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Abstract Various aspects of the C-metric representing two rotating charged black
holes accelerated in opposite directions are summarized and its limits are considered.
A particular attention is paid to the special-relativistic limit in which the electromag-
netic field becomes the “magic field” of two oppositely accelerated rotating charged
relativistic discs. When the acceleration vanishes the usual electromagnetic magic
field of the Kerr–Newman black hole with gravitational constant set to zero arises.
Properties of the accelerated discs and the fields produced are studied and illustrated
graphically. The charges at the rim of the accelerated discs move along spiral trajec-
tories with the speed of light. If the magic field has some deeper connection with the
field of the Dirac electron, as is sometimes conjectured because of the same gyro-
magnetic ratio, the “accelerating magic field” represents the electromagnetic field of
a uniformly accelerated spinning electron. It generalizes the classical Born’s solution
for two uniformly accelerated monopole charges.

Keywords Electromagnetic magic field · Kerr–Newman solution · C-metric ·
Boost-rotation symmetric spacetimes

1 Introduction

It was in the late 1950s already when Jürgen Ehlers as a member of the “Jordan
Seminar” in the Physics Department of Hamburg University contributed substantially
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(a) (b)

Fig. 1 Space (a) and spacetime (b) diagram with two uniformly accelerated particles. The conical singu-
larities (“strings”) are depicted in a by zigzag lines, their history is in the shaded region (b). The figures
represent schematic diagrams also in the case of accelerated black holes. (For a detailed analysis of the
conformal Penrose-Carter diagrams in the case of “non-rotating” C-metric, see [12])

to the area of exact solutions of Einstein’s field equations. His famous chapter [11]
in the “Witten book” written together with Wolfgang Kundt became the landmark
in the subject by its emphasis on characterizing exact solutions invariantly by their
intrinsic geometrical properties. In a section on “a degenerate static vacuum fields”
the authors give a table 2-3.1 of all the metrics of that type constructed originally by
Levi-Civita in 1917–19. The last entry in the table consists of “the fields of class C”
in the terminology of Ehlers and Kundt; in contrast to A and B fields the C fields do
not admit an isotropy group. In the present-day terminology these vacuum solutions
are called the C-metric. Ehlers and Kundt considered analytic (non-static) extensions
of the fields A and B, obtaining so, e.g., the Kruskal extension of the Schwarzschild
metric.

In 1970 Kinnersley and Walker [17] performed the analytic extension of the
C-metric. They established a clear physical interpretation of the C-metric as the
Schwarzschild particles (black holes) uniformly accelerated in opposite directions
(cf. Fig. 1) and concluded that in some regions the C-metric has a radiative charac-
ter. They also noticed similarities between the C-metric and the solutions of Bon-
nor and Swaminarayan [8] analyzed in detail, in particular from the viewpoint of
their radiative properties, by Bičák [2] in 1968. In his work the Bondi news function
for the solutions of Bonnor and Swaminarayan was derived, however, the particular
forms of two functions entering the metric were not used during the derivation. The
expression (26) in [2] represents also the general form of the news function for the
C-metric.

In fact, both the C-metric and Bonnor and Swaminarayan solutions belong to a wide
class of the “boost-rotation symmetric spacetimes” representing the exterior fields of
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uniformly accelerated sources1 in general relativity. The encouragement and kind sup-
port of Jürgen Ehlers were important factors in our collaboration with Bernd Schmidt
which led to the paper [6] dealing for the first time with boost-rotation symmetric
spacetimes from a unified point of view. These spacetimes are the only explicitly
known solutions of the vacuum Einstein field equations which describe moving finite
objects, are radiative and asymptotically flat in the sense that they admit global, though
not complete, smooth null infinity, as well as spacelike and timelike infinities. For a
brief survey of the main properties of these solutions see, for example, the chapter
“Selected Solutions of Einstein’s Field Equations: Their Role in General Relativity
and Astrophysics” [3] in the volume dedicated to Jürgen Ehlers on the occasion of his
70th birthday.

A number of papers were written on various specific aspects of the boost-rotation
symmetric solutions, in particular on the C-metric. In our very recent work [1] dedi-
cated to the memory of Jürgen Ehlers we analyzed the generic spacetimes with axial
and boost symmetries from the Newtonian perspective by employing the Ehlers frame
theory [9,10], to construct the Newtonian limit rigorously. This work corroborated
the physical significance of the boost-rotation symmetric spacetimes by demonstrat-
ing that the Newtonian limit corresponds to the gravitational field of classical point
masses accelerated uniformly in the classical mechanics. We illustrated the results by
examples such as the C-metric.

In the present paper we shall, among others, discuss the special-relativistic limit of
a specific boost-rotation symmetric solution—of the charged rotating C-metric repre-
senting two uniformly accelerated, charged and rotating (Kerr–Newman) black holes.

