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We present and analyze exact gyraton and nonexpanding gravitational-wave solutions of algebraic

type II on backgrounds which are a direct product of two 2-spaces of constant curvature, or more general

type D spacetimes. This family of electrovacuum background spacetimes contains the Nariai, anti-Nariai,

and Plebański-Hacyan universes, conformally flat Bertotti-Robinson and Minkowski spaces. The gyraton

solutions are given in a simple Kundt metric form. They belong to the recently discussed class of

spacetimes with constant scalar invariants of the curvature tensor. We show that the Einstein equations

reduce to a set of linear equations on the transverse 2-space which can be explicitly solved using the Green

functions.
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I. INTRODUCTION

Recently, there has been a growing interest in investiga-
tion of gyraton spacetimes. They represent the gravita-
tional field of a localized source with an intrinsic
rotation, moving at the speed of light. Such an idealized
ultrarelativistic source, which can be modeled as a pulse of
a spinning radiation beam, is accompanied by a sandwich
or impulsive gravitational wave.

In fact, gravitational fields generated by (nonrotating)
light pulses and beams were already studied by Tolman [1]
in 1934, who obtained the corresponding solution in the
linear approximation of the Einstein theory. Exact solu-
tions of the Einstein-Maxwell equations for such ‘‘pencils
of light’’ were found and analyzed by Peres [2] and
Bonnor [3–5]. These solutions belong to a general family
of pp-waves [6,7].

In the impulsive limit (i.e., for an infinitely small cross
section of the beam and for the delta-type distribution of
the light pulse in time), the simplest of these solutions
reduces to the well-known Aichelburg-Sexl metric [8]
which describes the field of a pointlike null particle. It
can be obtained by boosting the Schwarzschild metric to
the speed of light, with the mass tending to zero so that the
total energy is kept finite. More general impulsive waves
were subsequently obtained by boosting other black hole
spacetimes with rotation, charge, and a cosmological con-
stant [9–15] (for recent reviews, see [16,17]).

Gyraton solutions are special sandwich or impulsive
waves of the Kundt class (which generalize the
pp-waves) such that the corresponding beam of radiation
carries not only energy but also an additional angular
momentum. Such spacetimes were first considered by

Bonnor in [18], who studied the gravitational field created
by a spinning null fluid. He called the corresponding
particle made out of this continuum a ‘‘spinning nullicon.’’
In some cases, this may be interpreted as a massless
neutrino field [19].
In the exterior vacuum region outside the source, these

solutions are locally isometric to standard pp-waves. The
interior region contains a nonexpanding null matter which
has an intrinsic spin. In general, these solutions are ob-
tained by keeping the nondiagonal terms gui in the
Brinkmann form [20] of the pp-wave solution, where u
is the null coordinate and xi are orthogonal spatial coor-
dinates. The corresponding energy-momentum tensor thus
also contains an extra nondiagonal term Tui ¼ ji. In four
dimensions, the terms gui can be set to zero locally, using a
suitable gauge transformation. However, they cannot be
globally removed because the gauge invariant contour
integral

H
guiðu; xjÞdxi around the position of the gyraton

is proportional to the nonzero angular momentum density
ji, which is nonvanishing.
Similar gyratons in a higher dimensional flat space were

investigated (in the linear approximation) by Frolov and
Fursaev [21]. Such gyratons represent a pulse of circularly
polarized radiation or a modulated beam of ultrarelativistic
particles with spin or other sources, which have finite
energy E and finite total angular momentum J. The gyraton
itself is characterized by two arbitrary profile functions of
u which determine the energy density and angular momen-
tum. The authors investigated the limit in which the source
becomes infinitesimally small (with a negligible radius of
the cross section), and the profile functions are indepen-
dent. They also studied the geodesic motion of test parti-
cles in the field of gyraton and demonstrated that, when the
gyraton passes through the center of the ring of test parti-
cles, the particles start to rotate. In fact, the gyraton’s
angular momentum effectively creates a force which is
similar to the usual centrifugal repulsive force, while the
gyraton energy produces the attractive ‘‘Newtonian’’ force.
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Frolov, Israel, and Zelnikov [22] further investigated the
exact gyraton solutions propagating in an asymptotically
flat D-dimensional spacetime and proved that the
Einstein’s equations for gyratons reduce to a set of linear
equations in the Euclidean (D� 2)-dimensional space.
They also showed that the gyraton metrics belong to a
class of vanishing scalar curvature invariant spacetimes
for which all polynomial scalar invariants, constructed
from the curvature and its covariant derivatives, vanish
identically [23]. (For the discussion of spacetimes with
nonvanishing but nonpolynomial scalar invariants of cur-
vature, see [24].) Subsequently, charged gyratons in
Minkowski space in any dimension were presented in [25].

In [26], Frolov and Zelnikov took a cosmological con-
stant into account, and exact solution for gyratons in the
asymptotically anti–de Sitter spacetime were presented.
Namely, they obtained Siklos gyratons which generalize
the Siklos family of nonexpanding waves [27] (investi-
gated further in [28]).

In this case, all polynomial scalar invariants are inde-
pendent of the arbitrary metric functions which character-
ize the gyraton and have the same values as the
corresponding invariants of pure anti–de Sitter (AdS) back-
ground. The AdS gyratons [26] thus belong to the class of
spacetimes with constant scalar invariants (CSI) [29–33].
In string theory it has been demonstrated that generalized
pp-wave spacetimes do not get any quantum and �0 cor-
rections and hence are perturbatively exact. One may ex-
pect a similar property to be valid also for the gyratons, but
more careful analysis is required since even if all of the
local counterterms in the effective action are trivial con-
stants for CSI spacetimes, their metric variations can be
nontrivial functions. Still, one can try to generalize the
property of relatively simple quantum corrections to the
case of semiuniversal metrics [30] when the Ricci tensor
has a block-diagonal structure.

Let us also mention that string gyratons in supergravity
were recently found in [34]. Supersymmetric gyraton so-
lutions were also obtained for a minimal gauged theory in
five dimensions in [35], where the configuration represents
a generalization of the Siklos waves with a nonzero angular
momentum in anti–de Sitter space.

The gravitational field generated by gyratons may be
interesting for studies of production of mini black holes in
colliders (such as the LHC) or in cosmic ray experiments.
The problem of mini black hole formation in high energy
particle collisions is an important issue of TeV gravity. The
theory of such collisions, developed in [36–40], was ap-
plied to gyraton models in [41].

The purpose of our contribution is to further extend the
family of gyratonic solutions, which are only known in
Minkowski or anti–de Sitter background spaces. In par-
ticular, we present a new large class of gyratons of alge-
braic type II, propagating in less trivial universes which are
a direct product of two 2-spaces of constant curvature. This

family of vacuum and electrovacuum background space-
times contains the Nariai [42], anti-Nariai, and Plebański-
Hacyan universes [43] of type D, or conformally flat
Bertotti-Robinson [44,45] and Minkowski spaces. These
direct-product spacetimes with six isometries (see [6,7] for
more details) recently attracted new interest because they
can be recovered as specific extreme limits of various black
hole spacetimes in four or more dimensions [46–49].
Impulsive gravitational and pure radiation waves in the

(anti-)Nariai, Bertotti-Robinson, and Plebański-Hacyan
universes were presented and analyzed by Ortaggio and
Podolský [50,51]. They showed, and subsequently ana-
lyzed in more detail in [52], that these solutions are
straightforward impulsive limits of a more general class
of Kundt spacetimes of type II with an arbitrary profile
function, which can be interpreted as gravitational waves
propagating on specific type D or O backgrounds, includ-
ing those which are a direct product of two 2-spaces. In
fact, the gyraton spacetimes investigated in this paper are
generalizations of such Kundt waves when their ultrarela-
tivistic source is made of a ‘‘spinning matter.’’
The paper is organized as follows. In Sec. II, we present

the ansatz for the metric and fields. After a short review of
the transverse space geometry, we derive field equations
and simplify them introducing the potentials. Next, we
discuss the gauge freedom and suitable gauge fixings.
The overview of the gyraton solutions is summarized in
Sec. II F.
In Sec. III, we give a survey of important special sub-

classes of our gyraton solution. They include direct-
product spacetimes, all type D vacuum backgrounds, and
general Kundt waves on these backgrounds.
In Sec. IV, we concentrate on the interpretation and

description of the gyratons. We discuss geometric proper-
ties of the principal null congruence, the Newman-Penrose
(NP) quantities with respect to natural tetrads, and proper-
ties of the electromagnetic field.
The final section V describes the Green functions re-

quired to solve the field equations. The main results of the
paper are summarized in concluding Sec. VI.
Quantities needed to derive the field equations can be

found in Appendix A. In Appendix B, we derive all electro-
vacuum solutions of type D.

II. GYRATONS ON DIRECT-PRODUCT
SPACETIMES

A. The ansatz for the metric and matter

The aim of this paper is to derive and analyze the family
of gyraton solutions describing a gyratonic matter which
propagates, together with a related gravitational wave,
through a direct-product spacetime filled with a ‘‘uniform’’
electromagnetic field.
We assume that such spacetimes belong to the Kundt

class. It is characterized by a geometrical property that it
admits a nonexpanding, nontwisting, and shear-free null
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congruence [6,7]. This congruence represents the null
direction of propagation of the gyraton and of the accom-
panying gravitational wave.

