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We present and analyze exact solutions of the Einstein-Maxwell equations in higher dimensions which

form a large subclass of the Kundt family of spacetimes. We assume that the cosmological constant may

be nonvanishing, and the matter consists of a background aligned electromagnetic field and an additional

pure radiation (gyratonic) field with a spin. We show that the field equations reduce to a set of linear

equations on the transverse space which can be solved exactly and expressed in terms of the Green

functions. We thus find explicit exact gyratonic gravitational and electromagnetic fields created by a

radiation beam of null matter with arbitrary profiles of energy density and angular momenta. In the

absence of the gyratonic matter we obtain pure nonexpanding higher-dimensional gravitational waves. In

particular, we investigate gyratons and waves propagating on backgrounds which are a direct product of

two-spaces of constant curvature. Such type D or 0 background spacetimes generalize four-dimensional

Nariai, anti-Nariai, and Plebański-Hacyan universes, and conformally flat Bertotti-Robinson and

Minkowski spaces. These spacetimes belong to a wider class of spaces which admit the Kähler structure

related to the background magnetic field. The obtained wave and gyraton solutions are also members of

the recently discussed class of spacetimes with constant scalar invariants of the curvature tensor.
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I. INTRODUCTION

Because of the nonlinear nature of the Einstein
equations, finding their exact solutions has always been
an important and challenging problem. It is a pleasant
surprise that one could find an exact solution of such non-
linear equations, especially when they describe the gravi-
tational field of a physically meaningful gravitational
source.

In this paper, we study gyratons, a particularly interest-
ing class of solutions of the Einstein-Maxwell equations in
four and higher dimensions which describe the gravita-
tional and electromagnetic fields of a pulse of a circularly
polarized radiation beam or spinning ultrarelativistic par-
ticles. Generally speaking, the gyraton solutions represent
the fields of a localized matter source with an intrinsic
rotation which is moving at the speed of light.

Historically, the gravitational fields generated by light
pulses without spin were originally studied in linear ap-
proximation by Tolman [1] in 1934. Later, exact solutions
of the Einstein-Maxwell equations for such ‘‘pencils of
light’’ were found and analyzed by Peres [2] and Bonnor
[3–5]. These solutions belong to a general family of
pp-waves [6–8]. The simplest of such solutions describes
the gravitational impulsive wave created by an infinitely
thin beam with the deltalike time distribution of the light
pulse. This is the famous Aichelburg-Sexl metric [9] which

represents the field of a pointlike null particle without a
spin. It can be derived from the Schwarzschild black hole
metric in the ultrarelativistic limit, by taking the distribu-
tional limit of exact sandwich waves, or by the Penrose
‘‘cut and paste’’ approach. The review of more general
solutions for such impulsive waves [10–16] and their con-
struction methods can be found in [17,18]. The gravita-
tional field of a spinning null fluid—so-called spinning
nullicon—was first discussed in 1970 by Bonnor [19]. A
possible interpretation of such a matter source as a mass-
less neutrino field was given by Griffiths [20]. Recently,
these solutions have been investigated in greater detail and
generalized by Frolov, Israel, Fursaev, and Zelnikov, who
have called them gyratons [21,22].
In four dimensions, the gyratons propagating on the

Minkowski background are, outside the source, locally
isometric to standard pp-waves. Using a suitable gauge
transformation one can always set to zero the nondiagonal
terms in the gyraton metric, namely, the gui components
in the Brinkmann form [6], which reflect the rotational
part of the metric. However, they cannot be eliminated
globally, because the gauge-invariant contour integralH
guiðu; xiÞdxi around the position of the gyraton is pro-

portional to the angular momentum density of the gravitat-
ing source, which is generally nonvanishing.
In higher dimensions, the structure of the source and its

gravitational field is much richer. Thus, in a generic case,
outside the source one cannot make the nondiagonal
metric components gui zero, even locally. Such higher-
dimensional gyratons propagating in an asymptotically
flat D-dimensional spacetime were studied in [22]. It was
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demonstrated that the Einstein equations for gyratons
reduce to a set of linear equations in the Euclidean
ðD� 2Þ-dimensional transverse space, and that the gyraton
metrics belong to a class of so-called VSI spacetimes.1

