ = 1/9 lens (middle and bottom panels) for source radii p, = 0.02
(top left and middle panels) and p, = 0.002 (top right and bottom panels). Meaning of symbols and lines as in Figure 11, with four additional dotted contours at
410723 and £10~!->. Top left inset: cuts for source tracks marked by arrows; top right inset: cuts for the same number of source radii along the same tracks. Caustic
crossing occurs at time ¢ = 0; ¢, is the source-radius crossing time. Gray horizontal lines in the insets mark contour values 8cpr = :|:10_2, :1:10_1'5, and £107!.

is amplified even more because a part of it lies along the right
vertical fold caustic and another part crosses the caustic close
to its cusp. The less striking dents in the positive band along the
caustic on both sides of other cusps have a similar explanation.

Regions with maximum positive chromaticity are located

just inside of cusps, where the source center achieves max-
imum relative amplification. Regions with maximum nega-
tive chromaticity are located about one source radius out-
side folds and outside cusps to either side of the cusp
axis. At these positions the source limb achieves maxi-
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mum relative amplification, as it passes through the cusp
or its vicinity and has a large part aligned with the
caustic.

The insets in the top panels include cuts through the plots
along the same three source trajectories as in Figure 5, selected
to demonstrate the behavior of chromaticity when crossing the
caustic at a fold and a cusp, as well as its scaling with source
size. The length of the source paths in the top right panel with
px = 0.002 is adapted to extend the same number of source
radii on either side of the caustic. For a source approaching
the caustic along the fold-crossing trajectory A, the negative
chromaticity peaks as the limb touches the caustic, then reverts
to a positive maximum before the center exits the caustic, and
drops back to a major negative peak before fully exiting the
caustic, after which the chromaticity is practically zero. The
first two peaks increase slowly with decreasing source size, but
the third peak doubles from 6., = —0.14 for p, = 0.02 to
Schr = —0.28 for p, = 0.002. These high values are caused by
the steep increase of the extended-source amplification when
the limb just enters the caustic (in the direction opposite to A),
with the slope given by the relative brightness of the limb. The
region with |8cy| = 0.01 is limited to a band from 1 p, outside
the caustic to 1.3 p, and 1.4 p, inside for the larger and smaller
source, respectively.

For sources moving along the cusp-exiting trajectories B,
the first two extremes are higher than in the corresponding A
trajectories, reaching S,y = —0.065 and 8., = 0.11 for both
source sizes. The first negative peak occurs 2.6 p, from the cusp
for the larger source, after the limb of the source crosses the
caustic above and below the axis. As in the case of the finite-
source effect, due to the curvature of the caustic for the smaller
source the peak occurs already 5.3 p, from the cusp. For similar
reasons, the positive peak occurs 0.75 p, inside the cusp for the
larger source, and 1.6 p, from the cusp for the smaller source.
Outside the caustic the curves differ from the fold-caustic case A
by slowly dropping toward zero, with the larger source passing
8chr = 0.01 at a distance of 2.6 p, from the cusp. The smaller
source passes dcyr = 0.01 at 6 p, from the cusp. The cusp-exiting
curves subsequently drop into negative values and approach
asymptotic 0 from below, as indicated by the achromatic curve.
Inside the caustic the larger source crosses o,y = —0.01 at
3.5 px, and the smaller source at 7.3 p, from the cusp.

The symmetric curves of the cusp-grazing trajectories C have
a positive peak value 8., = 0.09 with the source center directly
at the cusp, skirted by negative peaks with 8, = —0.16 at
positions +0.95 p, with the limb at the cusp, decreasing in
amplitude to —0.01 at £1.7 p, from the cusp. As in the case of
the extended-source effect curves, the decay rate is intermediate
between cases A and B. The chromaticity curves for the two
source sizes are practically identical.