In terms of canonical (real) coordinates fr; u; x; yg, such
a metric reads

ds2 ¼ 1

P2
ðdx2 þ dy2Þ � 2dudr� 2Hdu2

þ 2axdxduþ 2aydydu; (2.1)

where Hðr; u; x; yÞ can depend on all coordinates, but the
functions axðu; x; yÞ, ayðu; x; yÞ, and Pðu; x; yÞ are

r-independent. The restriction @rP ¼ 0 follows from our
assumption of vanishing expansion of the Kundt geometry,
while the condition @rai ¼ 0, where i ¼ x; y, is necessary
here to obtain a gyraton which propagates on a direct-
product spacetime background. In fact, this condition is a
consequence of the Maxwell equations in the case when
the electromagnetic field is present. In the absence of the
electromagnetic field, the vacuum Einstein equations admit
that functions ai can be linear in r. However, geometrical
properties of such solutions are substantially different from
those of the direct-product spacetimes. Therefore, in the
following we will always assume that

@rax ¼ 0; @ray ¼ 0: (2.2)

This assumption thus implies that such solutions belong to
the special subclass of Kundt solutions (see Sec. IVB for
more details).

The metric should satisfy the Einstein equations with a
stress-energy tensor generated by the electromagnetic field
and the gyraton:

G�� þ�g�� ¼ ßðTEM
�� þ Tgyr

��Þ: (2.3)

Here � and ß ¼ 8�G are the cosmological and gravita-
tional constants, respectively.

The spacetime can be filled with the background elec-
tromagnetic field, which is modified by a gravitational
influence of the gyraton. We assume

F ¼ Edr ^ duþ B
1

P2
dx ^ dy

þ �xdu ^ dxþ �ydu ^ dy; (2.4)

where E and B are constants, so that the corresponding
stress-energy tensor TEM

�� has the form (A3). This ansatz for

the Maxwell tensor has been inspired by the electromag-
netic field known in the Bertotti-Robinson [44,45] and
Plebański-Hacyan spacetimes [43], to which we have
added new terms proportional to functions �iðr; u; x; yÞ.
In fact, terms with such a structure are generated if we
demand a gauge symmetry of the electromagnetic field
under gauge transformation discussed in Sec. II E.

Finally, we must characterize the gyratonic matter by
specifying the structure of its stress-energy tensor. It is a
generalization of a standard null fluid such that we addi-

tionally allow terms corresponding to ‘‘internal spatial
rotation’’ of the gyraton source,1

ßTgyr ¼ judu
2 þ 2jxdudxþ 2jydudy: (2.5)

We admit a general coordinate dependence of the source
functions juðr; u; x; yÞ and jiðr; u; x; yÞ. However, it will be
shown below that the field equations enforce a rather trivial
r dependence of these functions. Let us note that previous
papers on gyratons, namely, Refs. [22,25,26], assumed that
the gyraton source is r-independent.
The gyraton source is thus described only on a phenome-

nological level, by its stress-energy tensor (2.5). We do not
discuss a possible internal structure of the gyratonic matter,
and we do not specify its own field equations. The gyraton
stress-energy tensor is assumed to be given, and our aim
here is to determine its influence on the metric and the
electromagnetic field. However, we have to consider that
the gyraton stress-energy tensor is locally conserved. It
means that the functions ju and ji must satisfy the con-
straint given by

Tgyr
��

;� ¼ 0: (2.6)

Of course, if we had considered a specific internal structure
of the gyratonic matter, the local energy-momentum con-
servation would have been a consequence of field equa-
tions for the gyraton. Without that, we have to require (2.6)
explicitly.
To summarize, the fields are characterized by functions

P, H, ai, and �i which must be determined by the field
equations, provided the gyraton sources ju and ji and the
constants E and B of the background electromagnetic field
are prescribed.
As we will discuss in Sec. III A, pure background solu-

tions are obtained when both gyratons and the gravitational
waves are absent, namely, for T

gyr
�� ¼ 0, ai ¼ 0, and

H / r2. For the Minkowski and (anti-)Nariai backgrounds,
TEM
�� also vanishes, while it is nonzero for the Bertotti-

Robinson and Plebański-Hacyan spacetimes.
Finally, for later convenience, we introduce a constant �,

given by the parameters E and B of the electromagnetic
field,

� ¼ ß"o
2

ðE2 þ B2Þ (2.7)

(with ß and "o being gravitational and electromagnetic
interaction constants,2 respectively), and the constants
�þ and ��, defined as

�� ¼ �� �: (2.8)

1In all tensorial expressions for the metric and other symmetric
tensors, we understand by, for example, dudx the symmetric
tensor product 1

2 ðdu � dxþ dx � duÞ.
2There are two natural choices of geometrical units: the

Gaussian with ß ¼ 8� and "o ¼ 1=4� and SI-like with
ß ¼ "o ¼ 1.
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B. Geometry of the transverse space

The geometrical structure of the Kundt metric (2.1)
identifies the null geodesic congruence generated by @r
and parametrized by an affine time r, the family of null
hypersurfaces u ¼ constant, and two-dimensional trans-
verse spaces r; u ¼ constant. It will be convenient to re-
strict various equations to these transverse spaces. For
example, ai and �i can be understood as components of
u-dependent 1-forms on these two-dimensional spaces.
Therefore, we now briefly review some formulas and defi-
nitions valid in such two-dimensional transverse geometry.

The transverse space is covered by two spatial coordi-
nates xi, and we use the Latin indices i; j; . . . to label the
corresponding tensor components. The restriction of the
metric (2.1) to the transverse space is

ds2? ¼ g?ijdx
idxj ¼ 1

P2
ðdx2 þ dy2Þ: (2.9)

Here we made a useful choice of coordinates xi ¼ fx; yg in
which ds2? has a conformally flat form.3

The transverse curvature is fully characterized by the
scalar curvature R?, which in terms of conformally flat
coordinates reads [cf. the definition (2.18) below]

1
2R? � 4 logP ¼ PðP;xx þ P;yyÞ � ðP2

;x þ P2
;yÞ: (2.10)

Inspecting the ru component of the Einstein equations
(2.3), we find that the transverse scalar curvature has to
be constant

1
2R? ¼ 4 logP ¼ �þ; (2.11)

cf. the first lines in Eqs. (A3) and (A4), together with (2.8).
The transverse spaces are thus the constant-curvature
2-spaces, all with the same curvature. Thanks to this prop-
erty, we can further simplify the choice of the transverse
coordinates fx; yg in such a way that the conformal factor
P�2 in (2.9) is u-independent. Therefore, in the following
we may assume

@rP ¼ 0; @uP ¼ 0: (2.12)

Moreover, using a freedom in the choice of the trans-
verse coordinates, we can also put the conformal factor P
to a canonical form. There are two standard choices solv-
ing (2.11), namely,

P ¼ 1þ 1
4�þðx2 þ y2Þ; (2.13)

and, for a negative �þ,

P ¼ ffiffiffiffiffiffiffiffiffiffiffiffi��þ
p

x: (2.14)

However, in the following, we do not need a particular
form of P. It must just satisfy Eq. (2.11).
With the transverse metric (2.9) we may associate the

Levi-Civita tensor �ij (with �xy ¼ P�2) and the covariant

derivative denoted by a colon (e.g., ai:j). We raise and

lower the Latin indices using g?ij, and we use a shorthand

a2 � aiai ¼ P2ða2x þ a2yÞ for a square of the norm of a

1-form ai. In two dimensions, the Hodge duals of 0-, 1-,
and 2-forms ’, ai, and fij read

ð�’Þij ¼ ’�ij; ð�aÞi ¼ aj�
j
i;

�f ¼ 1
2fij�

ij ¼ P2fxy:
(2.15)

For convenience, we also introduce an explicit notation
for two-dimensional divergence and rotation of a trans-
verse 1-form ai:

div a � ai
:i ¼ P2ðax;x þ ay;yÞ; (2.16)

rota � �da ¼ �ijaj;i ¼ P2ðay;x � ax;yÞ; (2.17)

and for the Laplace operator of a function c :

4c ¼ c :i
:i ¼ P2ðc ;xx þ c ;yyÞ: (2.18)

Note that the divergence and rotation are related as diva ¼
rot �a.
Finally, we will generally assume that the transverse

space is topologically simple in the sense that the space
of harmonics is trivial. However, sometimes it will be
physically relevant to consider also nontrivial solutions
of the Laplace equation if we relax the boundary and
asymptotical conditions in the noncompact case. For ex-
ample, a solution of the Laplace equation around a local-
ized source satisfies the homogeneous Laplace equation on
the space with the source removed. Such a space is, how-
ever, noncompact, and the solution is not vanishing on the
boundary.

C. The field equations

After specifying the ansatz for our fields and reviewing
the transverse geometry, we can now derive the equations
for the gyraton. We have to consider the Einstein equa-
tions (2.3) together with the Maxwell equations and the
condition (2.6) for the gyraton source.
We start with the cyclic Maxwell equation. Assuming

(2.4) and (2.12), it reads

0 ¼ dF ¼ ð@r�iÞdr ^ du ^ dxi � rot�du ^ �; (2.19)

where � ¼ P�2dx ^ dy. We immediately infer that the
1-form �i is r-independent, @r�i ¼ 0, and rotation-free,

rot� ¼ 0: (2.20)

The second Maxwell equation F��
;� ¼ 0 has only the

3The conformally flat coordinates are not essential, but they
simplify some expressions. In a two-dimensional space, a choice
of such coordinates is always possible.
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u component nonvanishing,4 which gives

div�� Edivaþ Brota ¼ 0: (2.21)

We call (2.20) and (2.21) the potential equations since they
guarantee the existence of potentials which will be dis-
cussed in detail in Sec. II D. For this reason, it is useful to
note that these equations imply the conditions

div½Eð�� EaÞ þ B �ð�� EaÞ� ¼ 0;

rot½Eð�� B �aÞ þ B �ð�� B �aÞ� ¼ 0;
(2.22)

cf. Eqs. (2.39) below.
The Einstein equations can be derived from the Einstein

tensor and the electromagnetic stress-energy tensor, which
are given in Appendix A. We have already discussed the ru
component which leads to the condition (2.11). The trans-
verse diagonal components xx and yy give

@2rH ¼ ���: (2.23)

We thus obtain the explicit r dependence of the metric
function H as

H ¼ �1
2��r2 þ grþ h; (2.24)

where we have introduced r-independent functions gðu; xjÞ
and hðu; xjÞ.