These spacetimes have unique mathematical features. For
example, due to their remarkable geometrical properties,
they describe not only the exact classical solution for the
gyraton, but also the exact solution of a corresponding
quantum problem. This happens because quantum correc-
tions to the classical solution vanish identically in all
loops [25].

Subsequently, various generalizations of the gyratons
were found: charged ultrarelativistic sources propagating
on the background of D-dimensional Minkowski space
[26], gyratons in the asymptotically anti-de Sitter space-
time [27], and gyratons in the Melvin spacetime [28]. In
the case of anti-de Sitter background the obtained gyratons
generalize the Siklos family of nonexpanding waves with a
negative cosmological constant [29] (studied in detail in
[30]) which belong to the class of spacetimes with constant
scalar invariants (CSI) [25,31–33]. Supersymmetric gyra-
tons, as solutions of minimal gauged supergravity in five
dimensions, have been studied in [34]. The solutions of
supergravity equations generated by stringlike sources
moving with the speed of light, the string gyratons, have
been found in [35].

In our recent paper [36] a large new class of four-
dimensional gyratons on the direct-product spacetimes
has been found. We have shown that this class of gyratons
has properties similar to other gyratonic solutions: The
Einstein equations reduce to a set of linear differential
equations in the transverse constant-curvature two-space,
and these spacetimes also belong to the CSI class. Our
results are applicable to the description of gyratons in the
vicinity of the horizon of extremely charged black holes.
Indeed, the near-horizon geometry of these background
spacetimes is AdS2 � S2 and belongs exactly to the type
of spacetimes we have considered.

In fact, all the spaces studied in [36] belong to the family
of Kundt spacetimes defined as those admitting a null
vector field that is geodesic, without expansion, shear,
and twist [7,8]. The Kundt spacetimes are of great impor-
tance in standard general relativity, and recently they have
found a number of interesting applications in higher-
dimensional theories, namely because of their unique cur-
vature and holonomy structure. Moreover, the Kundt class
involves various important special cases such as the
pp-waves, and VSI and CSI spacetimes [37,38].

In this paper, we are going to study higher-dimensional
gyratons in the Kundt family in detail, thus generalizing

our results obtained in [36] to the case of direct-product
background spacetimes of arbitrary dimensions.
In order to find sufficiently general direct-product space-

times, one needs to include an additional background
electromagnetic field. Therefore, we first solve the
Einstein-Maxwell equations for such backgrounds. When
we subsequently add a null matter source with angular
momenta to the system, both the metric and the electro-
magnetic field are deformed so that the structure of the
spacetime will not be of a direct-product type anymore. It
is thus a highly nontrivial fact that the complete nonlinear
Einstein-Maxwell equations can still be reduced to a set of
linear differential equations formulated on the background
transverse space. The nonlinearity boils down to the non-
linear dependence of the sources on the right-hand sides of
the nonhomogeneous differential equations for the rota-
tional components Fui and gui of the electromagnetic field
and the metric, respectively. As a result, we are able to
express explicitly the corresponding exact solutions of the
Einstein-Maxwell equations coupled to the gyratonic mat-
ter in terms of the well-known Green functions.
The structure of our paper is as follows. The following

section briefly reviews the geometrical construction of a
general Kundt metric in any dimension and introduces its
naturally adapted coordinates and matter content. In
Sec. III an important method of splitting geometrical quan-
tities into the temporal and transverse directions is intro-
duced. The main goal there is to formulate all physical
equations on the ðD� 2Þ-dimensional transverse space,
which is done in Sec. IV. The strategy of solving the field
equations, including the classification of their solutions, is
discussed in Sec. V. The most interesting solutions are then
investigated in Sec. VI. We explicitly decouple the field
equations for spacetimes with a vanishing magnetic field,
and also for gyratons on direct-product background space-
times with uniform electric and magnetic fields. The char-
acter and significance of these backgrounds is discussed.
The paper concludes with a short summary, and the
Appendix describes the gauge freedom of the Kundt metric
parametrization.