Figure 13 illustrates the source-size dependence of chro-
maticity in more detail for the three cuts from Figure 12 and
a single-point-mass lens for comparison. Following the layout
of Figure 6, the graphs for cuts A, C, and for the single lens
are plotted as a function of time in units of the source-radius
crossing time t,, while for cut B, time is shown in units of
13(ps) = (p+/0.02)~ 13 ¢,.Ineach panel the curves with increas-
ing peak height correspond to decreasing source size. For cut A,
the values of p, = {0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001};
for cut B, p, = {0.1,0.05,0.02, 0.01, 0.005}; for cut C, p, =
{0.1, 0.05, 0.02, 0.01}; for the single lens, p, = {2, 1, 0.5, 0.2}.
All the §¢p, curves converge for p, — 0 to limit curves, so
that curves for smaller source radii would be indistinguishable
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in the plots. Only the fold-exiting ¢/f, — 1 part of our cut A
curves would still differ—here the convergence is the slowest.
The limiting value of this negative peak can be obtained from
Equation (31) if we replace the ratio of the amplified PCA terms
by the ratio of limb values f>(1)/f1(1). The limiting peak value
for our PCA basis is —1.46, for linear limb darkening —1. Just
as in the case of the extended-source effect, the fastest conver-
gence to a generic chromaticity curve is found in the case of the
single-point-mass lens (see Heyrovsky et al. 2000; Heyrovsky
2008), and the limit curves in binary-lens cuts B, C, and most
of A are valid for sources two orders of magnitude smaller than
in the single-lens case. Reaching the limit during the exit of
the trailing source limb in cut A would require reducing the
source size by several more orders of magnitude. As discussed
previously for the extended-source effect, due to the universality
of the local lensing behavior the limit curves A, B, C are valid
for arbitrary fold, parallel cusp, and perpendicular cusp cross-
ings, respectively. Only the rate of convergence depends on the
geometry of the specific crossing.

Returning to Figure 12, the extent of the region with signifi-
cant chromaticity along the lens axis in the middle and bottom
panels is even larger than in the top panels. For the larger source
in the middle panel the 8., = 0.01 contour extends 6.4 p, out
from the leftmost cusp, but only 0.95 p, out from the rightmost
cusp. For the smaller source the contour extends 13.8 p, to the
left and 2.6 p, to the right. The asymmetry has the same cause
as the 8. contour asymmetry in Figure 5—the large differ-
ence in the narrowness parameters K of the cusps, as shown in
Section 4.2.2.

For an interesting comparison we refer to Han & Park (2001),
who present similar plots in their Figure 3 of the B — I color-
change map and its cuts for the same caustic detail and a larger
source with p, = 0.1. Their blue peaks correspond to our
Senr > 0, and their red peaks to dq,y < 0. As expected from
the results above, the peaks for their cusp-exiting cut are shifted
closer to the cusp. A color-change map for the whole caustic of
thisq = 1,d = 1 lens and the same large source in their Figure 2
can be compared with our chromaticity map for a five times
smaller source in the top central panel of Figure 11.

To summarize the results of this section, observationally
significant chromaticity occurs within regions sensitive to the
extended nature of the source, but as a generally weaker effect
it is concentrated closer to the caustic. As in the case of
the extended-source effect, for smaller sources chromaticity is
relevant in regions smaller in terms of Einstein radii, which
nevertheless extend further out from cusps in terms of source
radii. Positive regions reach highest 8., values just inside
cusps, from where they extend along the caustic and along
the outer cusp axes. Negative regions reach a local extreme
inward of the positive band along the caustic, but achieve
the overall highest || in a band skirting the caustic from
outside. These outer high-negative-chromaticity regions are also
particularly sensitive to the source size, with a smaller source
permitting higher differential amplification when its limb enters
the caustic. The significance of these areas is somewhat reduced
by the low amplification at the caustic-crossing onset or end
of exit. However, in current microlensing monitoring projects
caustic exits are generally observed with better photometry and
sampling than caustic entries, thus giving ample opportunity for
measuring the limb darkening of the source.

The chromatic sensitivity of microlensing is even more pro-
nounced if we examine the wavelength dependence in more
detail, that is, if we proceed from photometry to spectroscopy.
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Figure 13. Source-size dependence of chromaticity dcp,. Panels correspond to the source tracks marked in Figure 12 as noted in the top left corner,
and to a source-center-crossing single-point-mass lens (bottom right) for comparison. Curves with increasing peak height correspond to source radii p, =
{0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001} for panel A, p, = {0.1,0.05,0.02,0.01,0.005} for panel B, p, = {0.1,0.05,0.02,0.01} for panel C, and p. =
{2, 1, 0.5, 0.2} for the single lens. The time intervals, time units, and vertically marked times are the same as in Figure 6. Horizontal dotted lines mark 8¢,y = £0.01, £0.1.

