Efficient Numerical Solution of Time-Dependent
Multichannel One-Dimensional or Radial Problems in
Quantum Mechanics

Karel Houfek

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University Prague, V
Holesovickdch 2, 180 00 Praha 8, Czech Republic

Abstract. An efficient and very accurate numerical solution of a system of coupled time-dependent Schrédinger equations
with one space variable is presented. The time evolution is performed using a generalized Crank-Nicholson method whereas
the space discretization is based on the finite element method and the discrete variable representation. Moreover we apply
the exterior complex scaling method to avoid undesired reflections of the wave packets at the ends of the grid instead of the
complex absorbing potential. Such a combination of various highly precise methods makes the resulting technique one of the
most efficient for solving the system of a coupled time-dependent radial Scrodinger equations which is encountered in many
problems in atomic and molecular physics.
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INTRODUCTION

In atomic, molecular, and nuclear physics many problems which are described within the quantum mechanics lead to
a system of coupled time-dependent one-dimensional or radial Scrédinger equations which we write in a concise form
as (for simplicity we use atomic units, i.e. we set =1 and m, = 1)

_0¥(x,2)
H‘P(x,l)—lT (H

which describes a time evolution of a quantum-mechanical system whose dynamics is given by the multichannel

Hamiltonian g
1 d
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where 1 denotes the reduced mass of the system and channel potentials Vi (x) and couplings V, B (x) are responsible

for the interaction within the studied system. The multichannel wave function ¥(x,t) = (W1 (x,t),. .., Wn(x,2))T is
usually given in the initial time ¢ = #( in one channel & = oy, i.e.

Vo (x,t =19) = Saay Yo (%) 3)

Once the system (1) is solved and the wave function ¥(x,¢) is known for ¢ > #; one can extract physically relevant
quantities (such as transition probabilities) from it using e.g. the Fourier transform.

Because analytical solutions are not available for most of the systems, efficient and precise numerical techniques of
solving (1) are needed. The well-known and often used Crank-Nicholson method was shown not to be efficient enough
for many problems and its generalization both in space discretization and time propagation were proposed by several
authors (see e.g. [1, 2] and references therein). Here we propose to combine the time propagation by the use of the
generalized Crank-Nicholson method with a space discretization based on the technique developed by Rescigno and
McCurdy [3, 4].
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NUMERICAL METHOD

Instead of solving directly the equation (1) we will use an equivalent approach and write the wave function at the time
t + At in the form
W (x,t + At) = exp(—iHA)¥(x,1) @)

where the time-evolution operator propagates the wave function from ¢ to ¢ + At. The standard Crank-Nicholson method
[1] for time propagation of the wave function can be derived from (4) if the exponential function is approximated using
the diagonal Padé [1/1] rational function (see e.g. [5])

1—iHAt/2
—iHAt) " ————.
exp(—HHA) ~ TR 2 ©)
If we use the diagonal Padé I [N/N] approximation
exp(z) & taiztad+ o +ayd 2 1-z/2" (6)
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where z.EN) are the roots of the polynomial in the numerator, we get the generalized Crank-Nicholson method [1] and

the wave function at the time ¢ + At can be calculated as

N
W(x,t+ A1) ~ [ KV (x,0) o)
s=1
where the operators KS(N) are defined as
1+iHAt [z
k™ = +iHAt /75 ®)

1—iHA /[
and ng) are the complex roots of the numerator in the Padé I [N/N] approximation of the exponential function.
The time propagation given by (7) is more precise than the standard Crank-Nicholson method with one term (5)
not only if we use the same time step At, but also if we use the time step greater than NA¢. Thus we obtain higher
precision applying less times the operators (8) to the wave function (as it is clearly demonstrated in Table 1 for a model
example).
One could even make the method faster by applying the whole product in (7) at once by precalculating the whole
numerator and factorizing the whole denominator first. This would be useful if we work with full matrices. On the other
hand, if the matrix representing Hamiltonian is a sparse matrix (as it is the case when using the finite element method

and the DVR method, see below) then it is better to apply each operator KS(N) separately, for the whole numerator or
denominator in the Padé approximation (6) is not in general a sparse matrix.

To represent the Hamiltonian (2) accurately on a numerical grid (or in some basis) we implemented the finite
element method (FEM) and the discrete variable representation (DVR) combined with the method of the exterior
complex scaling (ECS). This method was proposed by [3, 4] as an efficient numerical grid method to solve the time-
independent Schrodinger equation (its application to the time-independent multichannel radial scattering problem can
be found in [6]). In references above one can found details on how to apply this method in the most efficient way.