Finally, the remaining nontrivial components of the
Einstein equations are those involving the gyraton source
(2.5). The ui components give an equation related to ji,
which we call the first source equation,

ji ¼ 1
2fij

:j þ g;i ���ai
þ ß"o½Eð�i � EaiÞ þ Bð�j � EajÞ�ji�

¼ 1
2fij

:j þ g;i ��þai
þ ß"o½Eð�i � Baj�

j
iÞ þ Bð�j � Bak�

k
jÞ�ji�;

(2.25)

where we have introduced the external derivative fij of the

1-form ai as

fij ¼ aj;i � ai;j ¼ ð�rotaÞij: (2.26)

For convenience, we have written Eq. (2.25) in two equiva-
lent forms. In the square brackets, they explicitly contain
the terms which were already encountered in Eq. (2.22).
We can thus easily split the first source equation into
divergence and rotation parts:

� divj ¼ �4gþ��diva; (2.27)

� rotj ¼ 1
24bþ�þb; (2.28)

where the function bðu; xjÞ is the Hodge dual of fij:

b � �f ¼ rota: (2.29)

Equations (2.27) and (2.28) carry essentially the same
information as the original source equation (2.25).5

Next, we examine the condition (2.6) for the gyraton
source. It gives

� ð@rjiÞdxi þ ð�@rju þ divjþ ai@rjiÞdu ¼ 0; (2.30)

so that the source functions ji must be r-independent and
ju has to have the structure

ju ¼ r divjþ �: (2.31)

The gyraton source (2.5) is thus fully determined by three
r-independent functions �ðu; xjÞ and jiðu; xjÞ.
Finally, from the uu component of the Einstein equation,

we obtain

ju ¼ ð4g���divaÞrþ4hþ 1
2b

2 ���a2 þ 2aig;i

þ @uðdivaÞ þ gdiva� ß"oð�� EaÞ2: (2.32)

Comparing the coefficient in front of r with (2.27), we find
that it consistently reproduces the structure (2.31). The
nontrivial r-independent part of (2.32) gives the second
source equation which can be understood as the equation
for the metric function h:

4h ¼ �� 1
2b

2 þ��a2 � 2aig;i þ ß"oð�� EaÞ2
� @uðdivaÞ � gdiva: (2.33)

D. Potentials

We have thus found that the Maxwell and Einstein
equations reduce to two potential equations (2.20) and
(2.21), and two source equations (2.25) and (2.32). These
equations can further be considerably simplified by intro-
ducing potentials for the 1-forms �i and ai and for the
source ji.
Indeed, the first potential equation (2.20) gives immedi-

ately that �i has a potential ’ðu; xjÞ such that

�i ¼ ’;i: (2.34)

Using the Hodge decomposition, we can express the
1-form ai using two scalar potentials 	ðu; xjÞ and 
ðu; xjÞ:

ai ¼ 	;i þ �i
j
;j: (2.35)

These potentials control the divergence and the rotation of
ai via

div a ¼ 4	; rota ¼ �4
: (2.36)

Equation (2.21) imposes a constraint among these three
potentials ’, 	, and 
:

4Here we used that ai and �i are r-independent. If the
condition (2.2) was not assumed before, it would follow from
the transverse components of this Maxwell equation.

5They are equivalent to (2.25) if we ignore the possibility of
harmonic 1-forms which can exist in topologically nontrivial
spaces.
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4’ ¼ 4ðE	þ B
Þ: (2.37)

If the transverse space is compact (or if it is noncompact
but sufficiently strong asymptotic conditions are imposed),
the solution of the Laplace equation is trivial, and we
immediately obtain

’ ¼ E	þ B
: (2.38)

By using this constraint, it is possible to show that the
potentials 	 and 
 solve the conditions (2.22)

Eð�i � EaiÞ þ Bð�j � EajÞ�ji ¼ ðE2 þ B2Þ
;j�
j
i;

Eð�i � B �aiÞ þ Bð�j � B �ajÞ�ji ¼ ðE2 þ B2Þ	;i:

(2.39)

In terms of the potentials, the first source equation (2.25)
can be written as

ji ¼ 1
2fij

:j þ�þ
;j�
j
i ���	;i þ g;i: (2.40)

Its rotation part is Eq. (2.28) for b, the solution of which
can be used as a source for the equation for the potential 
:

4
 ¼ �b: (2.41)

The divergence part of (2.40) can be written as a relation
between the functions g and 	 and source divj:

4ðg���	Þ ¼ divj: (2.42)

The problem further simplifies if we introduce scalar
potentials pðu; xjÞ and qðu; xjÞ for the gyraton source ji:

ji ¼ p;i þ �i
jq;j; (2.43)

so that

rot j ¼ �4q; divj ¼ 4p: (2.44)

Substituting this to the field equation (2.40) and splitting
it into the gradient part and the rotation part (i.e., using the
Hodge decomposition), we obtain

g���	 ¼ p (2.45)

and

1
24
þ�þ
 ¼ �q: (2.46)

Let us note that all of the potentials are defined up to an
additive constant (which, however, can be u-dependent). In
the derivation of (2.45) and (2.46), we have absorbed the
integration constants into this nonuniqueness of potentials.
In view of (2.41), function b is then given by

b ¼ 2ð�þ
þ qÞ: (2.47)

We have thus reduced the field equations to simple
algebraical relations (2.38) and (2.45) between the poten-
tials, to the Helmholtz-Poisson equation (2.46) for 
, and
the Poisson equation (2.33) for h. The last one can be also
rewritten using the potentials as

4ĥ ¼ �þ q4
� p4	� 2aip;i; (2.48)

with ĥ closely related to h:

ĥ ¼ hþ @u	þ 1
2��	2 � 1

2�þ
2: (2.49)

E. Gauge transformation and the field equations in
suitable gauges

1. Shift of the r coordinate

To find the gyraton solution explicitly, we need to de-
termine the functions h, g, ai, and �i, provided the gyraton
sources ji and � are prescribed. In terms of the potentials 	,

, and ’, replacing the transverse 1-forms ai and �i, we
have obtained Eq. (2.46) for 
, (2.38) for ’, and (2.33) for
h. However, we have only one equation (2.42) for 	 and g.
This deficiency of equations corresponds to the fact that

our ansatz (2.1), (2.4), and (2.5) admits a gauge freedom.
Indeed, the coordinate transformation ~r ! r ¼ ~r�
c ðu; xjÞ, accompanied by the following redefinition of
the metric functions and fields:

r ¼ ~r� c ; g ¼ ~g���c ;

h ¼ ~h� 1
2��c 2 þ ~gc þ @uc ; ai ¼ ~ai � c ;i;

�i ¼ ~�i � Ec ;i; 	 ¼ ~	� c ; 
 ¼ ~
;

’ ¼ ~’� Ec ; ji ¼ ~ji; � ¼ ~�þ c divj; (2.50)

leaves the metric, the Maxwell tensor, and the gyraton
stress-energy tensor in the same form. Consequently, all
of the field equations remain the same. Such a transforma-
tion is a pure gauge transformation, and we can use it to
simplify the solution of the equations.
This gauge transformation has a geometrical meaning of

shifting the origin of the affine parameter r of the null
congruence @r.
Inspecting this gauge transformation, we find that the

combination g���	 is gauge invariant. This combina-
tion enters the field equation (2.42), and only this combi-
nation is thus invariantly determined by the sources;
namely, it is equal to p; cf. (2.45). The particular splitting
into g and 	 parts is just a question of the gauge choice.
Indeed, it follows from (2.50) that it is possible to

modify one of the functions g, 	, or ’ to an arbitrary value
or even to cancel it out from all of the equations. Moreover,
the freedom to choose one of these functions covers the
gauge freedom fully. Therefore, we use them to control the
gauge freedom: we may fix the gauge by setting g, 	, or ’
to be an arbitrarily chosen function. Any of these gauge
conditions leads to the same family of solutions, only with
a different parametrization of the gauge freedom.
By using this gauge freedom, it is possible to simplify

some of the field equations. Namely, setting

g ¼ 0; (2.51)

the field equation for 	 reduces to
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4	 ¼ � 1

��
divj; i:e:; 	 ¼ � 1

��
p; (2.52)

and the metric function H has only trivial quadratic de-
pendence on r:

Hðr; u; xjÞ ¼ �1
2��r2 þ hðu; xjÞ: (2.53)

The special choice

	 ¼ 0; i:e:; diva ¼ 0; (2.54)

implies simple relations for g:

4g ¼ divj; i:e:; g ¼ p; (2.55)

and between the 1-forms ai and �i (or their potentials):

�i ¼ B � ai; ’ ¼ B
: (2.56)

The equation for h takes the shorter form

4h ¼ �� 2ð�þ
þ qÞ2 þ�þ
;i
;jg
ij þ 2
;ip;j�

ij:

(2.57)

Finally, for

’ ¼ 0; i:e:; �i ¼ 0; (2.58)

one has to solve Eq. (2.46) for 
, and other quantities are
then given by

	 ¼ �B

E

; g ¼ p���

B

E

;

Eai ¼ �B
;i � E
j�
j
i:

(2.59)

The choice ’ ¼ 0 simplifies the Maxwell tensor (2.4) to

F ¼ Edr ^ duþ B
1

P2
dx ^ dy: (2.60)

2. Reparametrization of the u coordinate

After the above discussion of the gauge freedom corre-
sponding to the transverse-dependent shift of the r coor-
dinate, we should also mention the remaining gauge
freedom. The metric (2.1), the electromagnetic field (2.4),
and the gyraton stress-energy tensor (2.5) keep the same
form under a general reparametrization of the u coordinate
~u ! u ¼ fð~uÞ, accompanied by the rescaling ~r ! r ¼
~r=f0ð~uÞ of the r coordinate. The metric functions and
matter fields must be redefined as

u ¼ fð~uÞ; r ¼ ~r

f0ð~uÞ ; g ¼ ~g

f0ð~uÞ þ
f00ð~uÞ
f0ð~uÞ2 ;

h ¼
~h

f0ð~uÞ2 ; ai ¼ ~ai
f0ð~uÞ ; �i ¼ ~�i

f0ð~uÞ ;

	 ¼ ~	

f0ð~uÞ ; 
 ¼
~


f0ð~uÞ ; ’ ¼ ~’

f0ð~uÞ ;

ju ¼
~ju

f0ð~uÞ2 ; � ¼ ~�

f0ð~uÞ2 ; ji ¼
~ji

f0ð~uÞ :
(2.61)

It is worth to emphasize here that this reparametrization is
independent of the transverse spatial coordinates. This
gauge transformation is thus ‘‘global’’ from the point of
view of the transverse space, and it does not influence the
field equations (which we formulated as differential equa-
tions on the transverse space) in any significant way.