Although microlensing spectroscopic effects are closely related
to broadband chromaticity (Heyrovsky et al. 2000), their ex-
ploration in full two-point-mass lensing is beyond the scope of
this paper. Instead of a simple two-term limb-darkening law,
such a study requires the usage of a full model atmosphere
with its wavelength-dependent center-to-limb specific-intensity
variation at the necessary spectral resolution.

6. VALIDITY OF LINEAR-FOLD APPROXIMATION

The analysis of static binary fold-caustic-crossing microlens-
ing events (e.g., Afonso et al. 2000; Albrow et al. 2001a) with
extended-source effects often follows a procedure similar to
that outlined by Albrow et al. (1999b). An analogous approach
has been used for more complicated events such as OGLE-
2002-BLG-069 (Kubas et al. 2005), which involves the parallax
effect, and in two early papers on EROS-BLG-2000-5 (Albrow
et al. 2001b; Afonso et al. 2001), a cusp-approaching event that
manifests both binary rotation and parallax effects.

When a source exits the inner region of the binary caustic,
two of the five images disappear. As a point source approaches
a fold section of the caustic from inside, the amplification of
the two vanishing images diverges in a square-root singularity
(Blandford & Narayan 1986; Schneider & Weil} 1986). Assum-
ing that the amplification of the three remaining images changes

only linearly near the caustic and approximating the caustic by
a tangent at the point of crossing, the approximate total ampli-
fication AP (7) of an extended source as a function of time ¢ is
given by

t—1
A:PPr(t) =U,G; ( Atcc) + Ace + O(F — fee), (34)

where U, is a scaling factor depending on the source size and the
characteristic rise length of the caustic, A.. and w describe the
linear variation of the amplification of the three nonvanishing
images, and t. is the time when the source center crosses the
caustic.'? The timescale of the caustic crossing is measured by
the time from first contact to 7.,

At =t,csc o, 35)
where 1, = p,fg is the source-radius crossing time, g is the
Einstein-radius crossing time, and ¢ is the angle between the
trajectory and the caustic at the point of crossing. G;(n) is a
characteristic profile function which depends only on the limb

13 For a fold-caustic entrance it is sufficient to change the sign of the argument
of Gy in Equation (34).
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darkening of the source but not on its size,

V1=t I(ri+7r3)
drzdrl s
max(n,—1) 7)
(36)

where H(1 — n) is the Heaviside step function, and the limb-
darkening function I(r) is usually normalized to unit total
flux. For several classes of analytic limb-darkening functions
Equation (36) can be expressed in terms of elliptical integrals;
in more general cases G;(n) can be computed numerically.
Albrow et al. (1999b) explain the linear-fold approximation and
its parameters in more detail.

A fold-caustic crossing with a fixed limb-darkening profile
can thus be fitted by Equation (34) with five free parameters:
U,, te, At, Ae, and w. The procedure of Albrow et al.
(1999b) then continues with a fit to the non-caustic-crossing part
of the light curve constrained by the pre-fitted parameters to
determine the lens geometry. Finally, the full data set is used to
refine the solutions. However, Equation (34) is still used for the
caustic-crossing part of the light curve.

The outlined methodology has several shortcomings that can
hinder correct reconstruction of the lens geometry and the re-
trieval of source parameters. First, as we showed in Section 4,
extended-source effects are not limited to the immediate vicinity
of the caustic curves. Instead, affected areas may be substantially
larger (see Figure 3 and Table 1). Second, not every assump-
tion of Equation (34) is justified under all circumstances. For
example, the curvature of the caustic becomes important for
trajectories with small ¢, and so does the change of A, parallel
to the caustic. As shown in Section 4.1 and Figure 6, even in
perpendicular crossings the source has to be small enough for
the light-curve shape to be independent of p,. Furthermore, the
magnification of the three images unaffected by caustic cross-
ing cannot always be regarded as a linear function of time, for
example when the caustic crossing occurs in the vicinity of a
cusp. Close to cusps even the inverse-square-root approxima-
tion of the divergence breaks down. There have been several
cases of fold-crossing events, in which Equation (34) turned
out to be inadequate for the analysis. For example, in the case
of OGLE-1999-BUL-23 Albrow et al. (2001a) found that the
difference between the approximation given by Equation (34)
and amplification computed by the method of Gould &
Gaucherel (1997) amounted to as much as 4%. To cope with
this problem they used pre-calculated tabulated corrections to
improve the approximate expression.

