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We derive the higher-dimensional generalization of Penrose-Tod equation describing past horizon in

Robinson-Trautman spacetimes with a cosmological constant and pure radiation. Existence of its solutions

inD> 4 dimensions is proved using tools for nonlinear elliptic partial differential equations. We show that

this horizon is naturally a trapping and a dynamical horizon. The findings generalize results from D ¼ 4.
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I. INTRODUCTION

Robinson-Trautman spacetimes represent a class of ex-
panding nontwisting and nonshearing solutions [1–3] de-
scribing generalized black holes. Various aspects of this
family in four dimensions have been studied in the last two
decades. In particular, the existence, asymptotic behavior
and global structure of vacuum Robinson-Trautman space-
times of type II with spherical topology were investigated,
most recently in the works of Chruściel and Singleton
[4–6]. In these rigorous studies, which were based on the
analysis of solutions to the nonlinear Robinson-Trautman
equation for generic, arbitrarily strong smooth initial data,
the spacetimes were shown to exist globally for all positive
retarded times and to converge asymptotically to a corre-
sponding Schwarzschild metric. Interestingly, extension
across the ‘‘Schwarzschild-like’’ future event horizon
can only be made with a finite order of smoothness.
Subsequently, these results were generalized in [7,8] to
the Robinson-Trautman vacuum spacetimes which admit
a nonvanishing cosmological constant �. These cosmo-
logical solutions settle down exponentially fast to a
Schwarzschild-(anti-)de Sitter solution at large times u.
Finally, the Chruściel-Singleton analysis was extended to
Robinson-Trautman spacetimes including matter, namely,
pure radiation [9]. It was demonstrated that these solutions
with pure radiation and a cosmological constant exist for
any smooth initial data, and that they approach the spheri-
cally symmetric Vaidya-(anti-)de Sitter metric.

In [10], Robinson-Trautman spacetimes (containing
aligned pure radiation and a cosmological constant �)
were generalized to any dimension. The evolution is gov-
erned by a simpler equation in higher dimensions, contrary
to the four-dimensional case where fourth order parabolic
type Robinson-Trautman equation occurs. Also, the pos-
sible algebraic types were determined. But still several
interesting features deserve attention, the presence of hori-
zons being among them. Similarly to four dimensions,
higher-dimensional Robinson-Trautman family of solu-
tions contains several important special cases, e.g.

Schwarzschild-Kottler-Tangherlini black holes and gener-
alizations of the Vaidya metric. The study of higher-
dimensional spacetimes and their features help to compre-
hend which properties survive the generalization and which
are closely tied to four dimensions, thus deepening the
understanding of General Relativity. Lately, considerable
interest in higher dimensions comes from outside of the
purely relativistic community.
Our concern here is to locate the past (white hole)

horizon. In general dynamical situations this might be
rather nontrivial since the obvious candidate—event
horizon—is a global characteristic and therefore the full
spacetime evolution is necessary in order to localize it.
Therefore, over the past years different quasilocal charac-
terizations of black hole boundary were developed. The
most important ones being apparent horizon [11], trapping
horizon [12], and isolated or dynamical horizon [13,14].
The basic local condition in the above mentioned horizon
definitions is effectively the same: these horizons are sliced
by marginally trapped hypersurfaces with vanishing ex-
pansion of outgoing (ingoing) null congruence orthogonal
to the surface. Quasilocal horizons are frequently used in
numerical relativity for locating the black holes or in black
hole thermodynamics.
For the vacuum four-dimensional Robinson-Trautman

solutions without cosmological constant, the location of
the horizon together with its general existence and unique-
ness has been studied by Tod [15]. Later, Chow and Lun
[16] analyzed some other useful properties of this horizon
and made numerical study of both the horizon equation and
Robinson-Trautman equation. These results were recently
extended to nonvanishing cosmological constant [17]. The
anisotropy of Robinson-Trautman horizon was used in the
explanation of the "antikick" in binary black hole mergers
[18].