F. Summary of the gyraton solutions

Let us now summarize the main equations of the gyra-
tons on direct-product backgrounds. These are spacetimes
with the metric of the form

ds2 ¼ 1

P2
ðdx2 þ dy2Þ � 2dudr� 2Hdu2 þ 2aidx

idu;

(2.62)

filled with the electromagnetic field

F ¼ Edr ^ duþ B
1

P2
dx ^ dyþ du ^ �idx

i (2.63)

and the gyratonic matter

ßTgyr ¼ judu
2 þ 2jidx

idu: (2.64)

The metric function Hðr; u; xiÞ is quadratic in r:

H ¼ �1
2��r2 þ grþ h; (2.65)

the gyraton energy density juðr; u; xiÞ can be at most linear
in r:

ju ¼ r divjþ �; (2.66)

and the functions gðu; xiÞ, hðu; xiÞ, ajðu; xiÞ, �jðu; xiÞ,
jjðu; xiÞ, and �ðu; xiÞ are r-independent. The function

PðxiÞ is r- and u-independent, and it satisfies the equation

4 logP ¼ �þ: (2.67)

It can be solved by P of the form (2.13) or, for �þ < 0, by
(2.14).
The transverse 1-forms ai, �i, and ji can be written in

terms of the scalar potentials 	, 
, ’, p, and q as

�i ¼ ’;i; (2.68)

ai ¼ 	;i þ �i
j
;j; (2.69)
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ji ¼ p;i þ �i
jq;j: (2.70)

These potentials are unique up to (unphysical) constants on
the transverse space, which can always be gauged away.

Finally, the functions h, g, 	, 
, and ’ must satisfy the
linear field equations

’ ¼ E	þ B
; (2.71)

g���	 ¼ p; (2.72)

1
24
þ�þ
 ¼ �q; (2.73)

4ĥ ¼ �þ q4
� p4	� 2aip;i; (2.74)

where

ĥ ¼ hþ @u	þ 1
2��	2 � 1

2�þ
2: (2.75)

III. IMPORTANT SPECIAL SUBCLASSES

The large family of solutions of Einstein-Maxwell equa-
tions discussed above belongs to the Kundt class (2.1) of
nonexpanding, shear-free, and twist-free spacetimes
[6,53,54], namely, to its subclass characterized by the
condition (2.2). As we have seen in Sec. II A, and will be
discuss more in Sec. IV, the gyratonic matter (2.5) is the
‘‘rotating’’ generalization of a null fluid. As special cases,
this family of solutions contains some previously known
spacetimes from the Kundt family which correspond to
electrovacuum or pure (null) radiation. In this section we
will shortly discuss such important subcases.

A. Direct-product background spacetimes

It is natural to start with the simplest case of highly
symmetric spacetimes. Considering the metric function H
of the form (2.24), setting ai ¼ 0 and g ¼ 0 ¼ h, and
choosing the expression (2.13) for P, the metric (2.1)
reduces to

ds2 ¼ dx2 þ dy2

½1þ 1
4�þðx2 þ y2Þ�2 � 2dudrþ��r2du2: (3.1)

It describes backgrounds on which the gyratons propagate.
By performing the transformation r ¼ vð1� 1

2��uvÞ�1

with u ¼ ðt� zÞ= ffiffiffi
2

p
and v ¼ ðtþ zÞ= ffiffiffi

2
p

, the metric be-
comes

ds2 ¼ dx2 þ dy2

½1þ 1
4�þðx2 þ y2Þ�2 þ

dz2 � dt2

½1þ 1
4 ��ðz2 � t2Þ�2 :

(3.2)

The background spacetimes thus have geometry of a direct
product of two 2-spaces of constant curvature �þ and ��,
respectively. The first is the space spanned by two spatial
coordinates so that it is flat Euclidean space E2, 2-sphere
S2, or 2-hyperboloid H2, according to the sign of the
constant �þ. The second is the (1þ1)-dimensional space-
time spanned by a timelike coordinate and one spatial
coordinate. According to the sign of the constant ��, it
is Minkowski 2-space M2, de Sitter space dS2, or anti–
de Sitter space AdS2.
Therefore, there are nine theoretically possible distinct

subclasses given by the choice of �þ and ��, but only six
of them are physically relevant because the energy density
� must be non-negative, which eliminates three cases. The
most important of such background spacetimes are sum-
marized in Table I. In addition, there are more general
Bertotti-Robinson direct-product spacetimes for which
the constants �þ and �� are independent and nontrivial;
i.e., the cosmological constant � and the energy density
� > 0 of the electromagnetic field can be chosen
arbitrarily.
In a natural null tetrad, the only nonvanishing NP Weyl

and curvature scalars are (see Sec. IVC)

�2 ¼ �1
3�; R ¼ 4�; �11 ¼ 1

2�; (3.3)

where � ¼ 1
2 ð�þ þ��Þ and � ¼ 1

2 ð�þ ���Þ, together
with �1 ¼ 1

2 ðEþ iBÞ. These electrovacuum solutions are

thus of algebraic type D, unless � ¼ 0 which applies to a
conformally flat Bertotti-Robinson universe and flat
Minkowski space. Vacuum direct-product spacetimes
(with � ¼ 0) are Minkowski and (anti-)Nariai spaces.
For the two Plebański-Hacyan spacetimes, one and only
one of the 2-spaces is flat. Therefore, �11 ¼ 1

2 j�j, so that

the condition 2�11 � 3�2 ¼ 0 is satisfied.
More details about some of these background space-

times can be found in the original works [42–45], reviews
[6,7], or, e.g., in [50,51,55].

TABLE I. Some of possible background spacetimes which are the direct product of two 2-spaces of constant curvature. Here � is a
cosmological constant, and � is a constant energy density of the electromagnetic field.

�þ �� Geometry Spacetime � �

0 0 E2 �M2 Minkowski ¼ 0 ¼ 0
� � S2 � dS2 Nariai >0 ¼ 0
� � H2 � AdS2 anti-Nariai <0 ¼ 0
� �� S2 � AdS2 Bertotti-Robinson ¼ 0 >0
2� 0 S2 �M2 Plebański-Hacyan >0 ¼ �
0 2� E2 � AdS2 Plebański-Hacyan <0 ¼ j�j
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B. Type D background spacetimes

As will be seen in Sec. IVC, the gyraton spacetimes are
in general of algebraic type II. However, they contain a
wider subclass of electrovacuum solutions of type D,
which can also be naturally regarded as possible back-
ground geometries.

Type D electrovacuum solutions of Einstein’s equations
are known [6,7,43,56–58]. However, their forms are usu-
ally different from the parametrization of the geometry
used here. For this reason we will write those type D
spacetimes, which belong to our subclass of the Kundt
family, explicitly. All such spacetimes are derived in
Appendix B; here we only summarize the results.

Although these spacetimes have the same curvature
scalars as in (3.3), they are not, in general, direct-product
spaces. In particular, they have a lower symmetry than the
highly symmetric backgrounds discussed above.

1. The �þ ¼ 0 case
(exceptional Plebański-Hacyan spacetime)

As shown in Appendix B, all type D solutions naturally
split into two cases. For �þ ¼ 0 (i.e., � ¼ �� < 0,
�� ¼ 2�) we find a generalization of the exceptional
Plebański-Hacyan type D electrovacuum spacetime
[43,51,52]. The metric reads

ds2 ¼ dx2 þ dy2 þ 2ð�r2 � Lxx� LyyÞdu2 � 2dudr

þ 2ðaxdxþ aydyÞdu; (3.4)

where LiðuÞ and aiðuÞ, i ¼ x; y, are arbitrary functions of
the coordinate u only (i.e., constants on each transverse
space). This corresponds to the metric (2.1) with P ¼ 1,
g ¼ 0, h linear in x; y, and ai independent of x and y.

For ai ¼ 0 it reduces to the exceptional Plebański-
Hacyan spacetime. It further reduces to the direct-product
spacetime (3.1) when also both Li vanish. Although the
functions Li � 0 do not enter the curvature scalars (3.3),
the geometry of this spacetime is different from that of the
direct-product spacetimes (for example, it contains another
shear-free but nongeodesic null direction).

Nontrivial coefficients ai can be gauged away using the
transformation (2.50). However, such a transformation
generates a nonvanishing metric function g and a quadratic
dependence of h on x and y. It thus seems that the case
ai � 0 is indeed a nontrivial generalization of the excep-
tional Plebański-Hacyan spacetime.