In the following we compute n-point light curves of fold-
caustic crossings spanning several At around the time of caustic
crossing. For simplicity, we assume that A¢ and #.. are known
from the event geometry. Thus, we are left with a linear fit of the
three parameters U,, A, and w. There are two natural ways to
perform the fit. We may use standard linear least-squares fitting
for all n points (hereafter method I). Alternatively, realizing that
Gi(n) = 0 for n > 1, we let such points determine A.. and
w, and points with n < 1 are then used to fit U, (hereafter
method II).

We illustrate the drawbacks of the linear-fold approximation
on two caustic-crossing events chosen to resemble actually ob-
served events, OGLE-2002-BLG-069 and EROS-BLG-2000-5.
The former event was selected as a case favorable for the
method of Albrow et al. (1999b), based on the analysis by Kubas
et al. (2005). We used their close-binary parameters (g = 0.58,
d = 0.46) but we omitted annual parallax because it has a neg-
ligible effect during the short interval of caustic crossing, and

Gi(m)=2H( —n)

EXTENDED-SOURCE EFFECT AND CHROMATICITY IN MICROLENSING 1791

our objective is to study the method rather than the event it-
self. The source star with radius p, = 0.0048 followed a linear
trajectory parameterized by its closest distance to the center of
mass ug = Min(y.) = 0.016 and the angle @ = 134°4 between
the y; axis and the trajectory (see the top left panel of Figure 14
for a visualization of the geometry). We use here linear limb
darkening (eq. [8]) and set v = 0.62 to reproduce the /-band
limb-darkening coefficient of Kubas et al. (2005). The second
intersection of the trajectory and the caustic occurs under an
angle ¢ ~ 86°, thus making it a nearly perpendicular crossing.
We plot the relative residuals 8,pp,, of the approximation given by
Equation (34) from the exact amplification A, computed from
Equation (7) as described in Section 3,

appr
AT — Ay

Y (37)

Sappr =

in the bottom left panel of Figure 14. Even in this favorable case
the residuals may exceed 2% with either fitting method, a devi-
ation from the linear-fold approximation that is observationally
significant. Such deviations would be deleterious especially for
limb-darkening measurement, taking into account that the chro-
maticity mostly remains below the level of 10%. With method
I, Sappr peaks when the edge of the source exits the caustic
(i.e., when the two highly magnified images disappear) and the
amplitude of the residual keeps growing over 2% as the source
moves more than 2At away from the caustic. When using method
II, 8appr keeps growing over 2% when the source lies more than
2At inside the caustic.

In the case of the latter event, EROS-BLG-2000-5, initial
works (Castro et al. 2001; Albrow et al. 2001b; Afonso
et al. 2001) concentrated on the second caustic crossing, during
which spectra had been measured. The event was subsequently
thoroughly analyzed by An et al. (2002). Fields et al. (2003)
refined the event parameters further and compared the measured
limb darkening to stellar atmosphere models. In our analysis we
adopt the parameters obtained by Fields et al. (2003), namely
d =1.940, g = 0.75, p. = 0.004767, o = 732851151, but we
do not incorporate binary rotation and annual parallax. From the
distance of the closest approach to the cusp given by Fields et al.
(2003) we compute uy = 0.7096, which yields ¢ ~ 1626. The
event geometry is shown in the top right panel of Figure 14.
Based on the reported V-band square-root limb darkening,
we use a linear limb-darkening profile with v = 0.792.'* A
comparison of exact and best-fit approximated light curves is
given in the bottom right panels of Figure 14. Obviously, the
match is poor, locally exceeding 30% for both fitting methods,
and the reason is clear. Due to the curvature of the caustic
and the small value of ¢ the crossing takes longer and, most
notably, the caustic exit occurs significantly later than would
be expected from the linear-fold approximation. Furthermore,
just after exiting the caustic the source passes in the immediate
vicinity of a cusp, therefore the amplification of the three non-
vanishing images cannot be regarded as a linear function of
time. More generally, the amplification strongly changes in the
direction parallel to the tangent linear fold.