II. ROBINSON-TRAUTMAN SPACETIME
IN D DIMENSIONS

Robinson-Trautman spacetimes (containing aligned
pure radiation and a cosmological constant �) in any
dimension were obtained in [10] using the geometric*ota@matfyz.cz
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conditions of the original articles about the four-
dimensional version of the spacetime [1,2]. Namely, they
required the existence of a twistfree, shearfree, and ex-
panding null geodesic congruence. They have arrived at the
following metric valid in higher dimensions

ds2 ¼ r2

P2
�ijdx

idxj � 2dudr� 2Hdu2; (2.1)

where 2H ¼ R
ðD�2ÞðD�3Þ � 2rðlnPÞ;u � 2�

ðD�2ÞðD�1Þ r
2 � �ðuÞ

rD�3 .

The unimodular spatial (D� 2)-dimensional metric �ijðxÞ
and the function Pðx; uÞ must satisfy the field equation

Rij ¼ R
D�2hij (with hij ¼ P�2�ij being the rescaled met-

ric) and �ðuÞ is a ‘‘mass function’’ (we assume �> 0). In
D ¼ 4 the field equation is always satisfied and R (Ricci
scalar of the metric h) generally depends on xi. However,
in D> 4 the dependence on xi is ruled out [R ¼ RðuÞ].
But generally, it still allows a huge variety of possible
spatial metrics hij (e.g., for R> 0 and 5 � D� 2 � 9

an infinite number of compact Einstein spaces were clas-
sified). The dynamics is also different in D> 4. While in
four dimensions there is a fourth order Robinson-Trautman
equation, the corresponding evolution equation is much
easier in higher dimensions

ðD� 1Þ�ðlnPÞ;u ��;u ¼ 16�n2

D� 2
; (2.2)

where function n describes the aligned pure radiation.

III. PAST HORIZON

In our case, we will be dealing only with the condition of
vanishing expansion defining the marginally trapped hy-
persurfaces. Concretely, we will search for the past horizon
similarly to previous studies in four dimensions and corre-
sponding to the form of the metric containing retarded
time. As will be clear later, we might call it trapping
horizon or even dynamical horizon if it is spacelike, as-
suming appropriate higher-dimensional generalization of
these notions (see [19]). In four-dimensional case the
parabolic character of Robinson-Trautman equation makes
it generally impossible to extend the spacetime to past null
infinity (the solutions of the Robinson-Trautman equation
are generally diverging when approaching u ¼ �1), and
it is impossible to define event horizon. In higher dimen-
sions this is no longer truth (the evolution equation is
different), but since one would like to investigate the
horizon existence generically, without prior specification
of all necessary functions (e.g. dynamics of pure radiation)
and geometry of (D� 2)-dimensional spatial hypersurfa-
ces, the best approach is still using the quasilocal horizons.
In Fig. 1, the schematic conformal picture of Robinson-
Trautman spacetime (for D ¼ 4 and without cosmological
constant for simplicity) is presented together with the
approximate location of the horizons (initial data are given
at u ¼ u0).

The explicit parametrization of the past horizon hyper-
surface is r ¼ Rðu; xiÞ such that its intersection with each
u ¼ u1 slice is an outer marginally past trapped (D� 2)
surface.
For the calculation of the expansion of an appropriate

null congruence we will use a straightforward generaliza-
tion of the tetrad formalism to arbitrary dimension. Note
that one can no longer use complex vector notation. Using
two null covectors la, na (with normalization lan

a ¼ �1)
and D� 2 spatial covectors mafig (i ¼ 1; . . . ; D� 2) we
suppose the following decomposition of the metric

gab ¼ �2lðanbÞ þmafigmbfjg�ij: (3.1)

Null D-ad (D-bein) [generalization of tetrad or vierbein]
adapted to the trapped hypersurface (using the above men-
tioned parametrization) has the following form:

la ¼ ð0; 1; 0; . . . ; 0Þ

na ¼
�
1;

�
�Hþ r2

2
hðrR;rRÞ

�
;rR

�

ma
fig ¼

�
0; PrhðrR;wiÞ; 1rwi

�
;

(3.2)

where D� 2 vectors wi diagonalize metric h, rR ¼
fR;x1 ; . . . ; R;xD�2g, and hð� ; �Þ denotes scalar product with
respect to h. Fortunately, in subsequent calculations we do
not need the explicit form of the vectors wi; it is sufficient
to know their orthogonality properties.
By straightforward computation one easily calculates

the expansion associated with the congruence generated
by la to be �l ¼ D�2

r , meaning that the outgoing null

congruence is diverging. This is exactly what one assumes
when dealing with the past trapped surface and is the
additional condition in the definition of trapping horizon
[12].