II. METRIC AND MATTER

A. Spacetime geometry

The Kundt class consists of spacetimes which admit a
nontwisting, nonexpanding, and shear-free geodesic con-
gruence generated by a null vector field k. This field k also
generates a family of null hypersurfaces which forms
a foliation S of the whole spacetime. Each of these
ðD� 1Þ-dimensional null hypersurfaces can further be
foliated by ðD� 2Þ-dimensional spatial transverse spaces.
In the present work we restrict our attention to a specific

subclass of the general Kundt family. Namely, we assume
that the two-spaces of vectors orthogonal to the transverse
spaces are integrable (see below for more technical
details).

1In VSI spacetimes all polynomial scalar invariants, con-
structed from the curvature tensor and its covariant derivatives,
vanish identically [23]. For the discussion of spacetimes with
nonvanishing but nonpolynomial scalar curvature invariants, see
[24].
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Under these geometric assumptions the spacetime met-
ric g can be written in the form2 [7,8,37–39]

g ¼ �2H STdu STdu� STdu _ STdrþ STdu _ aþ q; (2.1)

where H is a scalar function, a is a transverse one-form,
which we will call the metric one-form, and q is the
transverse metric, the metric on the transverse space.

To distinguish the spacetime quantities from those in the
Riemannian transverse space we use the superscript ‘‘ST’’
on the left of spacetime objects or operations. For example,
‘‘STd’’ is the spacetime gradient and external derivative,
and ‘‘STr’’ denotes the spacetime covariant derivative as-
sociated with the metric g.

Let us briefly comment on the geometrical meaning of
the coordinates and other quantities introduced in the
metric (2.1). The coordinate u is adjusted to the null
foliation S. We denote Su the specific hypersurface of
this foliation corresponding to a given constant value of
u. The null generator k is tangent to S, and it is normalized
in accordance with the u coordinate as3

k � STdu ¼ 0; [k ¼ �STdu: (2.2)

The corresponding nontwisting null congruence is auto-
matically geodesic (k � STrk ¼ 0), and we use its affine
parameter as another coordinate r; i.e., we assume

k � STdr ¼ 1: (2.3)

Intersections of the hypersurfaces r ¼ constant with Su
form exactly the above-mentioned ðD� 2Þ-dimensional
transverse spaces, which we denote Nu;r. We assume that

these spaces are mutually diffeomorphic, at least in some
domain of the spacetime (the situation could be more com-
plicated, e.g., in the presence of various ‘‘black objects’’).
Therefore, it is natural to identify all the spaces Nu;r with

one typical transverse space N. The space N should be
understood as a separate Riemannian manifold of dimen-
sion ðD� 2Þwith metric qwhich, for each value of u and r,
is embedded into the full Kundt spacetime as Nu;r.

To establish such an embedding explicitly, we have to
identify the related points in all the transverse spaces Nu;r

which have different values of u and r. For a fixed u and
different values of r, it is natural to identify the points
along the orbits of the congruence k. For different values of
u, one has to introduce an additional flow in the u direction
which preserves the transverse foliation N, and also com-
mutes with the flow along the privileged null congruence k.
Such flow can be conveniently introduced by a vector field
w tangent to r ¼ constant, which satisfies relations

w � STdr ¼ 0; w � STdu ¼ 1; ½k;w� ¼ 0: (2.4)