From the bottom right plot in Figure 14 we see that §upp,
peaks around |t — #..| = Az. One might try to improve the fit by
slightly adjusting #.. to account for the obvious shift which can
be seen in the light curve in the right column of Figure 14. We

14 Computed by a least-squares fit to the two-parameter square-root profile,
although details of the limb darkening have little impact on the point raised in
this section.
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Figure 14. Caustic-crossing details of events with main parameters taken from OGLE-2002-BLG-069 (left column) and EROS-BLG-2000-5 (right column). Top
panels: caustic-crossing geometry with overall event geometry in insets. Solid line: caustic; dotted line: source trajectory with arrow marking the section used in the
bottom panels; dashed line: linear fold tangent to the caustic at crossing point. Bottom panels: light-curve detail with fits and their relative residuals §yppr. Solid line:

exact light curve A,; dotted and dashed lines: best-fit fold-approximation light curves A" for fitting methods I and II, respectively. Bottom right inset: wider part of

the light curve including the following cusp-axis approach.

tried to fit f.. together with U,, A.., and w for both events but
found only a marginal improvement, with the relative residuals
staying in the percent level for OGLE-2002-BLG-069 and tens
of percent in the case of EROS-BLG-2000-5. Obviously, one
could improve the fits further by varying also At. However, this
would amount to modifying the physical parameters of the event
in order to maintain internal consistency, and such an analysis is
beyond the scope of this paper. While it might slightly improve
the fit for OGLE-2002-BLG-069, the complex pattern of the
large residuals in the case of EROS-BLG-2000-5 practically
eliminates any hopes for a plausible linear-fold approximation
to the crossing. More importantly, it is clear that releasing the
fixed parameters in the demonstrated examples leads to a bias
in their recovered values, by trying to account for the residuals
caused by the inadequate approximation.

Despite the preceding discussion, the linear-fold approx-
imation could still be useful for analyzing caustic-crossing
events similar to OGLE-2002-BLG-069 in combination with an
appropriate limb-darkening model—but for substantially

smaller sources. However, any usage of the approximation
should be justified by a test of its applicability in the partic-
ular case, at least by comparing the exact light curve for the
obtained parameter values with its best fit by the fold model
from Equation (34).

7. COMMENTS ON OBSERVED EVENTS

According to Mao & Paczynski (1991) ~ 10% of all
microlensing events in the Galactic bulge should display sig-
natures of strong binary lensing, i.e., they should undergo caus-
tic crossing. In many non-caustic-crossing binary events the
influence of lens binarity leads merely to perturbations of the
point-source-point-lens (PSPL) light curve (Di Stefano & Perna
1997; Night et al. 2008). Nevertheless, as we showed in Sec-
tion 4, even in non-caustic-crossing events light curves may
be affected by extended-source effects. In this section we first
comment on several such observed events that do or potentially
could illustrate points raised in previous sections.
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Udalski et al. (2005) analyzed the extensive observations of
the event OGLE-2005-BLG-071, and concluded that the devia-
tions from the PSPL light curve are caused by the source passing
close to three cusps of a caustic induced by a Jovian-mass com-
panion to the primary lens. Here we assume the following pa-
rameters for this event: ¢ = 0.0071, d = 1.294, uy = 0.0236,
and o = 274223. In Figure 15 we illustrate the dependence
of amplification A,(t), extended-source effect §ex(¢), and chro-
maticity 8qp,(f) on the source radius p,. The precision of the
photometric measurements of Udalski et al. (2005) was better
than 1%. We can see from Figure 15 that such a precision per-
mits the detection of the extended-source effect for sources with
0% = 0.0003, and 8.y, reaches 1% for sources with p, = 0.001.
This does not necessarily mean that meaningful limb-darkening
measurement would be possible in this event, but rather that one
should select a more-or-less appropriate limb-darkening profile
for the modeling. The new analysis of the event by Dong et al.
(2008), which appeared after our manuscript submission, con-
firms our conclusions. Source radii p, > 0.0009 are ruled out
at > 30, the best-fit solution yields p, = (5.5 £ 1.2) x 1074,
and varying the limb darkening had no significant effect on the
results.