In most of the work on the generic boost-rotation symmetric spacetimes one
assumes the boost Killing vector ξ = z∂t + t∂z (considering the boosts along the
z-axis) and the axial Killing vector η = ∂ϕ to be hypersurface orthogonal. The general
boost-rotation symmetric spacetimes are of Petrov type I and it appears too difficult
to analytically find their extension to the cases when ∂ϕ is not hypersurface orthog-
onal or an electromagnetic field is present since in such cases none of the Einstein
field equations reduces to a linear equation like in the hypersurface orthogonal cases.
However, in the case of the C-metric which is algebraically degenerate (of Petrov type
D) the rotating and charged solutions were found to be contained in a general class of
type D solutions to the Einstein-Maxwell equations discovered in 1976 by Plebański
and Demiański [25].

Their class contains seven real parameters—two parameters describe the mass and
the NUT parameter, two parameters are related to the angular momentum per unit mass
and acceleration, two parameters to the electric and magnetic charges and the last is
the cosmological constant [25,27]. Setting the cosmological constant, magnetic charge
and NUT parameter to zero, we should get a charged, rotating and accelerating object.

However, for a long time both the vacuum C-metric and its generalizations were
analyzed in coordinate systems unsuitable for treating global issues since these sys-
tems were adapted to the degenerate character of the metric. A transformation which

1 Notice, however, that until now no interior exact solution was found except for black holes—the case
of the C-metric. Recently, Bernd Schmidt has been working on the proof of the existence of such interior
solutions.
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brings the rotating vacuum C-metric into the canonical form of radiative spacetimes
with boost-rotation symmetry (geometrically introduced first in the nonrotating case
in [6]) was found in [5]. By analytically continuing the metric across “acceleration
horizons”, two new regions of spacetime arise in which both Killing vectors are space-
like and the metric can be shown to represent two uniformly accelerated, rotating black
holes, either connected by a conical (nodal) singularity, or with conical singularities
extending from each of them to infinity. By plotting curvature invariants one can show
how the gravitational pulse propagates in all directions from black holes (see Fig. 5
in [5] where also references to other related papers are given).

It was also noticed in [5] that there exists causality violation region in the neigh-
bourhood of the nodal singularity which tends to be dragged along with rotating black
holes. There are in general so-called torsion singularities [7,18] associated with the
conical singularities in the usual form of the rotating C-metric considered in [5]. In
2003 Hong and Teo [15] proposed a new form of the standard (non-rotating) C-metric
in which the “structure function” determining the metric was explicitly factorizable;
their new form is related to the usual one by a mere coordinate transformation. In a
subsequent paper [16] Hong and Teo introduced an analogous new form of the rotat-
ing C-metric. However, in contrast to the non-rotating case, this is physically distinct
from the usual form: the conical singularities are free of torsion singularities and
the causality is not violated. Technically, their “new form” is again a member of the
Plebański-Demiański class, the “usual” and the new form differ in the choice of the
parameter traditionally interpreted as the “NUT parameter”. Before their work such
interpretation was accepted on the basis of a non-trivial limiting procedure bringing
the C-metric to the spacetime of an unaccelerated source. For further elaborations on
the Hong’s and Teo’s work see [13].

It the present work in Sect. 2 we give the metric representing two accelerating,
rotating and charged black holes in the new form of Hong and Teo and consider its
various limits. We explicitly demonstrate how (i) the Kerr–Newman solution arises
when the acceleration parameter is set to zero, (ii) with zero rotation the standard
C-metric follows, (iii) when the gravitational constant is send to zero, the “accelerated
electromagnetic magic field” results, (iv) if, in addition the acceleration parameter
is set to zero, the “usual” electromagnetic magic field representing the charged uni-
formly rotating conducting stationary disc arises, and (v) in the limit of vanishing
both gravitational constant and the rotation parameter we get the well known classical
Born’s solution for the point monopole charges of equal magnitude but opposite signs
uniformly accelerated in opposite directions along timelike orbits of the boost Killing
vector field in flat spacetime (Fig. 1).

What is the “electromagnetic magic field”? The term was coined by Lynden-Bell
[19] in his thorough analysis of a closed form analytic solutions of Maxwell’s equa-
tions for the relativistically uniformly rotating conducting charged disc for all values
of the tip speed up to the velocity of light. When velocity at the rim reaches v = c
the field becomes the magic electromagnetic field of the Kerr–Newman solution with
gravitational constant G set to zero. The field can be obtained by considering the
potential of a point charge located at a complex position r0 + i a in flat space. Choos-
ing r0 at the origin and a along the z-axis we get ψ = q/(r2 − 2iar cos θ − a2)1/2

and the magic field is given simply by F = E + i B = −∇ψ .
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Let us summarize some basic properties of the magic field as described in [19,20].
The field has total charge q, magnetic dipole qa and non-vanishing only even electric
and odd magnetic multipole moments. The sources of the field lie on the singular
ring at � = a, z = 0 and on the disc � < a, z = 0 (in cylindrical coordinates). The
electric field is orthogonal to the disc, so the disc is conducting. The surface density
of charge on the disc is of the opposite sign to the total charge. The singular ring has
the (infinite) charge opposite to that in the disc such that the total charge equals q. The
charge density is rotating rigidly with the angular velocity ω = c/a but the current
moving with velocity v = c around the singular ring is of opposite sign. Lynden-
Bell [19] (see also [20]) lists a number of other properties of the magic field like, for
example, its invariants, the field energy density, the Poynting vector and others. In a
subsequent paper [21] Lynden-Bell constructed the field of a relativistically spinning
charged sphere and showed that when the equatorial velocity approaches c the charge
of the same sign as the total charge concentrates in an equatorial belt whereas the
charge of opposite sign lies on the most of the sphere. The structure of the field starts
to resemble the magic field.