The two vector fields k and w thus span two-dimensional
temporal surfaces which form the foliation T. Any of these
temporal surfaces intersects each spatial transverse space
Nu;r in a single point. We identify points which belong to

the same temporal surface and map them into one point of
the typical transverse space N. We denote the temporal
surface corresponding to a point x 2 N as Tx.
The temporal foliationT allows us also to identify tensors

tangent to the typical transverse space N with those space-
time tensors which are trivial on the temporal surfaces. For
brevity, we call them transverse tensors (cf. Sec. III).
The transverse spaces Nu;r can thus be understood as an

embedding of the typical transverse spaceN into the Kundt
spacetime. The transverse metric q can be viewed as a
pullback of the spacetime metric g into this transverse
space. The fact that the congruence k is nonexpanding
and shear-free implies that the transverse part of the metric
is conserved along k (Lkq ¼ 0), which means that q is r
independent.
Explicit identification of the different transverse spaces

Nu;r can be obtained by a convenient choice of the remain-

ing ðD� 2Þ spatial coordinates xi: They can be chosen to
be constant along the temporal surfaces Tx. With such a
natural choice of the adjusted coordinates, the vector fields
k and w become the coordinate fields

k ¼ @r; w ¼ @u: (2.5)

Also, in these coordinates, the transverse tensors have their
r and u components vanishing.
We may also introduce the ‘‘temporal’’ derivatives of a

quantity X along k and w:

_X ¼ LkX; X
� ¼ LwX: (2.6)

When restricted to the typical transverse space N, these
turn out to be just derivatives with respect to the parameters
r and u, respectively.
Of course, the splitting of the spacetime into the trans-

verse spaces Nu;r and the temporal surfaces Tx is not

canonically given by the Kundt geometry. One can choose
a different affine coordinate r which defines the transverse
spaces. Or, one can change the flow w which identifies the
temporal surfaces. These gauge freedoms are shortly dis-
cussed in the Appendix.

2We omit the tensor-product symbol �, e.g., STdu STdu ¼
STdu � STdu. We use the standard convention for the wedge
product � ^ � ¼ ��� ��. Analogously, we denote by ‘‘_’’
the symmetrical tensor product, for example, STdu _ a ¼
STduaþ a STdu. Equivalent expressions for nontrivial metric
components g�� are guu ¼ �2H, gur ¼ �1, gui ¼ ai, gij ¼
qij. The components g�� of the inverse metric are thus grr ¼
2H þ a2, gur ¼ �1, gri ¼ ai, gij ¼ qij.

3The central dot ‘‘�’’ denotes the contraction, i.e. k � STdu ¼
k� STd�u ¼ k�u;�. Similarly, ðk � STrkÞ� ¼ k�STr�k

� ¼
k�k�;�. We use Greek letters for spacetime indices and Latin
letters for transverse-space indices. The flat symbol ‘‘[’’ indi-
cates lowering of the tensor indices using the spacetime metric g.
Since we will also use the transverse metric q for raising and
lowering of indices, we denote such spacetime operation
explicitly.
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The form of the metric (2.1) indicates that the temporal
surfaces Tx are not orthogonal to the transverse spacesNu;r.

The nonorthogonality is encoded in the metric one-form a.
Moreover, this property can depend on a particular choice
of the gauge. In this paper we assume that the temporal
surfaces could be chosen to be orthogonal to the transverse
spaces,4 i.e., that the metric one-form a could be elimi-
nated by a suitable gauge transformation. Note, however,
that we will not use such a privileged gauge choice since
otherwise the u dependence of the transverse metric q
would become complicated; see discussion in Sec. V.
Inspecting the gauge behavior (A6) of a under the trans-
formation (A5), we observe that it can only be eliminated
provided a is r independent, _a ¼ 0. This is a technical
form of our final ‘‘integrability’’ assumption concerning
the geometry, mentioned above in Eq. (2.1).