Jaroszynski (2002), Jaroszynski et al. (2004, 2006), and
Skowron et al. (2007) published models of 53 binary microlens-
ing events observed by the OGLE project. Although the number
of observations of many of the weak binary events is not enough
to constrain extended-source effects or chromaticity, with better
sampling some of them would be suitable. For example, trajec-
tories of events OGLE-2004-BLG-280 (Jaroszynski et al. 2006)
and OGLE-2002-BLG-099 (Jaroszynski et al. 2004) cross the
regions between the caustic components with enhanced sensi-
tivity to the extended nature of the source. The same is true
for MACHO 97-BLG-41 (Albrow et al. 2000), but in this case
the situation is more complicated due to the rotation of the
binary.

Turning to fold-caustic-crossing events, in Section 6 we
discussed OGLE-2002-BLG-069 and EROS-BLG-2000-5. We
showed that even in the case of a nearly perpendicular caustic
crossing well separated from cusps the bias introduced by using
the linear-fold approximation is observationally significant. We
performed a similar analysis for several other binary events
with good data coverage. The MACHO-98-SMC-1 analysis by
Afonso et al. (2000) yielded two viable solutions, either a close
binary (potentially rotating) or a rotating wide binary, and one
nonviable static wide binary solution. Similarly to EROS-BLG-
2000-5, there is a cusp approach just after the second caustic
crossing. Our inspection of the second caustic crossing for the
static close and (nonviable) wide binary models shows that 6,
stays on the percent level with two peaks at |t — f.| = Af
reaching as high as 8%. For OGLE-1999-BUL-23 we assume
the preferred wide binary model of Albrow et al. (2001a). Again,
Sappr Stays below 2% during most of the second caustic crossing
with peaks at |t — t..| = Ar reaching 4% at most. For this
event, Albrow et al. (2001a) also found the 4% discrepancy
from the true amplification. As mentioned earlier, they retained
the analytic approximation of Equation (34) and improved it
using pre-calculated corrections.

The crossing of a cusp precludes the applicability of simple
approximations such as in the fold case. Hence, the analysis of
all such events required the more arduous computation of the
exact light curve, usually by variants of the ray-shooting method.
This approach has the clear benefit of avoiding potential biases
introduced by such approximations.
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8. DISCUSSION

In our analysis we neglected blending, which is a significant
effect in observed microlensing events. In general we expect
the observed relative amplification excess over the point-source
amplification to be less prominent. In high-amplification regions
near the caustic the blending effect will be suppressed for all but
the most extreme contributions of blended light. The situation is
more subtle on the axis connecting the caustic components. The
point-source amplification here is often rather low, e.g., Ag ~ 5,
so that adding an ~80% blend to the baseline may lower §¢x by
a factor of two. There are several reasons not to worry about
blending too much. Commonly used image-subtraction tech-
niques automatically remove all significant (nonvariable) blend-
ing. Even without image subtraction, being an additive constant
blended flux is easy to fit and eliminate from light curves with
decent photometry, leaving the possibility of detecting J.x at
least in the pattern of residuals. Based on the recovered event
geometry it should be obvious where to look for the effect.
In addition, improvements in crowded-field photometry and
especially any potential future space-based microlensing sur-
veys will reduce the frequency and impact of strong blending
for observations toward the Galactic bulge (see Figure 3 of Han
et al. 2006).

The current approach to observations of gravitational mi-
crolensing anomalies is optimized for the detection of lenses
with exoplanets. In this setup, two survey teams (OGLE and
MOA) image the Galactic bulge at most several times per night
and provide candidates for follow-up observations. These are
carried out by two other teams (PLANET and uFUN) equipped
with a network of dedicated telescopes. Follow-up monitor-
ing concentrates on short-lived deviations from the PSPL
light curve, especially in high-magnification events, where the
chances for discovering a planet are highest (Griest & Safizadeh
1998). Unfortunately, some of the events in which the departure
from the PSPL light curve does not match a planetary signal are
ignored. However, many of these non-planetary events could
provide valuable data on stellar surfaces that are hardly acces-
sible by other means. Based on our results in Section 4 we
suggest that attention should be paid also to the parts of the light
curve that correspond to approaches to any cusp axis, and the
regions between facing cusps in particular. An analysis of these
parts may constrain the limb darkening of the source even in
non-caustic-crossing events and thus enlarge the sample of stars
with measured limb darkening.