FIG. 1. Schematic conformal diagram of Robinson-Trautman
spacetime in D ¼ 4 with � ¼ 0 and indicated past (trapping)
horizon (PH) and event horizon (EH).
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IV. GENERALIZED PENROSE-TOD EQUATION

Ingoing null congruence expansion can be calculated
using the formula [sometimes a (D� 2) factor is used in
the definition, but we are going to evaluate it to zero

anyway] �n ¼ na;bp
ab, where the tensor pab ¼

gab þ 2lðanbÞ corresponds to the hypersurface projector.
From �n ¼ 0 (equivalent to Penrose-Tod equation in
four dimensions) we get the marginally trapped hypersur-
face condition

R� 2ðD� 3Þ
D� 1

�R2 � ðD� 2ÞðD� 3Þ �

RD�3

� 2ðD� 3Þ�ðlnRÞ
� ðD� 4ÞðD� 3Þhðr lnR;r lnRÞ ¼ 0: (4.1)

It is a nonlinear second order partial differential equation,
where both the Laplacian and scalar product in the last
term correspond to the Einstein metric hij. Interesting

property of this equation is that for D> 4 its nonlinearity
is much worse since the term quadratic in derivatives
appears.

A. Results for D ¼ 4

In four-dimensional case one can no longer use the
existence proof for Eq. (4.1) given by Tod [15] when
the cosmological constant is present. However, one can
use the version of sub and supersolution method adapted to
Riemannian manifolds by Isenberg [20] and valid for
equations of the form �c ¼ fðx; c Þ. For the proof of
uniqueness one may use a straightforward modification
of the original Tod’s proof [15] incorporating the cosmo-
logical constant. Using Newmann-Penrose equations one
can also determine the character of the horizon as a three-
dimensional hypersurface. These results (for � ¼ 2m ¼
const) are derived in [17] and summarized in Table I.

The restrictions for the positive cosmological constant
can be easily understood by specializing to spherical sym-
metry and �> 0 (Schwarzschild-de Sitter):

(i) �< 4
9�2 ¼ 1

9m2 rules out an over-extreme case.

(ii) R<
ffiffiffiffiffi
3�
2�

3

q
¼

ffiffiffiffiffi
3m
�

3

q
for the extreme case (9�m2 ¼ 1)

reduces to R< 3m, which may be interpreted as

showing the uniqueness of the past black/white
hole horizon (as opposed to the cosmological one).

Both explanations are quite natural and not surprising.

B. D > 4: Existence of the solution

The methods used in D ¼ 4 are not applicable when the
equation is of the form (after the substitution R ¼ Ce�u in
(4.1), assuming u � 0 with a suitable constant C)

�u ¼ Fðx; u;ruÞ; (4.2)

where F is quadratic in gradient.
To prove existence of the solution to this quasilinear

equation we will proceed by combining several steps (mo-
tivated by [21] and using results from [22–24]).
(1) We will consider the differential operator Pu ¼

�2ðD� 3Þ�uþ �u, with � > 0 on a Riemannian
manifold M. By using Maximum Principle we can
prove that kerðPÞ ¼ 0 [22].

(2) The linear differential equation Pu ¼ f with
f 2 C0;�ðMÞ (Hölder space over M) has unique
solution u 2 C2;�ðMÞ (this standard result can be
proven, for example, by Fredholm alternative [22]
and the previous step).

(3) To proceed with the nonlinear problem Pu ¼
fðx; u;ruÞ, with f determined from (4.1) as ( k � kh
stands for the normwith respect to the positive definite
metric hij)

f ¼ ��uþR� 2ðD� 3Þ
D� 1

�C2e�2u

� ðD� 2ÞðD� 3Þ�C3�DeðD�3Þu

� ðD� 4ÞðD� 3Þ k ru k2h;
we introduce the following truncature [21,23]: fn—
truncature of f by�n. Then themapv 2 C1;�ðMÞ !
fnðx; v;rvÞ is bounded. Using the previous step
together with results on composition of Hölder func-
tions, there exists a unique w 2 C2;��ðMÞ solving
Pw ¼ fnðx; v;rvÞ.

(4) The map v ! w from previous step satisfies con-
ditions of Schauder Fixed Point theorem, namely,
the a priori boundedness (see [22] or [24]) ) for
each n there is a fixed point un 2 C1;�ðMÞ (even
un 2 C2;��ðMÞ) solving Pun ¼ fnðx; un;runÞ, and
moreover one can easily verify that k un kL1� n

�

(considering Pun ¼ fnðx; v;rvÞ � n and compact-
ness for evaluation at the maximum of un).