Its application to the time-dependent Schrodinger equation was studied in [7] where it was shown that the use of
the exterior complex scaling method eliminates reflections of outgoing wave packets from boundaries very efficiently.
If we rotate the coordinate to the complex plane at sufficiently large distances where the interaction is negligible this
method does not effect the solution on the real part of the grid which can be then used to calculate physical quantities
of interest. Thus this method enables us to avoid introduction of a complex absorbing potential altogether.

Another great advantage of this method is that the local potentials and couplings V,g(r) are all diagonal in the
DVR basis and the kinetic energy operator matrix is band and it is represented with high accuracy owing to the use
of the Gauss-Lobatto quadrature (see [3] for details). Thus this method results in very sparse matrices representing
Hamiltonians (2) and operators used in the Crank-Nicholson time propagation and efficient algorithms for the matrix
multiplication and inversion can be applied.
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FIGURE 1. The propagation of the wave packet (10) in the two-channel barrier penetration problem (9) for ¢ <= 3500a.u. (note
that 1000 a.u. is about 24 fs), upper panel — channel 1, lower panel — channel 2. Efficient elimination of the wave packets in both
channels at x = —20 and x = 20 where the complex part of the grid starts is clearly seen.

RESULTS FOR A MODEL PROBLEM

As a testing model on which the efficiency of the numerical method described above will be demonstrated has
been chosen a multi-channel one-dimensional barrier penetration problem where channel potentials and couplings
are potential barriers

x| <a,

| > a. ©)

VapB>
Vap (%) = Sup€a + { 0
Here we present our results for a two-channel problem with numerical values a = 1.0, vi; = vy, =0.1, vi2 = v =0.05,
€ = 0.0, and & = 0.05 (all values here and below are given in atomic units).
The reduced mass p1 was set to be roughly the proton mass (i = 1836) to get a time scale typical in molecular
dynamics problems. The initial wave packet is non-zero only in the first channel and it has the form of the Gaussian
wave packet

Wo(x) = (2m(Ax)?) "4 exp [~ (x —x0)? /4(Ax)? +ipo(x—x0)] (10)

with numerical values xg = —10.0, Ax = 1.0, pg = 20.0.

The basic numerical grid used in our calculations was chosen dense enough to be sure that the error in the time
propagation comes mainly from the approximation of the time propagator (7). The real part of the grid was in the
interval (—20,20) and complex scaling was used for x < —20 and x > 20 with the scaling angle n = 40°.

In Fig. 1, the time propagation of the Gaussian wave packet (10) is shown for the two-channel model (9). As the
wave packet arrives in the interaction region (|x| < a) it starts to bifurcate into both accessible channels. Due to the
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TABLE 1. The number of iterations, the total number of appli-

cations of the operator Ks(N) on ¥ (x,1), and the time step needed
to get the error ey of the wave function given by (11) for differ-
ent orders of the generalized Crank-Nicholson method.

N  iterations KW At eq e
1 200000 200000 0.01 171073 14107
2 10000 20000 02 561078 451078
3 2000 6000 1.0 321072 25107°
4 400 1600 50 621078 501078
5 200 1000 100 511078 4.110°8
6 100 600 200 451077 3.61077
8 50 400 400 891077 7.11077
10 40 400 500 171078 141078
15 20 300 1000 4.4107° 3.5107°
20 10 200 2000 7.9107% 6310°°

non-zero threshold energy & the wave packet in the second channel moves a little bit more slowly than in the first
channel.

In the Table 1, we compare precision of our model calculations for several settings of time propagation parameters.
The most relevant number characterizing the efficiency of a particular calculation is the number of multiplications of

the wave function by the operator KS(N) (the third column) through the time propagation. Quantities ey shown in the
last two columns of the table are errors of the wave functions at # = 2000 in both channels defined by

20
(ea)? = / s W (x, 1 = 2000) — W& (x,1 = 2000)|* (11)
where W% (x, + = 2000) was taken from the very accurate propagation using the generalized Crank-Nicholson
method of the order 20 and time step Ar = 10.0. We can clearly see that the generalized Crank-Nicholson method
of higher orders is much superior to commonly used Crank-Nicholson method given by (5). For example, to obtain
the same accuracy with the generalized Crank-Nicholson method of order 20 one needs 1000 times less matrix
multiplications and back substitutions than with standard Crank-Nicholson method.

CONCLUSIONS

The efficient numerical technique which combines the finite element method, the discrete variable representation and
the exterior complex scaling method for space discretization the Hamiltonian with the generalized Crank-Nicholson
method for time propagation was used to solve the system of coupled one-dimensional Schrodinger equations. This
method proved to be very precise and efficient and we believe that it can be successfully applied to many problems
encountered in atomic and molecular physics.
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