Among main remarkable properties of the magic field is the fact that it has gyro-
magnetic ratio the same as the Dirac electron and that wave equations and Dirac
equation are separable in this field. There is no place here to summarize the literature
on various aspects of these properties. As an illustration let us just quote more recent
work by Newman [23] on the classical geometrical origin of the Dirac gyromagnetic
ratio and the last of the series of papers by Pekeris and Frankowski [24] in which the
atomic nucleus is represented as a Kerr–Newman source and the hyperfine splitting
in muonium, positronium and hydrogen is studied.

In the following section we first give the accelerating and rotating charged C-metric
and the corresponding electromagnetic potential in the form presented by Hong and
Teo [16]. After a coordinate transformation which enables us to perform special-
relativistic limit in a simple way we calculate the electromagnetic field tensor and
its invariants. Various limiting cases of the C-metric and electromagnetic field are
then studied systematically. The details on the limits yielding the Kerr–Newman
metric and the “standard” magic field are contained in Appendix A; how the clas-
sical Born’s solution for two uniformly accelerated charges arises is demonstrated in
Appendix B.

In Sect. 3 the accelerating magic field is presented and its properties are discussed
both analytically and graphically. It corresponds to two rotating charged conducting
discs uniformly accelerated in opposite directions. The discs are causally disconnected
like the point charges in the Born’s solution. The discs are bent in the direction oppo-
site to their acceleration. The outer rings move with higher accelerations than the
central parts.

In the last Sect. 4 the sources of the accelerating magic field are studied in more
detail. We find, for example, that the charges at the rim of the discs move along
the spiral trajectories with the speed of light. Their sign is opposite to that of the sur-
face charges on the disc. These features are similar to those of the stationary magic
field.

Various aspects of the accelerating magic fields remain to be explored. For example,
in the region above the acceleration horizons (“above the roof” in the terminology of
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[6]) where the boost Killing vector is spacelike, the field is fully dynamical. Radi-
ative properties of the accelerated magic field are of particular interest. In order to
explore them the form of the fields of uniformly accelerated multipoles [4] should be
useful.

2 Uniformly accelerated Kerr–Newman black holes

As discussed in the Sect. 1, the most natural generalization of the standard C-metric
describing two “uniformly accelerated Schwarzschild black holes” in opposite direc-
tions to the case when the black holes are charged and rotating appears to be given by
Hong and Teo [16]. The charged rotating C-metric in their description reads (cf. (22),
(23) and (15) in [16]):

ds2 = 1

A2(x − y)2

{ G(y)
1 + (a Axy)2

[
dt + a A

(
1 − x2

)
K dϕ

]2 − 1 + (a Axy)2

G(y) dy2

+ 1 + (a Axy)2

G(x) dx2+ G(x)
1 + (a Axy)2

[(
1 + a2 A2 y2

)
K dϕ + a Ay2dt

]2
}
, (1)

where the structure function G is defined by

G(ξ) =
(

1 − ξ2
)
(1 + r+ Aξ) (1 + r− Aξ) (2)

with

r± = Gm ±
√

G2m2 − a2 − Gq2. (3)

Here m, a, q and A are respectively the mass, rotation, charge and acceleration param-
eter. In addition to the form given in [16] we introduced constant K scaling the angular
coordinate ϕ and inserted explicitly the Newtonian gravitational constant G (we put
the speed of light c = 1, except for Appendix B). The possibility to cast the structure
function G to explicitly factorizable form (2) was the main achievement in [16]. It
enables one to find easily four simple real roots of G,

ξ1 = − 1

r− A
, ξ2 = − 1

r+ A
, ξ3 = −1 , ξ4 = 1. (4)

(Recall that in the original Demiański-Plebański form [25] this structure function is
the quartic polynomial with very complicated roots). The roots obey ξ1 ≤ ξ2 < ξ3 <

ξ4 and they determine the allowed range of x and y coordinates in (2) as follows:
ξ2 ≤ y ≤ ξ3 and ξ3 ≤ x ≤ ξ4. The lines x = ξ4 and x = ξ3 are parts of the symmetry
axis, the black hole horizon is at y = ξ2, the acceleration horizon (t = ±z in Fig. 1)
is at y = ξ3 (see [16] for more details).
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The electromagnetic 4-potential is given by (cf. (12) in [16])

A = qy

1 + (a Axy)2

[
dt + a A

(
1 − x2

)
K dϕ

]
. (5)