2. The �þ � 0 case

In the case when the transverse space has a nonvanishing
curvature �þ, the metric of type D electrovacuum solu-
tions is given by the metric functions


 ¼ Q

P
; 	 ¼ 0; (3.5)

h ¼ 1
2�þ
2; g ¼ 0: (3.6)

Here the functions P and Q can be written as

P ¼ 1þ 1
4�þðx2 þ y2Þ;

Q ¼ q0ð1� 1
4�þðx2 þ y2ÞÞ þ qxxþ qyy;

(3.7)

respectively, where q0ðuÞ, qxðuÞ, and qyðuÞ are constant on
the transverse space.
In the case �þ > 0, when the transverse space is a

sphere, the solution for 
 can also be rewritten as


 ¼ C½cos� cos�0 þ sin� sin�0 cosð���0Þ�; (3.8)

where � and � are standard spherical coordinates
[cf. (5.16)] and C, �0, and �0 are (possibly u-dependent)
transverse constants equivalent to q0, qx, and qy.

A slightly more general parametrization of these space-
times can be found in Appendix B.

C. Kundt waves without gyratons (ji ¼ 0)

1. Kundt waves on direct-product spacetimes

Now we briefly describe more general Kundt spacetimes
of the form (2.1) which, however, still do not contain a
gyratonic matter. In such a case, the source functions ji
vanish, i.e., p; q ¼ 0, and the field equation (2.46) reduces
to

4
þ 2�þ
 ¼ 0: (3.9)

Let us first consider the trivial solution 
 ¼ 0; the general
case is discussed below.
Since p ¼ 0, it is possible to use the gauge transforma-

tion (2.50) to eliminate both 	 and g; cf. (2.45). Con-
sequently, we obtain ai ¼ 0 everywhere, and the metric
simplifies to

ds2 ¼ ds2bg � 2hðu; x; yÞdu2; (3.10)

where ds2bg is the metric of direct-product spacetimes

(some of which are listed in Table I) given by (3.1). For
nontrivial profile functions h, this class of solutions can be
interpreted as specific exact Kundt gravitational waves
which propagate in flat, (anti-)Nariai, Bertotti-Robinson,
or Plebański-Hacyan universes (see [52] and, for the limit
of impulsive waves, [50,51]).
Indeed, from the corresponding NP scalars (4.17) and

(4.21) (cf. Sec. IVC), by using (4.7) it follows that (3.3)
remains unchanged, and, in addition, there is

�4 ¼ ðP2h; Þ; ; �22 ¼ P2h; � ; (3.11)

where  ¼ ðxþ iyÞ= ffiffiffi
2

p
. When �4 � 0, such spacetimes

are thus of types II or N and, in general, contain a null
radiation field characterized by �22. In particular, pure
vacuum gravitational waves of this type (which propagate
on a vacuum or electrovacuum background space) are
given by the condition �22 ¼ 0, so that their profile func-
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tions h must be of the form

h ¼ F ðu; Þ þ �F ðu; �Þ; (3.12)

where F ðu; Þ is any function, holomorphic in  .

2. Kundt waves on type D backgrounds

Similarly, we can also describe gravitational waves
propagating on general type D backgrounds discussed
above. Indeed, the field equations for 
, 	, and g are linear,
and the equation for h is linear in h (with nonlinear terms
with 
 and 	 as a ‘‘source’’). We can thus easily superpose
a pure gravitational-wave contribution of the form (3.12)
on top of any background metric function h, keeping the
values of 
, 	, and g unchanged. In particular, considering
the exceptional Plebański-Hacyan type D background
(3.4), the family of gravitational waves described by [59]
is obtained.

3. More general Kundt waves

Equation (3.9) is the special Helmholtz equation on the
transverse space such that the coefficient of the ‘‘mass’’
term is exactly given by the curvature of the transverse
space. Its general solution can thus be parametrized by a
single function Lðu; Þ, holomorphic in  , as


 ¼ L; þ �L; � � 2LðlogPÞ; � 2 �LðlogPÞ; � : (3.13)

Again, the functions 	 and g can be gauged away, 	 ¼
g ¼ 0, and the electrovacuum condition � ¼ p ¼ q ¼ 0

implies 4ĥ ¼ 0; see (2.48). However, now we have an
additional contribution to h thanks to a nontrivial 
;
cf. (2.49):

h ¼ F ðu; Þ þ �F ðu; �Þ þ 1
2�þ
2: (3.14)

We have thus obtained an explicit form of a general
Kundt electrovacuum spacetime (2.1). Apart from nontri-
vial H, these most general gravitational waves within our
class also have nontrivial metric functions ai, given as

a ¼ �i�þP�2ðLþ �LÞ. We are not aware of a discussion

of such waves in the literature.
It should, however, be mentioned that some of these

solutions have unphysical behavior of the metric func-
tions—typical solutions of (3.13) and (3.14) have singular-
ities or diverge in transverse directions. They thus cannot
be interpreted as globally well-behaved gravitational
waves. Nevertheless, some of them can be interpreted as
external vacuum solutions around a localized matter
source, e.g., around a beam of null radiation or gyratonic
matter. Such solutions will be discussed in the next section.
Here we only note that they can be constructed from given
matter sources using the Green functions. They are regular
and satisfy vacuum equations outside the sources.

Since the ‘‘mass’’ term in (3.9) has a special value, this
equation also admits globally regular solutions. Regular
solutions for 
 are exactly those discussed for the type D

backgrounds, namely, given by (3.5) and (3.7) [or (3.8)].
The solution for h which leads to the regular geometry is
given by (3.14) with sufficiently smooth F , e.g., when it is
quadratic in  .

D. Gyratons on the flat background

Our class of solutions also contains, as a subcase, the
original gyraton on a flat background [18]. Indeed, for a
vanishing cosmological constant and electromagnetic field
absent, the background is Minkowski space. If we admit
only an r-independent gyraton source (i.e., if we assume
divj ¼ 0, ju ¼ �) and if we employ the gauge g ¼ 0, we
immediately obtain the solution discussed in [21,22].

IV. PROPERTIES OF THE GYRATON SOLUTIONS

A. Character of the gyratons

Now we concentrate on nontrivial gyratons contained in
the above class. A characteristic feature of the gyratonic
matter is a nonvanishing source ji in (2.5) or, equivalently,
its two potentials p and q; cf. (2.43). The gyratonic matter
moves with the speed of light, as can be identified by
inspecting the dependence of the metric function on the
coordinate u. From the form of the metric (2.1) we infer
that u is a null coordinate, with null generators given by the
principal null congruence @r. All of the metric functions
can depend on this coordinate, and this dependence is not
restricted by the field equations. It means that the profile of
the gyraton in the u direction can be prescribed arbitrarily.
Thanks to a trivial r dependence of the fields, such a profile
remains essentially unaltered (except for the ‘‘cooling
effect’’ discussed below). This can be understood as a
motion of the gyraton in the direction of the null congru-
ence @r.
The characteristic spatial components of the gyraton

stress-energy tensor represent a possibility of an internal
energy flow of otherwise null radiation. It can be naturally
split into two components.
The divergence-free component, controlled by the

source potential q, corresponds to a ‘‘rotational’’ part of
the energy flow. However, since the gyratonic matter is
null, the nature of the ‘‘rotation’’ must be internal—it
describes a spin of the null fluid. This kind of the source
was discussed in the context of the gyratons in flat space-
time [21,22] and in anti–de Sitter space [26]. From the field
equation (2.46) we observe that this rotational part of the
source gives rise to the component of the metric function ai
determined by the potential 
 via (2.35). This component is
independent of the gauge, so the presence of the rotational
part of the gyraton source necessary leads to the nondiag-
onal component ai in the metric (2.1).
The rotation-free component of the gyraton source, con-

trolled by the potential p, has a different character. As can
be read out from the conservation law (2.31), the source
with a nontrivial divergence divj describes an internal flow
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of the energy in the gyraton beam which changes its
internal energy ju with r. We could thus understand the
p component of the source as some kind of ‘‘cooling’’
which steadily decreases the energy density of the gyraton
beam. Such a kind of the energy transfer is not very
plausible physically, mainly because the cooling should
occur in matter moving with the speed of light. It inevitably
leads to an unnatural causal behavior of the source.

Indeed, it is easy to check that the gyraton stress-energy
tensor (2.5) (composed by either a p or a q component)
does not satisfy neither a null, weak, strong, nor dominant
energy condition. However, for a spinning matter it is not
so surprising—bad causal behavior is typical for spinning
relativistic objects when they are idealized excessively.

From Eq. (2.45) we also observe that the p part of the
source controls the combination g���	 of the metric
functions. Splitting its influence between g and 	 is just a
matter of a gauge choice. We have already discussed that it
is possible to eliminate either of them but not simulta-
neously. A gyraton source composed just from the
rotation-free component (p � 0, q ¼ 0) thus does not
necessary lead to a nondiagonal component ai in the
metric—its influence can be gauged away entirely into
the metric function g, and vice versa.

B. Geometrical properties of the principal null
congruence

Let us now briefly discuss geometrical properties of the
gyraton solutions. The additional property (2.2), @rai ¼ 0,
characteristic for the subclass of spacetimes discussed
here, has a consequence that the null vector k is recurrent,
[6,23], namely,

k�;� ¼ ð�@rHÞk�k�: (4.1)

The null character of k and the condition (4.1) also imply
that the null congruence with tangent vector k is geodesic,
expansion-free, sheer-free, and twist-free and thus belongs
to the Kundt class.

The condition (2.2) and the condition (2.24) (the func-
tion H is at most quadratic in r, with a constant coefficient
in front of r2) guarantee that these Kundt metrics are of the
CSI type [29]. For these metrics it was also shown that
there exists a (u-dependent) diffeomorphism ~xi ¼ ~xiðu; xkÞ
such that the transverse metric (2.9) can be made
u-independent. We have already used this property at the
very beginning when we applied the conditions (2.12).
Moreover, the transverse space is locally homogeneous.