(5) Using results of Boccardo, Murat & Puel [23], in
particular, their Proposition 3.6, we can state the
following corollary: Assuming that metric hij is

smooth, function F can be estimated like jFj �
BðuÞð1þ jruj2Þ (where BðuÞ is increasing function
on Rþ), and there exists a sub and a supersolution
[25] u� � uþ, u� 2 C1;�ðMÞ \ L1ðMÞ, then there

TABLE I. D ¼ 4.

RESULTS � ¼ 0 �< 0 �> 0

Existence Always Always �< 4
9�2

Uniqueness Always Always R <
ffiffiffiffiffi
3�
2�

3

q

Spacelike or null Always Always R <
ffiffiffiffiffi
3�
2�

3

q
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is a L1-bounded subsequence u �n of the approximat-
ing solutions from the previous step satisfying u� �
u �n � uþ almost everywhere.
Indeed, inspecting the above defined function f ¼
�u� 2ðD� 3ÞF one can verify that function BðuÞ
might be found, namely, there is no singular behav-
ior at u ¼ 0. Also, the domain we are dealing with is
compact, and therefore any dependence on x can be
bounded for well behaved objects we use. For ex-
ample, one may select the following bounding
function:

BðuÞ ¼ max

�
W;

D� 4

2
max
x2M

k hijðxÞ k
�

þ ðD� 2Þ�C3�D

2
eðD�3Þu;

whereW ¼ jR� �C2

D�1 � ðD�2Þ�C3�D

2 j and the matrix

norm of h was used.
(6) Thanks to elliptic estimate k u �n kC2;�� Kðk u �n kC0

þ k f �n kC0;�Þ � Kðk uþ kC0 þN k f kC0;�Þ it is
even C1;� bounded. To estimate f �n in the last in-
equality one can use its representation as f �n ¼ fg �n,
where function

g �n ¼ 1��ðf� �nÞ
�
1� �n

f

�
��ð�f� �nÞ

�
1þ �n

f

�

is responsible for the truncation and � is the
Heaviside function. Using the results for composi-
tion (e.g. Hölder index of composedmap is a product
of indices of components) and multiplication (e.g.
index is a minimum of indices of components) of
Hölder continuous functions on bounded sets there
has to be a new Hölder coefficient � � �� and a
suitable constantN fulfilling the inequality. Function
f in the elliptic estimate is dependent on x not only
explicitly but also via u �nðxÞ and ru �nðxÞ, which is
reflected in the constant N. While u �n is bounded
independently on �n by u�, we need to bound the
gradient in the same way. Using the fact that our
function F has the form F1ðuÞ þ F2ðxÞ k ru k2h
(with strictly positive F2) and integrating over the
manifold (using the Stokes theorem to eliminate the
Laplacian) we get

�
Z
M
F1ðu �nÞ ¼

Z
M
F2ðxÞ k ru �n k2h� F2;min

�
Z
M
k ru �n k2h;

where the left hand side might be independently
estimated. According to previous results gradient of
u �n is bounded and from the last equation even inde-
pendently. Therefore, the constantN does not depend
on �n.

(7) Then there is a C1;�-convergent subsequence
u~n ! us, which proves the existence of the solution
provided the sub and supersolutions are obtained.
Moreover, using the second step with fðx; us;rusÞ
we must have us 2 C2;��ðMÞ.

As is most common in the literature, we would be
looking for constant sub and supersolutions, first in
the case R> 0 (assuming umin � 0 which can always be
arranged by a suitable choice of C):
(i) � � 0

uþ1 ¼ 1

D� 3
ln

�
CD�3

ðD� 2ÞðD� 3Þ�R
�
;

u�1 ¼ 1

D� 3
ln

�
CD�3

ðD� 2ÞðD� 3Þ�
�

�
R� 2ðD� 3Þ

D� 1
�C2

��
:

(ii) �> 0

uþ2 ¼ u�1 ;

u�2 ¼ uþ1 :

These solutions satisfy all the conditions for any � � 0,
but for positive cosmological constant one has to demand