The present observational setup can be expected to change
in the near future. Wide-field survey telescopes will monitor
all events in their large field of view with high cadence.
Recently, the MOA group started to observe a subset of their
fields very frequently during the night (Sumi 2008). Planned
next-generation ground-based survey telescopes (Gould et al.
2007) will continue in the trend of dismantling the alert/follow-
up modus operandi. Proposed space missions such as the
Microlensing Planet Finder (Bennett et al. 2007) would provide
an almost nonstop flow of high-quality data on microlensing
events in the bulge. As we have shown in Section 4, for a
giant source the area sensitive to its extended nature can be
up to several times wider than the caustic-crossing area. For
main-sequence sources this width increase can reach several
tens of percent. The developments mentioned above would give
excellent prospects for a massive survey of limb darkening of
bulge stars with two-point-mass microlensing.

As we demonstrated, modeling of binary microlensing
events requires a very accurate computational method. Poor
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Figure 15. Light-curve detail of a planetary-mass non-caustic-crossing event approaching three cusps, with main parameters taken from OGLE-2005-BLG-071. Top
panel: amplification A,; middle panel: extended-source effect dex; bottom panel: chromaticity dchr. Individual curves correspond to different source radii p,. In the top
panel curves with highest to lowest peaks correspond to a point source (barely distinguishable), p, = 0.0005, 0.001, 0.002, 0.005, and 0.01. The order is reversed and
the point source omitted in the lower two panels (with the largest source producing largest deviations). The time axis is plotted in arbitrary units; gray horizontal lines
in the middle panel mark £10% and £1% effects, in the bottom panel a £1% effect.

approximations introduce bias not only in the measured limb
darkening but also in the recovered binary parameters. All of
the events in which modeling adopted the linear-fold approxi-
mation given by Equation (34) would benefit from a reanalysis
incorporating an accurate light-curve computation method. This
applies in particular to events used for source limb-darkening
measurement, as the positions with highest chromaticity are
largely concentrated at & p, around the caustic where the method
of Albrow et al. (1999b) tends to produce largest deviations.

9. SUMMARY

We implemented the numerically efficient method of
Vermaak (2000) for computing the general two-point-mass mi-
crolensing amplification of a source with an arbitrary surface-
brightness distribution. Using a PCA-based model of stellar
limb darkening, we explored the sensitivity of such lenses to the
extended nature of the source and to differences in its limb dark-
ening. Traditionally, all extended-source effects were expected
to be limited to a narrow band along the caustic. In contrast,
we discovered regions of strongly enhanced sensitivity along
the outer axes of cusps, which may even bridge the gap between
caustic components of close or wide binary lenses. Although for
smaller sources the extent of the sensitive region along the cusp
axis shrinks in terms of Einstein radii, we show that in terms of
source radii it grows, scaling with the inverse cube-root of the
source radius.

We derive analytical approximations for the extended-source
effect and chromaticity of a small source not positioned directly
on the caustic. These expressions can be readily applied not
only to the two-point-mass lens, but more generally to any other
gravitational lens system. We use exactly computed light curves
to check the appropriateness of the linear-fold approximation,
which is often used in the analysis of caustic-crossing events.
The approximation leaves residuals on the level of a few
percent even in near-ideal events such as OGLE-2002-BLG-
069, which meet most of the conditions of the approximation.
It fails badly in events such as EROS-BLG-2000-5, which
violate the conditions excessively. All microlensing events in
which the approximation was employed for measuring the limb
darkening of the source star therefore deserve a reanalysis,
if only as a consistency check in the more favorable cases.
Any usage of the linear-fold approximation in event analysis
should be accompanied at least by a simple test demonstrating
its applicability in the particular situation.