The axial Killing vector field is simply η = ∂ϕ , with the norm F = ηaηa . The axis
of symmetry is regular if in the limit at the rotation axis F ,a F,a/4F → 1 (see, e.g.,
[27], (19.3)). Calculating this invariant we get

F ,a F,a
F

= A2 (x − y)2

1 + (a Axy)2

(G(x)F2
,x − G(y)F2

,y

)
F

. (6)

Since parts of the axis of symmetry are given by the roots of the structure function
x = ξ3 and x = ξ4, and these are ξ3 = −1 and ξ4 = 1 (see (4)), the condition of the
axis regularity turns out to be

1

4

F ,a F,a
F

x→±1−→ K 2
(

1 + a2 A2 + G
(

A2q2 ± 2Am
))2 −→ 1. (7)

Obviously by choosing a free constant K appropriately we can make the axis regular
either between the black holes (at x = 1) or from each of the black holes to infinity
(x = −1). If we are primarily interested just in the special relativistic limit, G → 0,
which results in the Minkowski space (thought not necessarily in the Lorentzian coor-
dinates—see below) without any conical singularity, we can put

K =
(

1 + a2 A2
)−1

. (8)

However, we may start from the full general-relativistic metric, make one of the part
of the axis regular by choosing either K = K+ or K = K− with

K± =
[
1 + a2 A2 + G

(
A2q2 ± 2Am

)]−1
, (9)

and going then over to the special-relativistic limit G → 0 we still get smooth
Minkowski spacetime without conical singularities.

It is still useful to make a simple coordinate transformation in the metric (1) corre-
sponding to a rigid rotation

ϕ′ = ϕ − ω0t, t ′ = t0t, (10)

where constants ω0 and t0 are given by

ω0 = a A

K
(
1 + a2 A2

) , t0 = K
(

1 + a2 A2
)
. (11)
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This transformation removes the non-diagonal term gtϕ which would otherwise appear
in the flat-space limit G → 0 of the metric (1). Omitting the primes the trans-
formation (10) brings the full accelerating, rotating and charged C-metric into the
form

ds2 = 1

A2(x − y)2

{ G(y)
1 + (a Axy)2

[(
1 + a2 A2x2

)
K dt + a A

(
1 − x2

)
K dϕ

]2

−1 + (a Axy)2

G(y) dy2 + 1 + (a Axy)2

G(x) dx2

+ G(x)
1 + (a Axy)2

[(
1 + a2 A2 y2

)
K dϕ + a A

(
y2 − 1

)
K dt

]2
}
, (12)

with the electromagnetic 4-potential

A = K qy

1 + (a Axy)2

[(
1 + a2 A2x2

)
dt + a A

(
1 − x2

)
dϕ

]
. (13)

The electromagnetic field reads as follows:

F = K q[
1 + (a Axy)2

]2

[
2A2a2xy

(
y2 − 1

)
dt ∧ dx

+
(

1 + (a Ax)2
) (

−1 + (a Axy)2
)

dt ∧ dy

−2a Axy
(

1 + (a Ay)2
)

dx ∧ dϕ + a A
(

1 − x2
) (

1 − (a Axy)2
)

dy ∧ dϕ
]
.

(14)

The electromagnetic invariants are found to be

1

2
Fab Fab = −q2 A4 (x − y)4

[
1 − 6 (a Axy)2 + (a Axy)4

]
[
1 + (a Axy)2

]4 , (15)

1

4
Fab � Fab = −2q2 A4 (x − y)4 a Axy

[−1 + (a Axy)2
]

[
1 + (a Axy)2

]4 . (16)

Now starting from the metric (12) and electromagnetic potential (13) describing
the charged, rotating and accelerating black holes we can go over to simpler, more
familiar cases by making appropriate limits:

1. Putting the rotational parameter a = 0, the expressions (12), (13) become di-
rectly the metric and potential of two accelerated non-rotating charged black holes
(cf. (6a–8) in [15]).
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2. Taking a = 0 and G → 0, we get the Minkowski metric and the field of two oppo-
site charges uniformly accelerated in opposite directions—the classical Born’s
solution, as described in Appendix B.

3. From the Born solution one can obtain the uniform electric field by increasing the
magnitude of the opposite charges and, simultaneously, their distance. Recently,
more sophisticated limit was performed to construct the Melvin (electrical) uni-
verse, i.e., gravitating “uniform” electric field, from the charged, non-rotating
C-metric [14].

4. In the limit of vanishing acceleration, A → 0, the Kerr–Newman solution in the
usual Boyer-Lindquist coordinates (see, e.g., [22]) is recovered after a suitable
coordinate transformation (see Appendix A).

5. Putting G = 0 in the zero acceleration limit A → 0, we get the electromagnetic
magic field (see, e.g., [20]) of the Kerr–Newman solution.

6. Putting G → 0 but leaving A �= 0, a �= 0 and q �= 0, we find the “accelerating
electromagnetic magic field” which has not been considered in the literature so
far. In the following we shall study its properties in some detail.