2R
ðD� 1ÞðD� 2ÞðD� 3Þ�

�
R
2�

�ðD�3Þ=2 � 1; (4.3)

so that uþ2 � 0 is valid for such a constant C which is
maximizing the value of uþ2 . Interestingly, this last condi-
tion reduces in the four-dimensional case (that was not
explicitly studied here but can be included trivially—note
that thenR is not a constant on u ¼ const and u� has to be
adjusted [17]) to the condition from the Table I for the
existence of the solution when �> 0. One has to remem-
ber that for D ¼ 4 scalar curvature R asymptotically (as
u ! 1) approaches value 2.
One may wonder whether the condition (4.3) is neces-

sary or if it might be weakened by the choice of more
suitable nonconstant sub and/or supersolution. Let us as-
sume we have a positive solution R 2 C2;�ðMÞ of (4.1)
with �> 0. Since it represents a function on a compact
manifold it has to attain its maximum Rmax and minimum
Rmin. At Rmin the gradient term in (4.1) vanishes, while
�ðlnRminÞ � 0 leading to the following inequality

�Rþ 2ðD� 3Þ
D� 1

�R2
min þ ðD� 2ÞðD� 3Þ�R3�D

min � 0:

(4.4)

The right-hand side of (4.4) has minimum at RD�1
min;E ¼

ðD�1ÞðD�2ÞðD�3Þ�
4� . The inequality (4.4) must also hold for
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this value and after its substitution one arrives exactly at
the condition (4.3). Therefore, it represents not only suffi-
cient but also necessary condition for the existence of the
horizon when positive cosmological constant is present.

Since according to mathematical results any manifold
(including compact ones) of dimension greater than or
equal to 3 can be endowed with a complete Riemannian
metric of constant negative scalar curvature [26,27], one
should also consider that R< 0 for our (D� 2)-
dimensional spatial hypersurface. One can propose the
following constant sub and supersolutions for R � 0 (as-
suming umin � 0):

(i) �< 0

uþ3 ¼ 0

u�3 ¼ 1

D� 3
ln

�
� 2CD�1

ðD� 1ÞðD� 2Þ��

�

and select C � Cmin that is defined by

R� 2ðD� 3Þ
D� 1

�C2
min � ðD� 2ÞðD� 3Þ

��C�ðD�3Þ
min ¼ 0:

(ii) � � 0: impossible to find constant uþ.

So for nonpositive scalar curvature R we can prove the
existence only for negative cosmological constant.

In the four-dimensional case one can infer some useful
results from the previous inequalities, mainly due to the
fact that one can bound the scalar curvature from the
asymptotic behavior or using Gauss-Bonnet theorem.
However, in higher-dimensional spacetime neither tool is
available (the generalizations of Gauss-Bonnet theorem are
very complicated and not immediately applicable).

C. D > 4: Character of the horizon

After establishing the existence of the past horizon H
as a hypersurface foliated by marginally trapped surfaces
one is naturally interested in whether it satisfies other
conditions of recent quasilocal horizon definitions. We
will consider trapping and dynamical horizons.

The previous results tell us that �l > 0 and �n ¼ 0
holds on the past horizon. Since the Lie derivative Ll�n

is in general nonvanishing on the horizon its closure is a
trapping horizon [12]. Moreover, we can try to determine
whether Ll�n < 0 on the horizon which would mean that
it is outer trapping horizon. After simple manipulations one
arrives at the following formula:

L l�njH ¼ 2

D� 1
�� ðD� 3ÞðD� 2Þ

2
�R1�D

� 1

D� 5

�RD�5

RD�3
; (4.5)

and we need to prove that

2

D� 1
�RD�3 � ðD� 3ÞðD� 2Þ

2
�R�2 <

1

D� 5
�RD�5:

(4.6)

Integrating the last equation over the D� 2 dimensional
compact subspace spanned by coordinates xi [thus elimi-
nating the right-hand side in (4.6)] we get the necessary
condition for the horizon being outer

Z 2

D� 1
�RD�3 � ðD� 3ÞðD� 2Þ

2
�R�2 < 0; (4.7)

which is satisfied for any � � 0, and for positive cosmo-
logical constant one shall demand

RD�1 <
ðD� 1ÞðD� 2ÞðD� 3Þ

4

�

�
: (4.8)