A study of the size of contours of the extended-source effect
illustrated that for instance the probability of a microlensed
bulge giant causing at least a 1% effect is on average 1.4—
1.6 times higher than the probability of its caustic crossing, when
averaged over a range of typical lens-component separations.
Overall, our results bode optimistically for the prospects of
measuring the limb darkening of source stars in a substantially
higher number of two-point-mass microlensing events.
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Figure 16. Geometry of a generic cusp caustic given by Equation (A2). Left panel: cusps for six values of K, with K > 0 curves drawn bold and K < 0 thin. Cusps
with |K| = 1, 8, and 0.125 are marked by solid, dashed, and dot-dashed lines, respectively. Right panel: amplification contours for lensing by a generic cusp (bold
curve). Contour values in units of |K b |~! are spaced by a factor of 2!/2; outside the cusp levels range from the outermost 273/ to the innermost 23, inside the cusp
from the rightmost 2%/2 to the leftmost 23. With axes marked in units of K, the right panel is valid for an arbitrary cusp.

We thank the referee, Scott Gaudi, for his helpful comments
and constructive suggestions. Work on this project was sup-
ported by the Czech Science Foundation grant GACR 205/
07/0824 and by the Czech Ministry of Education project
MSM0021620860.

APPENDIX

AMPLIFICATION OF IMAGES FORMED BY A CUSP

As shown by Schneider & Weif3 (1992), the lens equation
near a generic cusp caustic placed at the origin may be written
as

_ 2
yp=cx)+ zh

yL=bxpx, +axi, (A1)
where (y, y1) are components of the source position parallel
and perpendicular to the axis of symmetry of the cusp, (x|, x )
are analogously defined coordinates of the image position, and
a, b, ¢ are constants fulfilling the conditions b # 0, ¢ # 0,
and b*> — 2ac # 0. The equation of the cusp caustic describes a
semicubical parabola

yi =Ky, (A2)
where
272 2
K =225 (b* — 2ac) (A3)

is a parameter determining the orientation of the cusp and its
narrowness, as shown in the left panel of Figure 16. A cusp
with K > 0 is pointed to the left (toward negative y|), a cusp
with K < 0 is pointed to the right (toward positive yj). A
cusp with a large value of | K| is narrower than a cusp with a
small value of |K|. Without a loss of generality we choose for
the rest of this section the orientation with K > 0. If this is
not fulfilled automatically by Equations (A1), it can be readily
achieved by rotating the coordinate systems y and x by 180°,
which corresponds to changing the sign of parameter b.
Inversion of Equations (A1) leads to a cubic equation for
x1, and the amplification of each image can be expressed as

a function of the image position (Schneider & Weill 1992).
Zakharov (1995, 1999) presented an elegant alternative method
for obtaining image amplifications as a function of the source
position, without explicitly solving the lens equation. From the
general properties of the roots of the image equation, Zakharov
derived a simple cubic equation for the amplification, the roots
of which are the amplifications of the images. We reproduce
the main results here because of a few typos appearing in the
original papers. A point source satisfying yi < K™! yﬁ lies
inside the cusp and has three images with amplifications

; 1 Y
AV y) =- |[5——
by yi— Kyl
1 Ky; 2
X cos | = arcsin );L +-n(j—1)],
3 Yi 3
j=1,2,3. (A4)

Note that these amplifications include the appropriate sign
corresponding to the parity of the image. The j = 1 image
parity is equal to the sign of b, while the j = 2 and j = 3
images both have the opposite parity. The total amplification of
a source inside the cusp A" = Z?:l [AD| = 2|AD|, hence

we have
Ky? }
— |-
Y

(A5)

2 M
Amt(y“, yL) - s
b1y yi — Kyt

1 .
cos |:— arcsin

A point source lying outside the cusp satisfies y; > K ' y; and
has a single image amplified by

K—l/3
AO ) = —
O yL) 7D
i 1/3+ il 1/3
Y1 YptyL Y1 Yi—yL
X
2 3

(AO6)
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This image has the same parity as the j = 2 and j = 3 images,
that is, opposite to the sign of b. The total amplification of a
source outside the cusp thus is

Ay = [AQG, vyl (A7)

In the right panel of Figure 16 we plotted contours of constant
total amplification A'!(y) with levels given in units of |K b |~
By marking both axes in units of K the plot is valid for an
arbitrary K > 0 cusp.
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