3 Accelerated magic field

Taking the limit G → 0 in the metric (12) while keeping a, A, q constant and choosing
constant K as in (8), we arrive at flat spacetime in non-trivial coordinates:

ds2 = 1

A2 (x − y)2

[
−

(
y2 − 1

) (
1 + a2 A2x2

)
1 + a2 A2 dt2 + 1 + (a Axy)2(

1 − x2
) (

1 + a2 A2x2
) dx2

+ 1 + (a Axy)2(
y2 − 1

) (
1 + a2 A2 y2

) dy2 +
(
1 − x2

) (
1 + a2 A2 y2

)
1 + a2 A2 dϕ2

]
. (17)

The form of the electromagnetic potential, the field and its invariants remain the same
as in (13) and (14).

In the flat spacetime limit the coordinates t, x, y, ϕ turn out to be just “compli-
cated” coordinates in a uniformly accelerated frame. In such a frame the standard
convention is to use the Rindler coordinates (see, e.g., [22]) in which the metric
reads

ds2 = −ζ 2dt2 + dζ 2 + d�2 + �2dϕ2. (18)

By making the coordinate transformation

ζ =
√(

y2 − 1
) (

a2 A2x2 + 1
)

A (x − y) Γ
, � =

√(
1 − x2

) (
a2 A2 y2 + 1

)
A (x − y) Γ

, (19)

t = t, ϕ = ϕ , (20)

where we denoted Γ = √
1 + a2 A2, we obtain directly the metric in the form

(17).
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The inverse transformation is more complicated (but it is useful to know and it is
necessary to draw numerically the figures below):

x = −1

2

1

sgn(ξ−) a Aξ+

[
−4

(
ξ2

− + 4�2/A2
)

+
(√

Γ 2ξ2
+ − 4 (ζ/A + a�)2 +

√
Γ 2ξ2

+ − 4 (ζ/A − a�)2
)2]1/2

, (21)

y = −1

2

1

sgn(ξ−) a Aξ−

[
−4

(
ξ2

− + 4�2/A2
)

+
(√

Γ 2ξ2
− + 4 (�/A − aζ )2 +

√
Γ 2ξ2

− + 4 (�/A + aζ )2
)2]1/2

, (22)

where

ξ± = �2 + ζ 2 ± 1

A2 . (23)

The source of the field itself is located at y = −∞. This means that its worldtube
is given by

ζ =
√

1 + a2 A2x2

AΓ
, (24)

� = a
√

1 − x2

Γ
, (25)

where x ∈ 〈−1, 1〉 and t ∈ R and ϕ ∈ (0 , 2π〉. In Minkowski coordinates we have
Z = √

ζ 2 + T 2. Expressing ζ from (24) to (25) directly as a function of �, we find
the disc to be described by the formula

ζ =
√

1 − A2�2

A
. (26)

Thus the disc is convexly bent “oppositely” to the direction of the acceleration (see
Figs. 3, 4a).

Since the disc is bent, its different rings are moving with different accelerations.
Hence, we parametrize worldlines of particular particles of the disc as follows

T = B̃−1(�) sinh Ã(�)τ , (27)

Z = B̃−1(�) cosh Ã(�)τ , (28)
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Fig. 2 The magic electric field
produced by a relativistically
rotating charged disc (indicated
by a thick line segment) at rest in
the equatorial plane. The rim of
the disc is formed by charges of
opposite sign than those on the
disc (notice the directions of
“arrows”). The charges at the
rim move with the speed of light.
By thinner, respectively dashed
lines are indicated the places
where the invariants E2 − B2,
respectively E · B, vanish. (See
Sect. 1 for more details)

-1

-1

1

ϕ = ϕ(τ, �) , (29)

where 0 ≤ � ≤ aΓ −1 and τ is the proper time. For the disc described by (26) we get
ζ 2 = Z2 − T 2 = B̃−2 = A−2

(
1 − A2�2

)
.

The 4-velocity of each element of the disc must satisfy the normalisation condition
(˙= d/dτ )

− Ṫ 2 + Ż2 + R2ϕ̇2 = −
(

Ã B̃−1
)2 + �2ϕ̇2 = −1 , (30)

so that

Ã2(�) = A2
(

1 + �2ϕ̇2(�)

1 − A2�2

)
. (31)

To determine the dependence ϕ̇(τ, �) we need to take the electromagnetic field pro-
duced by the disc into account. This will be done in the following section.

The accelerating electromagnetic magic field (14) is determined by the potential
(13) and by the field tensor (14). Although it can be given in an analytic form in the
Rindler coordinates using the transformation (21–22), its form is very complicated
and we will not write it explicitly down here. Its character is well seen in Figs. 3
and 4a where the accelerated magic field is plotted in different times by using Maple.
It should be compared with the stationary magic field of the Kerr–Newman source
plotted in Fig. 2.