Alternatively, one can consider (4.6) at the maximum of
R, where �RD�5 < 0. Notice, that for non-negative cos-
mological constant the right-hand side of (4.6) is strictly
increasing function of R, so it has maximal value at maxi-
mum of R. If the horizon is everywhere nondegenerate
(Ll�n � 0), then it is really an outer trapping horizon.
Next, we will consider a gradient of the horizon hyper-

surface which in our parametrization reduces to

N ¼ dr� R;udu� R;idx
i: (4.9)

We can use the sign of its norm to determine the causal
character of the horizon. Using the null D-ad (3.2) the
corresponding vector can be expressed in the following
form:

N ¼ 1

2
ðNaNaÞl� n; (4.10)

and besides being normal to the horizon H it is also
orthogonal to its u ¼ const D� 2 dimensional sections
H u. One can introduce a second vector orthogonal to
these sections

Z ¼ 1

2
ðNaNaÞlþ n; (4.11)

which satisfies NaZa ¼ 0 and therefore is tangent to the
horizon H . Then (inspired by [12]) LZ�njH ¼ 0 holds
identically, which gives the following equation:

1

2
ðNaNaÞLl�n þLn�n ¼ 0: (4.12)

If the outer trapping horizon condition is satisfied
(Ll�n < 0), we need to determine the sign of the second
term Ln�n. One can consider the higher-dimensional
generalization of Raychaudhuri equation [28], which in
the case of nontwisting and nonshearing solution on the
horizon where �n ¼ 0 simplifies to

L n�n ¼ �Rabn
anb: (4.13)
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Since we are considering only aligned null radiation (in
the direction of l with radiation density�) and cosmologi-
cal constant � the Ricci tensor in (4.13) can be written as
Rab ¼ �gab þ�lalb, and substituting into (4.13) we get

L n�n ¼ ��: (4.14)

Therefore, for non-negative radiation density � we con-
clude that Ln�n � 0. Since both Lie derivatives in (4.12)
are nonpositive it follows thatNaNa � 0, which means that
the horizon is either null (for � ¼ 0) or spacelike (for
�> 0). In the latter case it presents an explicit example
of dynamical horizon in higher-dimensional spacetime.

V. CONCLUSION AND FINAL REMARKS

We have derived the generalization of the Penrose-Tod
equation to higher-dimensional Robinson-Trautman space-
times including cosmological constant and pure radiation.
Using several mathematical tools we have proved the ex-
istence of its solution for any � � 0 and for R> 0. The
limitations arising for positive � (4.3) are shown to corre-
spond to similar restrictions arising in four-dimensional
case that are naturally related to the more complicated
horizon structure of relevant spacetimes (e.g. naked
singularities). Since the sign of scalar curvature of
(D� 2)-dimensional spatial hypersurface does not restrict
their topology as it does in D ¼ 4 we have included the
nonpositive case as well.

Additionally, we have proved that one can consider this
horizon as being a higher-dimensional generalization of
trapping and dynamical horizon provided additional
conditions are satisfied.

The results show that in terms of the presence of the
quasilocal horizons the higher-dimensional generalization
shares the same qualitative behavior as the standard four-
dimensional Robinson-Trautman spacetime. This provides
support for considering the generalization given in [10] to
be natural not only mathematically but also physically.
Several important issues were not investigated here,

namely, uniqueness of the horizon hypersurface and its
possible topologies. The question of uniqueness is much
harder to solve for D> 4 in view of the nonlinearity in
gradient. Because of our parametrization of the horizon,
the issue of its topology is connected with the topology of
the underlying spatial geometry (given by hij) of the

(D� 2)-dimensional manifold M. So the obvious starting
point should be the classification of Einstein spaces of
corresponding dimension. For D ¼ 5 the S1 � S2 (black
ring) is ruled out since it cannot be endowed with Einstein
metric [22] (the second homotopy group has to vanish
�2ðMÞ ¼ 0) and the Poincaré conjecture singles out
three-sphere as the only simply connected case. In D ¼ 6
topological obstructions arise, for example, due to
generalized Gauss-Bonnet theorem relating the Euler char-
acteristic �ðMÞ and curvature of compact oriented four-
manifold. It turns out that �ðMÞ> 0, and it is zero only in
the flat case. This rules out S1 � S3. In higher dimensions
the restrictions are much weaker (positive Ricci curvature
implies finite first homotopy group).
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[5] P. T. Chruściel, Proc. R. Soc. A 436, 299 (1992).
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