For the complete four-dimensional gyraton spacetime, it
was demonstrated in [30] that there always exists a related
locally homogeneous spacetime which has invariants
that are identical to those of the Kundt CSI metric.
This ‘‘background’’ metric can be obtained by setting
ai ¼ g ¼ h ¼ 0,

ds2bg ¼ ds2? � 2dudrþ��r2du2; (4.2)

which is exactly the metric for direct-product background
spacetimes (3.1).
The condition (2.2) is also equivalent to the fact that the

2-spaces orthogonal to the transverse spaces are surface-
forming.
It is a general property of the Kundt family that the

vector k is the principal null direction of the spacetime.
By determining its degeneracy we can thus identify the
algebraic type. To proceed, it will be convenient to intro-
duce an aligned complex null tetrad fk; l; m; �mg. There
exists a standard choice of such a tetrad in the context of
the Kundt family of spacetimes [6], namely,

k ¼ @r; l ¼ @u � P2ðax@x þ ay@yÞ �
�
H þ 1

2
a2
�
@r;

m ¼ Pffiffiffi
2

p ð@x þ i@yÞ; �m ¼ Pffiffiffi
2

p ð@x � i@yÞ: (4.3)

The spacelike complex vectors ma and �ma are tangent to
the transverse space. Clearly, ½k; l� ¼ �ð@rHÞk, so the
space spanned on k and l is indeed surface-forming. The
dual frame in the space of 1-forms reads

�ðkÞ ¼ drþ
�
H þ 1

2
a2
�
du; �ðlÞ ¼ du;

�ðmÞ ¼ 1ffiffiffi
2

p
P
ðdx� idyÞ þ Pffiffiffi

2
p ðax � iayÞdu;

�ð �mÞ ¼ 1ffiffiffi
2

p
P
ðdxþ idyÞ þ Pffiffiffi

2
p ðax þ iayÞdu:

(4.4)

Calculating the Newman-Penrose spin coefficients with
respect to this tetrad (see the following section for the
nontrivial ones), we recover again the general properties
that the congruence is nonexpanding and nontwisting
(�NP ¼ 0), sheer-free (�NP ¼ 0), geodesic, and affinely
parametrized (	NP ¼ "NP ¼ 0). In addition, from 	NP ¼
�NP ¼ "NP ¼ 0, it follows that the tetrad (4.3) is parallelly
transported along the null congruence. Moreover, the con-
dition (2.2) is directly related to the vanishing coefficient
�NP ¼ 0.

C. NP formalism in complex coordinates

It turns out to be more convenient (and common in the
literature on Kundt spacetimes) to introduce complex co-
ordinates in the transverse space. Instead of conformally
flat real coordinates x and y, we will now use the complex
coordinates  and � such that

 ¼ 1ffiffiffi
2

p ðxþ iyÞ: (4.5)

The coordinate 1-forms and vector fields transform as
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d ¼ 1ffiffiffi
2

p ðdxþ idyÞ; @ ¼ 1ffiffiffi
2

p ð@x � i@yÞ;

d � ¼ 1ffiffiffi
2

p ðdx� idyÞ; @ � ¼ 1ffiffiffi
2

p ð@x þ i@yÞ;
(4.6)

and the transverse Laplace operator (2.18) on any scalar c
becomes

4c ¼ 2P2c ; � : (4.7)

Instead of the real 1-form components ai, it is customary
to introduce a complex function Wðu; ; �Þ by

W ¼ �a ¼ � 1ffiffiffi
2

p ðax � iayÞ; �W ¼ �a � : (4.8)

Substituting for ai the potentials via (2.35) and using �

 ¼

��
�
�
¼ �i, � �

¼ �
�
 ¼ 0, we find that

W ¼ �ð	þ i
Þ; ; �W ¼ �ð	� i
Þ; � : (4.9)

We also obtain

a2 ¼ 2P2W �W; 4	 ¼ diva ¼ �P2ð �W; þW; � Þ;
4
 ¼ �rota ¼ �b ¼ iP2f � ¼ iP2ðW; � � �W; Þ:

(4.10)

The metric (2.1) in complex coordinates then reads

ds2 ¼ 2

P2
dd � � 2dudr� 2Hdu2 � 2ðWd þ �Wd �Þdu;

(4.11)

the canonical form (2.13) of P is

P ¼ 1þ 1
2�þ �; (4.12)

and the Maxwell tensor (2.4) takes form

F ¼ Edr ^ duþ B
i

P2
d ^ d �

þ �du ^ d þ � �du ^ d �; (4.13)

where � ¼ ð�x � i�yÞ=
ffiffiffi
2

p
.

The tetrads (4.3) and (4.4) are closely related to the
introduced complex coordinates:

k ¼ @r;

l ¼ @u þ P2ðW@ � þ �W@ Þ � ðH þ P2W �WÞ@r;
m ¼ P@ � ; �m ¼ P@; (4.14)

and

�ðkÞ ¼ drþ ðH þ P2W �WÞdu; �ðlÞ ¼ du;

�ðmÞ ¼ 1

P
d � � PWdu; �ð �mÞ ¼ 1

P
d � P �Wdu:

(4.15)

The list of nontrivial NP coefficients is then


NP ¼ ðP2WÞ; ;
�NP ¼ 1

2P
2ðW; � þ �W; Þ;

�NP ¼ PðH þ P2W �WÞ; ;
�NP ¼ 1

2½@rH þ 1
2ððP2 �WÞ; � ðP2WÞ; � Þ�;

�NP ¼ 1
2P; ; �NP ¼ �1

2P; � :

(4.16)

The source equations can be recovered in the Newman-
Penrose formalism by comparing the components of the
Ricci tensor with the corresponding components of the
electromagnetic and gyraton stress-energy tensor. In terms
of the potentials, these have a form

�11 ¼ 1

2
�;

�12 ¼ P

2

�
�2�	þ ðg���	Þ þ i

�
1

2
4
þ�þ


��
; �
;

�22 ¼ 1

2

�
r4ðg���	Þ þ iP2ðab; � � a �b; Þ þ 4h

þ 1

2
b2 þ�þa2 þ g4	þ @u4	

�
;

R ¼ 24�NP ¼ 4�: (4.17)

The constants � and � have entered these expressions via
combinations � ¼ 1

2 ð�þ þ��Þ and � ¼ 1
2 ð�þ ���Þ of

the constants �� which parametrize the metric (4.11)
through (2.11) and (2.24). Their relation to the cosmologi-
cal constant � and the electromagnetic energy density � is
established by comparing these components to the cosmo-
logical term and to the corresponding components of the
stress-energy tensors. For the electromagnetic field, the
nonvanishing components are

�EM
11 ¼ 1

2�; �EM
12 ¼ �P�	; � ;

�EM
22 ¼ 2P2�	;	; � ;

(4.18)

with � given by (2.7). Similarly, for the gyratonic matter
we obtain

�gyr
11 ¼ 0; �gyr

12 ¼ P

2
j � ;

�gyr
22 ¼ 1

2
ju � P2ða �j þ aj � Þ:

(4.19)

The first and second source equations (2.42) and (2.48) are
obtained from the above components�12 and�22, respec-
tively, by realizing that

j ¼ ðpþ iqÞ; ; j � ¼ ðp� iqÞ; � : (4.20)
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Finally, the Weyl scalars reduce to

�2 ¼ � 1

3
�;

�3 ¼ P�	; þ P

2
ðp� iqÞ; ;

�4 ¼ rðP2ðp� i��
Þ; Þ; þ ðP2ĥ; Þ;
þ ½�þ
þ i��	þ ipþ i@u�ðP2
; Þ;
þ 2iP2q; ð	þ i
Þ; þ pðP2	; Þ; � 2�P2ð	; Þ2;

(4.21)

where ĥ is given by (2.49).
Since�0 ¼ �1 ¼ 0 and, for a nonvanishing cosmologi-

cal constant, �2 � 0, we conclude that the vector k is the
double degenerate principal null direction and the gyraton
spacetime is of the algebraical type II. The conditions for
further algebraic degeneracy to the type D are, in the
vacuum case, discussed in Sec. III B and in Appendix B.
In the nonvacuum case these conditions are rather strong:
for example, there are no nontrivial type D gyratons with
p ¼ 0.

For the vanishing cosmological constant � ¼ 0, the
presence of a nontrivial rotational gyratonic matter (given
by the potential q; terms with 	 and p are not significant, as
they can be canceled by a suitable gauge) guarantees that
the spacetime is of type III. The spacetime reduces to
type N only for � ¼ 0 and q ¼ 0.

Comparing (4.17) with (4.21) we find that �12 and �3

are closely related, namely,

�12 þ ��3 ¼ Pg; � : (4.22)

The radiative characteristic of the gravitational field �3 is
thus determined by the matter component �12, up to the
term which can be controlled by the gauge. In the gauge

g ¼ 0, we have directly �3 ¼ � ��12.

D. Electromagnetic field

In our ansatz made in Sec. II Awe allowed the spacetime
to be filled with the electromagnetic field (2.4). This field
does not have its own dynamical degrees of freedom—it is
specified just by two constants E andB. In the presence of a
gyraton, this electromagnetic field is modified through the
du ^ �idx

i terms. However, the transverse 1-form �i is
uniquely determined by the gyraton; see Eqs. (2.34) and
(2.38).

The Maxwell tensor (2.4) can be split into two parts

F ¼ Eðdr ^ duþ du ^ d	Þ þ BðP�2dx ^ dyþ du ^ d
Þ:
(4.23)

It is interesting to observe that the 2-form proportional to
the constant B is the four-dimensional Hodge dual of the
2-form proportional to E. Thus, the Maxwell tensor has a
familiar structure of a linear combination of dual ‘‘elec-

tric’’ and ‘‘magnetic’’ parts. Moreover, after substituting
(2.38) for ’, the field equations depend only on the
‘‘weights’’ E and B of the electric and magnetic parts
through the constant � ¼ ß"o

2 ðE2 þ B2Þ (via the constants

�� ¼ �� �). The geometry of the spacetimes thus does
not depend on a particular splitting of the electromagnetic
field.
To inspect the algebraic structure of the electromagnetic

field, we need the tetrad components �A of the Maxwell
tensor. With respect to the parallelly transported tetrad
(4.14), we obtain

�0 ¼ 0; �1 ¼ 1
2ðEþ iBÞ;

�2 ¼ �PðEþ iBÞ	; :
(4.24)

It follows that the electromagnetic field is aligned with the
principal null direction k of the gravitation field, but this
vector is not a double degenerate vector of the field.
The corresponding tetrad components of the electro-

magnetic stress-energy tensor �EM
AB ¼ ß"o�A

��B have
been listed in (4.18). Notice that the �EM

12 and �EM
22 com-

ponents of (4.18) can be simultaneously cancelled by the
gauge choice 	 ¼ 0. This choice also cancels the compo-
nent �2 in (4.24).