To summarize, the spacetime metric g of (2.1) is natu-
rally split into the transverse objects H, a, and q on N. The
remaining assumptions take the explicit form

_q ¼ 0; _a ¼ 0: (2.7)

In other words, q and a are r independent transverse forms
which can both depend on u and xi. The metric function H
depends on all the coordinates r, u, and xi.

B. Electromagnetic field

We intend to study the gravitational field generated by
null fluid and gyratonic matter in the presence of an aligned
uniform electromagnetic field. The ‘‘uniformity’’ require-
ment will be discussed after the field equations are formu-
lated; cf. Secs. Vand VI, specifically Eqs. (6.1) and (6.28).

The alignment condition we impose reads that the con-
gruence k is an eigenvector of the Maxwell tensor F:

F � k ¼ E[k: (2.8)

Consequently, the Maxwell two-form F has the form

F ¼ E STdr ^ STduþ STdu ^ sþ B; (2.9)

where s is a transverse one-form and B is a transverse
two-form. We interpret the first term as an electric part of
the field, andB as a (transverse)magnetic part, although such
an interpretation is not straightforward due to the two-
dimensional character of the temporal surfaces Tx and
ðD� 2Þ-dimensional character of the transverse spacesNu;r.

The stress-energy tensor corresponding to (2.9) has the
structure5

ßTEM ¼ ð2H�þ ß"oðEa� sÞ2Þ STdu STduþ � STdu _ STdr

þ STdu _ ð�aþ ß"oðEa �B� Es� s � BÞÞ
þ ß"oð12E2qþ B2 � 1

2B
2qÞ; (2.10)

where, e.g., s �B is a transverse one-form with components
s�B��. For convenience, we also introduced the scalar

quantities � and � quadratic in E and B as

� ¼ ß"o
2

ðE2 þ B2Þ; � ¼ ß"o
2

ðE2 � B2Þ; (2.11)

in which the scalar square B2 of the transverse magnetic
two-form B includes the factor 1=2,

B2 ¼ 1
2B��B��g

��g��: (2.12)

We also introduced the tensorial (matrix) square B2 ¼
�B �B of the two-form B via

B2
�� ¼ B��B��g

��: (2.13)

In a dimensionD � 4, the stress-energy tensor is not trace-
free. In fact, its trace is characterized by the quantity �:

ßTEM
��g

�� ¼ ðD� 4Þ�: (2.14)

C. Gyratonic matter

As a source of the gravitational field, we also admit a
generic gyratonic matter aligned with the congruence k.
The gyratonic matter is a generalization of a null fluid
(pure radiation), allowing also its inner spin [19–22,36].
It is described phenomenologically by the stress-energy
tensor

ßTgyr ¼ ju
STdu STduþ STdu _ j; (2.15)

with the scalar energy density ju, and the spinning
part given by the transverse one-form j. Clearly, for
j ¼ 0 we obtain standard null fluid moving along the
null direction k.
We do not specify the field equation of the gyratonic

matter, except that we assume its local stress-energy con-
servation

STdivTgyr ¼ 0: (2.16)

In indices this reads g�� STr�T
gyr

�� ¼ 0.

III. TRANSVERSE-SPACE FORMULATION

A. Transverse tensors

In the next section, we will formulate the field equations
purely in terms of quantities on the transverse space N. We
have already mentioned that the transverse tensors can be
viewed in two closely related ways.
Naturally, these are the quantities from tangent tensor

space of the typical transverse space N, which may depend
on two additional parameters u and r.

4Geometrically, this implies that the transverse spaces Nu;r can
be chosen in such a way that the two-spaces of vectors orthogo-
nal to Nu;r are integrable.