In particular, notice from Fig. 3 that we get two discs accelerating in opposite
directions along the Z -axis. As with Born’s solution for accelerating point charges of
opposite signs (see Appendix B and, e.g., [2,26]). The distribution of the charges on
the discs is opposite. The disc moving along Z > 0 is positively charged at the rim (the
field points away from the rim), whereas the field lines point towards the inner part
of the disc perpendicularly, indicating a negative charge surface density distribution
on the disc. Inspecting the direction of the electric field in the neighbourhood of the
disc accelerated along Z < 0 we find the situation exactly opposite. This behaviour
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Fig. 3 The electric intensity of the “accelerated magic field” produced by two relativistically rotating discs
uniformly accelerated in opposite directions. The discs, indicated by thick lines, are bent in the direction
opposite to the acceleration in the frames, in which they are momentarily at rest. At large times when all
their parts approach the velocity of light in a given inertial frame, the discs become flattened. By thinner,
respectively dashed lines are indicated the places where the invariants E2 − B2, respectively E · B, vanish.
The discs and the electric field are here plotted at time T = 0 when the discs are momentarily at rest. (For
more details on the properties of the field, see the text)

corresponds to the fact that the field is analytic everywhere except for the places where
the sources (the discs) occur. Just one half of the “upper disc” and the surrounding
magic field is plotted in Fig. 4a. As the discs move towards the null infinity their shape
in a given inertial frame gets flattened.

Regarding the invariants (15) and (16) it is of interest to see where they van-
ish. The invariantly defined regions where this occurs are given by the roots of the
equations

|E|2 − |B|2 = 0 , (15) : a Axy = ±
(√

2 ± 1
)
, x = y , (32)

E · B = 0 , (16) : a Axy = ±1 , x = y , y = 0. (33)

The roots x = y correspond to asymptotic infinity. These places are indicated in Figs. 3
and 4a; see the captions for details.
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(a) (b)

Fig. 4 a The disc and the accelerating electric magic field at time T = 1/3—only one quadrant of Fig. 3
is plotted. See the caption of Fig. 3 for more details. b Individual charged particles of the disc move along
spiral trajectories. The particles at the rim move with the speed of light

4 Sources

As mentioned in Sect. 1, the stationary magic field solves the Maxwell equations with
the source in the form of a rigidly rotating relativistic disc. Here we make some remarks
on the sources of the accelerated magic field. Assume the field is produced by a 4-
current ja and denote its associated current 3-form by J = jaεabcd dxb ∧ dxc ∧ dxd ;
the Maxwell equations read

d � F = 4π J , (34)

where �F is the 2-form dual to F = Fabdxa ∧ dxb.
Let us multiply (34) from left by a 1-form du where u is an arbitrary smooth func-

tion (e.g., a coordinate) defined on some neighbourhood of a spacetime point and
integrate over a 4-volume Ω:

∫
Ω

du ∧ d � F = 4π
∫
Ω

du ∧ J . (35)

Using Stokes theorem and employing the notation of [28] with ε as a 4-volume element,
we get

−
∫
∂Ω

du ∧ �F = 4π
∫
Ω

du ∧ J = −4π
∫
Ω

du( j) ε. (36)

The source we are interested in is on a rotating disc given in “accelerated” oblate
spheroidal coordinates (metric (17)) by t = const, y = −∞, x ∈ (−1, 1) and ϕ ∈
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1994 J. Bičák, D. Kofroň

〈0, 2π). Thus the 4-volume of integration will be a region infinitesimally thin around
the point of the disc, i.e., r ∈ (0, rε) (see transformation (61)).

The flow of the field (36) can be evaluated directly in the limit y → −∞. At the
l.h.s. of (36) we get

−
∫
∂Ω

(du ∧ �F) = −
∫
∂Ω

(du ∧ �F)t xϕ dt dx dϕ.

The discussion of the r.h.s. of (36) is more complicated. The sources are represented by
distributions located only at y = −∞. In the limit we have to divide

∫ yε
∞ u,α jα

√−g dy
by the volume thickness

∫ yε
−∞

√
gyy dy. We get

lim
yε→−∞

∫ yε
−∞ u,α jα

√−g dy∫ yε
−∞

√
gyy dy

= u,α jα
√−g√

gyy
.

(The same result follows directly from calculus of distributions—assuming the charge
to be located at some 3-surface, we can use the identity

∫
V f (r) δ(h(r)) dn r =∫

∂V
f (r)
|∇h| dn−1r).

Collecting the results we obtain the relation

−
∫
∂Ω

(du ∧ �F)t xϕ dt dx dϕ = 4π
∫

du( j)
a2x

A
(
1 + a2 A2

) dx dt dϕ (37)

from which

4π jα u,α = (du ∧ �F)t xϕ
A

(
1 + a2 A2

)
a2x

. (38)

If we now choose function u to be coordinate t we get the j t component of the surface
4-current and, analogically, with u = ϕ we find the jϕ component. As a result we
receive the 4-current in the form

j = 1

2π

q

a2x3

(
A∂t − 1

a
∂ϕ

)
. (39)