V. GREEN FUNCTIONS

In Sec. II, we demonstrated that for our ansatz the
Einstein-Maxwell equations effectively reduce to the
Poisson equations

4c ¼ �s (5.1)

[e.g., Eqs. (2.41) and (2.48) for 
 and ĥ] and to the
Helmholtz-Poisson equations

4c þ R?c ¼ �s (5.2)

[Eqs. (2.28) and (2.46) for 
 or b]. These equations on the
two-dimensional transverse space can be solved using the
Green functions Gð0Þ and Gð1Þ, respectively. Such functions
satisfy6

4Gð0Þðx; x0Þ ¼ ��ðx; x0Þ; (5.3)

½4 þ R?�Gð1Þðx; x0Þ ¼ ��ðx; x0Þ; (5.4)

where x and x0 are points in the transverse space. The
solutions are then given by the integral over the corre-
sponding sources

c ðxÞ ¼
Z

Gð�Þðx; x0Þsðx0Þ
ffiffiffiffiffiffiffi
g0?

q
d2x0: (5.5)

In particular,

6In the case when there exist normalizable zero modes, one has
to subtract a projector to the space of these modes from the delta
function on the right-hand side.
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ðu; xÞ ¼
Z

Gð0Þðx; x0Þbðu; x0Þ
ffiffiffiffiffiffiffi
g0?

q
d2x0;

ĥðu; xÞ ¼
Z

Gð0Þðx; x0Þ�ðu; x0Þ
ffiffiffiffiffiffiffi
g0?

q
d2x0;

(5.6)

with the source

� ¼ ��� q4
þ p4	þ 2aip;i; (5.7)

and


ðu; xÞ ¼ 2
Z

Gð1Þðx; x0Þqðu; x0Þ
ffiffiffiffiffiffiffi
g0?

q
d2x0;

bðu; xÞ ¼ 2
Z

Gð1Þðx; x0Þrotjðu; x0Þ
ffiffiffiffiffiffiffi
g0?

q
d2x0:

(5.8)

It follows from the Einstein equations that the two-
dimensional transverse space is a maximally symmetric
space of constant curvature R? ¼ 2�þ, i.e., a plane E2 for
�þ ¼ 0, a sphere S2 for �þ > 0, and a hyperboloid H2

(Lobachevsky plane) for �þ < 0. The corresponding
Green functions are known explicitly (see, e.g., [60]).
Here we present only those results which are important
for solution of our problem.

A. Green functions for 2-plane E2

For �þ ¼ 0, the transverse space is the flat plane. Both
the Green functions coincide, and they have the form

Gð�Þðx; x0Þ ¼ � 1

2�
log ‘ðx; x0Þ: (5.9)

Here ‘ðx; x0Þ is the distance between the points x and x0.

B. Green functions for 2-hyperboloid H2

For �þ ¼ �1=L2 < 0, the transverse space (2.9) is
hyperboloid of a constant negative curvature, L being the
curvature radius. It can be parametrized by different useful
coordinate systems. Here we list some of them which are
frequently used in the literature, namely, hyperspherical,
Poincaré, Lobachevsky, and projective coordinates, respec-
tively:

ds2? ¼ L2ðd�2 þ sinh2�d�2Þ

¼ L2

z2
ðdt2 þ dz2Þ

¼ L2ðd�2 þ cosh2�d�2Þ
¼ 1

ð1þ 1
4�þðx2 þ y2ÞÞ2 ðdx

2 þ dy2Þ: (5.10)

Relations of the coordinates to the projective ones are

x ¼ 2L tanh
�

2
cos�; y ¼ 2L tanh

�

2
sin�;

x ¼ L
4t

t2 þ ð1þ zÞ2 ; y ¼ L
t2 þ z2 � 1

t2 þ ð1þ zÞ2 ;

x ¼ 2L cosh� sinh�

cosh� cosh�þ 1
; y ¼ 2L sinh�

cosh� cosh�þ 1
:

(5.11)

Clearly, the conformally flat coordinates used in the text
correspond to the projective coordinates with the choice
(2.13) and to the Poincaré coordinates with the choice
(2.14).
Because of the maximal symmetry of the space, the

Green functions can be expressed only in terms of the
geodesic distance between the points ‘ðx; x0Þ or, more
conveniently, of its function

�ðx; x0Þ ¼ coshð ffiffiffiffiffiffiffiffiffiffiffiffi��þ
p

‘ðx; x0ÞÞ: (5.12)

The function � in an explicit form reads

� ¼ cosh� cosh�0 � sinh� sinh�0 cosð���0Þ

¼ 1þ ðt� t0Þ2 þ ðz� z0Þ2
2zz0

¼ cosh� cosh�0 coshð�� �0Þ � sinh� sinh�0

¼ ð1� �þðx2þy2Þ
4 Þð1� �þðx02þy02Þ

4 Þ þ�þðxx0 þ yy0Þ
ð1þ �þðx2þy2Þ

4 Þð1þ �þðx02þy02Þ
4 Þ

:

(5.13)

Clearly, � 2 ½1;1Þ, with � ¼ 1 corresponding to coinci-
dent points and � ! 1 to an infinite distance. Using these
quantities, the Green functions in question are

Gð0Þðx; x0Þ ¼ � 1

4�
log

�
�� 1

�
þ 1

�
;

Gð1Þðx; x0Þ ¼ � 1

4�

�
� log

�
�� 1

�
þ 1

�
þ 2

�
:

(5.14)

When � ! 1, the Green functions tend to zero.

C. Green functions for 2-sphere S2

When �þ ¼ 1=L2 > 0, the metric (2.9) describes a
sphere

ds2? ¼ L2ðd�2 þ sin2�d�2Þ ¼ dx2 þ dy2

ð1þ 1
4�þðx2 þ y2ÞÞ2 :

(5.15)

Spherical coordinates ð�;�Þ are related to the projective
coordinates ðx; yÞ, used in (2.1) with P given by (2.13), via
the coordinate transformation
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x ¼ 2L tan
�

2
cos�; y ¼ 2L tan

�

2
sin�: (5.16)

Then the Green functions are functions of

�ðx; x0Þ ¼ cosð ffiffiffiffiffiffiffiffi
�þ

p
‘ðx; x0ÞÞ: (5.17)

Here � varies in the interval ½�1; 1� and has the form

� ¼ cos� cos�0 þ sin� sin�0 cosð���0Þ

¼ ð1� �þðx2þy2Þ
4 Þð1� �þðx02þy02Þ

4 Þ þ�þðxx0 þ yy0Þ
ð1þ �þðx2þy2Þ

4 Þð1þ �þðx02þy02Þ
4 Þ

:

(5.18)

The generic solution for the Green functions on a sphere is
a linear combination of the Legendre functions Q�ð�Þ and
P�ð�Þ. However, the requirement of regularity at the anti-
podal point � ¼ �1 singles out their particular combina-
tion. Also, one has to be cautious since both Eqs. (5.1) and
(5.2) on the compact sphere have normalizable zero modes.
Eventually, the Green functions read

Gð0Þðx; x0Þ ¼ � 1

4�
logð1� �Þ;

Gð1Þðx; x0Þ ¼ � 1

4�
ð� logð1� �Þ þ 1Þ:

(5.19)

Moreover, the left-hand side of (2.48) is the Laplacian
defined on a compact sphere. The integral of the Laplacian
over the sphere has to be zero. This property imposes an
integral condition on physically acceptable distributions of
the stress-energy tensor, namely,

Z
S2
�

ffiffiffiffiffiffiffi
g?

p
d2x ¼ 0: (5.20)

Similarly, for Eq. (2.28) we also get an integral constraint

Z
S2
cos� rotj

ffiffiffiffiffiffiffi
g?

p
d2x ¼ 0: (5.21)

Because of this property, the zero modes do not contribute
to the components ai of the metric. The constraints (5.20)
and (5.21) appear only because S2 is compact and are
analogous to the property that closed worlds must have
zero total energy, charge, or angular momentum [61,62].

VI. CONCLUSION

We presented a new class of gyraton solutions on elec-
trovacuum background spacetimes which are formed by a
direct product of two constant-curvature 2-spaces. These
involve the (anti-)Nariai, Bertotti-Robinson, and
Plebański-Hacyan spacetimes in four dimensions. The
background geometries are solutions of the Einstein-
Maxwell equations corresponding to the uniform back-
ground electric and magnetic fields. The gyraton solutions
are of Petrov type II and belong to the Kundt family of
shear-free and twist-free nonexpanding spacetimes.