5In coordinate components we have ßTEM
uu¼2H�þß"oða�sÞ2,

ßTEM
ur ¼�, ßTEM

ui ¼�aiþß"oðEajBji�Esi�sjBjiÞ, and ßTEM
ij ¼

ß"oð12E2qij þ B2
ij � 1

2B
2qijÞ. Here, ß is Einstein’s gravitational

constant and "o is permittivity of vacuum. Usual choices are the
Gaussian one (ß ¼ 8�, "o ¼ 1=4�) or the SI-like one (ß ¼ 1,
"o ¼ 1).
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Alternatively, they can be understood as spacetime ten-
sors which are tangent to the embedded transverse spaces
Nu;r and which vanish in directions of the temporal sur-

faces Tx. They can be defined using the projector p onto the
transverse space,

p ¼ ST�� k STdr� w STdu; (3.1)

where ST� is the identity spacetime tensor with components
�
�
� . This projector leaves unchanged the vectors tangent to

Nu;r and also the one-forms which annihilate vectors tan-

gent to the temporal surfaces Tx. Equivalently, it annihi-
lates the vectors k and w spanning Tx, and the one-forms
STdu and STdr. In the adjusted coordinates fu; r; xig such a
projection simply cancels all the u and r tensor compo-
nents while leaving the transverse components unchanged.

In the former approach we use Latin tensor indices. In
the spacetime picture we use Greek tensor indices even for
the transverse tensors, because in generic coordinates all
components could be nontrivial. Only in the adjusted co-
ordinates do all the u and r components of the transverse
tensors vanish. Therefore, in such coordinates, the expres-
sions containing just the transverse tensors can be easily
transformed to the corresponding expressions on N just by
switching from the Greek indices to the Latin ones. For
example, for the transverse two-form B, its scalar square
(2.12) can be written using only the transverse indices as
B2 ¼ 1

2BikBjlq
ijqkl, while the tensorial square (2.13) be-

comes B2
ij ¼ BikBjlq

kl.

The spaces of transverse tensors understood as quantities
in full spacetime depend, in general, on a particular choice
of gauge. Contrarily, the tangent space of the typical
transverse manifold N is gauge independent. Clearly, the
identification of these two pictures (induced by the embed-
ding N ! Nu;r) is gauge dependent. This dichotomy is the

reason why it is useful to keep both these views of the
transverse objects. The field equations will be naturally
expressed in the language of quantities on the typical
transverse space N. On the other hand, the splitting of
spacetime objects and properties of gauge transformations
are easier to study employing the spacetime picture.

To reduce a general spacetime tensor to the transverse
space N, first we have to split it into its temporal and
transverse parts. For that, we construct all its temporal
projections on the vectors k, w and the one-forms STdu,
STdr, as well as the transverse projections using the projec-
tor p. In the notation without components, we indicate
each transverse projection using the symbol ‘‘T’’ at the
position of the projected index. For example, for a vector v
we define vT ¼ p � v.

We have already encountered such a splitting of the
basic geometric, electromagnetic, and gyratonic quantities
in Sec. II. The metric g splits into the scalar uu component
�2H ¼ guu, the p projection of the u component a ¼ guT,
and to the transverse metric q ¼ gTT. Similarly, the
Maxwell tensor F splits into E ¼ Fru, s ¼ FuT, and

B ¼ FTT, with the transverse tensors s and B. The splitting
of the gyratonic stress-energy tensor gives ju ¼ T

gyr
uu

and j ¼ T
gyr
uT . The splitting of the electromagnetic stress-

energy tensor can be seen from expression (2.10), or, in
components, it is given in footnote 5.
We must also study the relation between spacetime and

transverse-space derivatives. We already introduced the
temporal derivatives (2.6) along k and w. In the spacetime
they correspond to the Lie derivatives; in the transverse-
space formulation they are just parametric derivatives with
respect to r and u. The spacetime gradient of a scalar
function f can thus be split into its temporal and transverse
parts,

STdf ¼ _f STdrþ f
�

STduþ df: (3.2)

The transverse-space gradient df is the p projection of the
spacetime gradient,

d f ¼ p � STdf: (3.3)

The same relation holds for the exterior derivative of
transverse antisymmetric forms [39].
Moreover, under the condition _q ¼ 0, the transverse-

space covariant derivative rA of a transverse tensor A is
also given by the p projection of the spacetime derivative
STrA,

rA ¼ ðSTrAÞT...TT...: (3.4)

This can be checked, e.g., in adjusted coordinates by
inspecting the Christoffel symbols involved [37,39].