This is the generalization of the surface 4-current on the disc producing the stationary
magic field (cf. (58)). On the other disc, accelerating in the opposite direction, we
find the opposite signs. As in the stationary case, there are also two singular rings at
the rims of the discs with charges and currents of the opposite signs which rectify the
surface charges and currents on the discs.
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Transforming now from accelerated oblate spheroidal coordinates via Rindler coor-
dinates to Lorentzian coordinates we subsequently obtain

j = j t (x)∂t + jϕ(x)∂ϕ = j t (ζ, �)∂t + jϕ(ζ, �)∂ϕ

= Z j t
(

Z2 − T 2, �
)

∂T + T j t
(

Z2 − T 2, �
)

∂Z + jϕ
(

Z2 − T 2, �
)

∂ϕ

= Z j t
[
∂T + T

Z
∂Z + jϕ

j t

�

Z

(
1

�
∂ϕ

)]

= Z j t

[
∂T + T√

ζ 2 + T 2
∂Z − 1

a A

�√
ζ 2 + T 2

(
1

�
∂ϕ

)]
. (40)

Here the 4-current is written in the form jµ = σ (1, v) in the physical (orthonormal)
basis. The velocity is v = (T/Z) eZ − (1/(a A)) (�/Z) eϕ . Its magnitude is given
by

|v| = 1

a

√
�2 + (a AT )2

1 − A2�2 + A2T 2 , (41)

which yields |v| = AT/
√

1 + A2T 2 at the centre of the disc, � = 0, whereas at the
rim, i.e., for �rim = a/Γ , we get |v| = 1 for all times T . Hence, the charges at the
outer rim move with the speed of light as in the case of an unaccelerated relativistic
disc producing the stationary electromagnetic magic field. The “unaccelerated” case
immediately follows from (41) with A = 0. Then |v| = vϕ = �/a which at the rim
�rim = a gives |v| = 1.

The trajectories of individual particles in the disc (for which �=const and ζ =const)
are easy to obtain by solving the system of ODEs given by dr(T )/dT = v. The
solution is

Z =
√
ζ 2 + T 2 , (42)

ϕ = − 1

a A
ln

(
T +

√
ζ 2 + T 2

)
, (43)

where values of � and ζ for particles on the disc are given by (24–25). In those equa-
tions the coordinate x parameterizes the “distance from the centre of the disc”. The
spiral character of the motion of two individual particles of the discs located symmet-
rically with respect to the equatorial plane and accelerated in opposite directions is
illustrated in Fig. 4b.
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Fig. 5 The spacetime diagram of the world tube (left) and the shape of discs uniformly accelerated in
opposite directions producing the accelerating electromagnetic magic field

The angular velocity of rotation of the disc as seen at spacelike surfaces T = const is

ω = dϕ

dT
= − 1

a A

1

Z
= −1

a

1√
1 + A2(T 2 − �2)

. (44)

Thus the disc asymptotically stops its rotation in a given inertial frame, as it moves
almost with the speed of light in the direction of the Z -axis at large T .

The bending of the discs appears to be plausible on physical grounds. The discs
rotate but their shape remains rigid in Rindler’s coordinates, or, equivalently, in any
inertial frame in which the centre of the disc is momentarily at rest. (The field and
the source are invariant with respect to the boosts along the Z -axis.) The outer parts
of each of the discs move with higher velocities transversal to the linear accelera-
tion along the Z -axis than the inner parts. To preserve the same shape in any of the
frames in which the centre is at rest, the outer parts must experience a higher accel-
eration along the Z -axis than the inner parts. This is the case when the discs are
bent.

In Fig. 5 we illustrate the worldtube of the disc moving along Z < 0 and a num-
ber of snapshots of the disc moving along Z > 0. The bending of the disc for
small T and the flattening of the disc for T → ±∞ is here demonstrated mani-
festly.
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Appendix A: Zero acceleration limit of the rotating charged C-metric

The rotating charged C-metric we begin with reads

ds2 = 1

A2(x − y)2

{ G(y)
1 + (a Axy)2

[(
1 + a2 A2x2

)
K dt + a A

(
1 − x2

)
K dϕ

]2

−1 + (a Axy)2

G(y) dy2 + 1 + (a Axy)2

G(x) dx2

+ G(x)
1 + (a Axy)2

[(
1 + a2 A2 y2

)
K dϕ + a A

(
y2 − 1

)
K dt

]2
}

(45)

and the 4-potential, given by (13), is

A = K qy

1 + (a Axy)2

[(
1 + a2 A2x2

)
dt + a A

(
1 − x2

)
dϕ

]
. (46)

Applying transformation (cf. also [16])

t → t A , x → cos θ , y → − 1

Ar
, (47)

so that dt → A dt , dx →− sin θ dθ , dy → 1
Ar2 dr , the relevant functions in the metric

become

G(x) → sin2 θ (1 + r+ A cos θ) (1 + r− A cos θ) , (48)

G(y) → A2r2 − 1

A2r4 (r − r+) (r − r−) = 1

A2r4

(
A2r2 − 1

)
∆, (49)

A2(x − y)2 = 1

r2 (Ar cos θ + 1) , (50)

1 + (a Axy)2 = 1

r2Σ , (51)

where ∆ = (r − r+)(r − r−) = r2 − 2Gm + a2 + Gq2 and Σ = r2 + a2 cos2 θ are
standard notations (see, e.g., [22,28]).