Gyratons describe the gravitational field created by a
stress-energy tensor of a spinning (circularly polarized)
high-frequency beam of electromagnetic radiation, neu-
trino, or any other massless fields. They also provide a
good approximation for the gravitational field of a beam of
ultrarelativistic particles with a spin. The gyratons general-
ize standard pp-waves or Kundt waves by admitting a
nonzero angular momentum of the source. This leads to
other nontrivial components of the Einstein equations,
namely, Gui þ�gui ¼ ßTui, in addition to the pure radia-
tion uu component which appears for pp-waves or Kundt
waves.
We have shown that all of the Einstein-Maxwell equa-

tions can be solved exactly for any distribution of the
matter sources (see Sec. II F for a summary), and the
problem has been reduced to finding the scalar Green
functions on a two-dimensional sphere, plane or hyperbo-
loid. These Green functions have been presented in detail
in Sec. V. Special cases of these gyraton solutions and their
properties are discussed in Secs. III and IV.
We have also studied the gyraton solutions using the

Newman-Penrose formalism. The characteristic term ai,
describing the rotational part of the gyraton, generates the
nontrivial Ricci�12 andWeyl�3 scalars, in addition to the
case of pure pp- and Kundt waves. Curiously, there exists a
very simple relation (4.22) between them.
To complete our investigation, we have also studied

gyratons on more general type D backgrounds (including
the exceptional Plebański-Hacyan spacetime) which are
not direct-product spaces. In addition, in Sec. III C we
have identified a special subclass of the gyraton solu-
tions—general vacuum Kundt waves which also contain
cases previously not discussed in the literature.
A natural next step would be the study of gyratons in a

full family of Kundt spacetimes, especially on conformally
flat backgrounds, including the (anti–)de Sitter universe.
Another generalization could be their extension to higher
dimensions, where, however, one has to deal with a richer
possible structure of the transverse geometries.
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APPENDIX A: THE EINSTEIN EQUATIONS

Here we present geometric quantities which appear in
the Einstein field equations, namely, the Einstein tensor of
the general metric (2.1) and the electromagnetic stress-
energy tensor corresponding to the field (2.4).

The inverse to the metric (2.1) is

g��@�@� ¼ P2ð@x@x þ @y@yÞ � 2@u@r

þ 2P2ðax@x þ ayP
2@yÞ@r þ 2ðH þ 1

2a
2Þ@r@r:

(A1)

The stress-energy tensor of the electromagnetic field
TEM, according to the definition

TEM
�� ¼ "oðF�	F�
g

	
 � 1
4g��F	
F

	
Þ; (A2)

has nonzero components

ßTEM
ur ¼ �;

ßTEM
uu ¼ 2H�þ ß"oð�� EaÞ2;

ßTEM
ux ¼ ß"o

�
1

2
ðE2 � B2Þax � EBay � E�x þ B�y

�
;

ßTEM
uy ¼ ß"o

�
1

2
ðE2 � B2Þay þ EBax � E�y � B�x

�
;

ßTEM
xx ¼ �

P2
;

ßTEM
yy ¼ �

P2
; (A3)

where the density � ¼ ß"o
2 ðE2 þ B2Þ was defined in (2.7).

The Einstein tensor for the metric (2.1) reads

Gur ¼ 4 logP;

Guu ¼ 1

2
b2 þ4H þ ð@2rHÞa2 þ 2ai@rH;i þ ð@rHÞdiva

þ @udivaþ 2H4 logP;

Gux ¼ 1

2
b;y � axð4 logP� @2rHÞ þ @rH;x;

Guy ¼ � 1

2
b;x � ayð4 logP� @2rHÞ þ @rH;y;

Gxx ¼ 1

P2
@2rH;

Gyy ¼ 1

P2
@2rH; (A4)

where

4 logP ¼ PðP;xx þ P;yyÞ � ðP2
;x þ P2

;yÞ; (A5)

cf. (2.10). Here we have used only the metric (2.1), without
assuming any other information about the metric functions.
In particular, we have not used the field equations. To be
more precise, in the components Gui and Gij we employed

the fact that P is u-independent; cf. relation (2.12).
However, as we already mentioned in Sec. II B, such a

choice is always possible provided that the transverse
spaces have the same homogeneous geometry—which
can be derived just from the component Gur.

APPENDIX B: ALL SPACETIMES OF TYPE D

The purpose of this appendix is to derive all electro-
vacuum solutions of the algebraic type D within the class
considered. Inspecting the field equations (2.72), (2.73),
and (2.74) without the gyratonic matter � ¼ p ¼ q ¼ 0,
we find

g ¼ ��	; (B1)

P2
; � þ�þ
 ¼ 0; (B2)

P2ĥ; � ¼ 0; (B3)

with ĥ given by (2.75). Using the gauge transformation
(2.50), we could eliminate both 	 and g, but this is not
necessary in the following.
From (4.21) we infer that the vector k ¼ @r is a double

degenerate principal null direction. When�2 � 0, i.e., for
a nonvanishing cosmological constant, the condition that
there exists another degenerate null direction is

3�4�2 ¼ 2�2
3; (B4)

cf. [6]. This reduces to the relation

0 ¼ ir��ðP2
; Þ; þ ðP2ĥ; Þ;
þ ½�þ
þ��	þ i@u�ðP2
; Þ; : (B5)

Taking into account the r dependence, we obtain the
following two conditions7:

ðP2
; Þ; ¼ 0; (B6)

ðP2ĥ; Þ; ¼ 0: (B7)

These equations must be accompanied by the condition
(2.11) for the metric function P, namely,

P2ðlogP2Þ; � ¼ �þ: (B8)

1. The case �þ � 0

Integrating (B2), we obtain


; ¼
�L
P2

; (B9)

where the arbitrary function �Lðu; �Þ can depend only on �
and u. First assuming �þ � 0, we can substitute the �
derivative of (B9) into (B2), which leads to

7The case �� ¼ 0 can be easily discussed separately.
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 ¼
�LP2

; �
� �L

; �
P2

�þP2
: (B10)

Now we have to check the consistency of this general
solution for 
 with (B9) [since we have used Eq. (B2) to
obtain 
]. It turns out that the solution is consistent only
thanks to the fact that the constant �þ which appears in
(B2) and (B8) are the same.

However, the function �L in (B10) is not arbitrary. The
last condition which must be satisfied is that 
 is real. It is

not straightforward to find the consequences for �L explic-
itly in a general case. But we can use the freedom in
transverse diffeomorphism to transform the solution of
(B8) into a particular form. It will be useful to use such
transverse coordinates for whichP is linear both in  and � :

P; ¼ 0: (B11)

Explicitly,

P ¼ p0 þ p1 þ �p1
� þ p2 �; (B12)

with p0 and p2 real constants, and p1 2 C, satisfying [as a
consequence of (B8)] the relation

p0p2 � p1 �p1 ¼ 1
2�þ: (B13)

The solutions (2.13) and (2.14) are particular examples of
such a choice.

Assuming (B11), we can now easily find the reality
condition for 
 given by (B10). Since P is real, it requires

that Q � P
 ¼ ð2 �LP; � � �L; �PÞ=�þ is also real. Taking

the derivative Q; , we find that it vanishes, and Q is thus

linear in both  and � :

Q ¼ q0 þ q1 þ �q1 � þ q2 �: (B14)

Here q0 and q2 must be real and q1 complex transverse
constants, but they can by u-dependent. The field equation
(B2) now gives the restriction

p0q2 þ p2q0 ¼ p1 �q1 þ �p1q1: (B15)

Substituting in (B9), we find

�L ¼ ðp0q1 � q0p1Þ þ ð �p1q2 � p2 �q1Þ �2
þ ðp0q2 � p2q0 � p1 �q1 þ �p1q1Þ �: (B16)

In particular, for P given by (2.13) we get

P ¼ 1þ 1
2�þ �; (B17)

Q ¼ q0ð1� 1
2�þ �Þ þ q1 þ �q1 �; (B18)

which is equivalent to (3.7) in real coordinates x and y. For

P ¼ ffiffiffiffiffiffiffiffiffiffiffiffi��þ
p

x, which is a generic example of the choice

(2.14), we have Q ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffi��þ

p
y and


 ¼ �ic
 � �

 þ �
¼ c

y

x
: (B19)

Finally, we should solve Eqs. (B3) and (B7) for ĥ. As for


, we find that ĥ; ¼ P�2 �H , with �H ; ¼ 0. By substitut-
ing into (B3), this leads to

0 ¼ P2ĥ; � ¼ �H ; � � �H ðlogP2Þ; � : (B20)

Taking the derivative with respect to  and using (B8), we
find

0 ¼ �H ðlogP2Þ; � ¼
�þ �H
P2

: (B21)

For �þ � 0 we thus obtain that the conditions (B3) and

(B7) admit only the trivial solution �H ¼ 0. Thanks to
(2.49), for h we obtain

h ¼ 1
2�þ
2 � 1

2��	2 � @u	; (B22)

in which 	 can be set to zero by a proper gauge.

2. The case �þ ¼ 0

If the transverse space is flat, i.e., �þ ¼ 0, we naturally
chose Cartesian transverse coordinates for which P ¼ 1.
We thus immediately get the conditions


; � ¼ 0; 
; ¼ 0; (B23)

which imply 
; ¼ q1 and


 ¼ q0 þ q1 þ �q1 � ¼ q0 þ qxxþ qyy; (B24)

where q0ðuÞ, qxðuÞ, and qyðuÞ are real and q1ðuÞ complex

functions of u only. The metric 1-form ai is then

ai ¼ ð	þ qyx� qxyÞ;i: (B25)

Thanks to such a very special form (B24), it is a gradient,
and therefore it could be transformed away by a suitable
choice of 	 using the gauge transformation. However, it
would generate a nontrivial function g and contributions to

the equation for ĥ. Therefore, such a gauge fixing may not
be the best choice.

Since in this case ĥ satisfies the same equation as 
, we
can write

ĥ ¼ L0 þ L1 þ �L1
� ¼ L0 þ Lxxþ Lyy; (B26)

with L0ðuÞ, LxðuÞ, and LyðuÞ real and L1ðuÞ complex

transverse constants. With the gauge 	 ¼ g ¼ 0, the rela-
tion (2.49) gives

h ¼ Lxxþ Lyy; (B27)

where the constant L0 has been eliminated by rescaling the
coordinate u, i.e., incorporating the gauge transformation
(2.61). We have thus obtained the metric (3.4) which is the
ai � 0 generalization of the exceptional Plebański-Hacyan
spacetime.
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