Substituting the above results into the metric and taking the limit A → 0 (we see
from (7) that K → 1 in physically relevant cases), we get

ds2 = r2
{
− ∆

r2Σ

[
dt + a sin2 θdϕ

]2 + Σ

r2∆
dr2 + Σ

r2 dθ2

+r2 sin2 θ

Σ

[(
1 + a2

r2

)
dϕ + a

r2 dt2
]2}

. (52)
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After simple rearrangements this yields

ds2 = −∆+ a2 sin2 θ

Σ
dt2 + Σ

∆
dr2 +Σ dθ2 + 2a

(
r2 + a2

) −∆

Σ
sin2 θ dtdϕ

+
(
r2 + a2

)2 − a2∆ sin2 θ

Σ
sin2 θ dϕ2 , (53)

which is the standard form of the Kerr–Newman metric in Boyer-Lindquist coordi-
nates (see, e.g., [22,28]). After using the transformation (47), the electromagnetic field
(46) becomes

A = −qr

Σ

(
dt + a sin2 θ dϕ

)
. (54)

Electromagnetic magic field

As discussed in the main text, the magic field is the special-relativistic limit of the
Kerr–Newman solution. The metric in this limit goes over to the flat spacetime metric
in oblate spheroidal coordinates:2

ds2 = −dt2 + r2 + a2 cos2 θ

r2 + a2 dr +
(

r2 + a2 cos2 θ
)

dθ2

+
(

r2 + a2
)

sin2 θ dϕ2. (55)

The magic field is given by the 4-potential

A = qr

r2 + a2 cos2 θ

(
−dt + a sin2 θdϕ

)
. (56)

The electromagnetic field reads

F = q(
r2 + a2 cos2 θ

)2

{(
r2 − a2 cos2 θ

)
dr ∧

(
dt − a sin2 θ dϕ

)

+ 2ar cos θ sin θ dθ ∧
[(

r2 + a2
)

dϕ − a dt

]}
. (57)

The 4-current on the surface of the disc (given by r = 0, i.e., a2 −r2
spherical = a2 cos2 θ

in spheroidal coordinates) is given by

j = 1

2π

q

a2 cos3 θ

(
−∂t + 1

a
∂ϕ

)
, (58)

see, e.g., [19,20].

2 The coordinates r, θ, ϕ are, in fact, the “quasi-spherical spheroidal coordinates”. They are connected
with the standard dimensionless spheroidal coordinates µ, ν by relations r = a sinhµ and cos θ = sin ν
(see, e.g., [19,20] for more details).
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Appendix B: Born’s solution

We demonstrate how to obtain Born’s solution (see, e.g., [26]) for two uniformly
accelerated point monopole charges (cf. Fig. 1) as a flat spacetime limit of non-rotat-
ing charged C-metric

ds2 = 1

(x − y)2

[G(y)
λ

dt2− 1

A2λ2 G(y) dy2+ 1

A2λ2 G(x) dx2+ G(x)
A2λ2 dϕ2

]
. (59)

Here we introduced t (see below) with dimension of time, [s], the other coordinates
remain dimensionless. Constant A [m · s−2] is the acceleration, λ [m−2 · s2] = c−2

(c is the speed of light). The structure function reads

G(ξ) =
(

1 − ξ2
)
(1 + Aλr+ξ) (1 + Aλr−ξ) , (60)

where

r± = Gλm +
√
(Gλm)2 ± Gλ2q2. (61)

The 4-potential is

A = Aλqy dt. (62)

Above we incorporated the factor λ−1/2 A−1 into the time coordinate t so that it has
dimension [s], in contrast to the dimensionless time coordinate in the original form of
the C-metric (1). The field is given by

F = −Aλ q dt ∧ dy. (63)

A flat spacetime metric in cylindrical coordinates with standard units,

ds2 = −1

λ
dT 2 + dZ2 + d�2 + �2dϕ2 , (64)

is obtained in the limit G → 0 of the C-metric (59) by transformation

t = 1

A
√
λ

artanh

(
T

Z
√
λ

)
, x = − u2√

u4 + 4�2(Aλ)−2
, (65)

ϕ = ϕ , y = − u2 + 2 (Aλ)−2√
u4 + 4�2(Aλ)−2

, (66)

where

u2 = �2 + Z2 − T 2/λ− 1/A2λ2 , (67)

ξ+ =
√

u4 + 4�2(Aλ)−2. (68)
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The electric and the magnetic fields measured by an observer with 4-velocity u are
given by

Ea = Fabub , (69)

Ba = 1

2

√
λ εabcd ub Fcd . (70)

An inertial observer with u = ∂T measures

E = q

A2λ2

4

ξ3
+

[(
u2 − 2�2

) ∂

∂ Z
+ 2Z�

∂

∂�

]
, (71)

B = q

A2λ2

1

ξ3
+

8T�2 ∂

∂ϕ
. (72)

This is precisely Born’s solution for two uniformly accelerated charged monopole
particles (see, e.g., [2,26]).
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