B. Splitting of the curvature

To express the Einstein equations in terms of quantities
on the typical transverse space N, we need to find the
projections of the spacetime Ricci tensor STRic. For a
general Kundt class, they have been explicitly calculated
in components in [37] and expressed in the covariant form
in [39]. Assuming (2.7), different projections restricted on
the transverse space are

STRicrr ¼ 0; STRicrT ¼ 0; STRicru ¼ €H;

STRicuu ¼ r2H þ f2 þ 2 €HðHþ 1
2a

2Þ þ _H diva

þ 2a � d _H � _H�þ diva
� � q

� 2 ��
�
;

STRicuT ¼ �1
2 divf þ d _H þ 1

2divq
� � d�;

STRicTT ¼ Ric: (3.5)

The spacetime scalar curvature STR, expressed in terms of
the transverse scalar curvature R, is

STR ¼ �2 €H þR: (3.6)

Here Ric and R are the Ricci tensor and scalar curvature
of the transverse metric q, respectively. We also introduced
the abbreviations
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f ¼ da; (3.7)

a2 ¼ a � a ¼ a � a ¼ aia
i; (3.8)

f2 ¼ f � f ¼ 1
2 fijf

ij; (3.9)

� ¼ q � q
� ¼ 1

2q
ijqij

� ¼ q�ð1=2Þðq1=2Þ�: (3.10)

Clearly, � characterizes the rate of u change of the trans-

verse volume element q1=2 ¼ ðDet qÞ1=2.

C. Useful identities on the transverse space

In the above equations we have employed the form
product �, the transverse Laplace-Beltrami operator r2,
and the transverse divergence div. In this section we briefly
review some related definitions and identities.

Recall that the typical transverse space N is a
d-dimensional Riemannian space with a metric q, where
d ¼ D� 2. We use this metric to lower and raise the Latin
indices, and we do this operation without any indication.6

The metric q and a chosen orientation fix the Levi-Civita
tensor ", which allows us to define the Hodge dual of an
antisymmetric p-form !:

ð�!Þapþ1...ad ¼
1

p!
!a1...ap"a1...ad : (3.11)

It satisfies

� �! ¼ ð�1Þpðd�pÞ!; (3.12)

where we assume the positive definiteness of q.

Consequently, ��1! ¼ ð�1Þpðd�pÞ �!.
The inner product on antisymmetric p forms is defined

as

! � � ¼ 1

p!
!a1...ap	

a1...ap : (3.13)

This satisfies the relation ! ^ ð��Þ ¼ � ^ ð�!Þ ¼
ð! � �Þ". We will use the definition (3.13) also for sym-
metric p-forms, such as in (3.10).

We employ an ordinary dot ‘‘�’’ symbol to indicate a
contraction in just one index. For example, a scalar a2 is
given by a � a ¼ aia

i, one-form a �B has components
aiBij (but B � a has components Bija

j), and components

of two-form B �B are BikB
k
j, cf. (2.13).

We define the transverse divergence of a general
p-form as

ðdiv!Þa1...ap�1
¼ ri!ia1...ap�1

: (3.14)

For antisymmetric p-forms the divergence is, up to a sign,
the standard coderivative �:

div! ¼ r �! ¼ ��! ¼ �ð�1Þp ��1 d �!: (3.15)

Consequently, div div ! ¼ 0.
We define the Laplace-de Rham operator on antisym-

metric forms as7

4 ¼ ddivþ divd: (3.16)

This is related to the Laplace-Beltrami operator

r2 ¼ r � r ¼ qijrirj (3.17)

through the Weitzenböck-Bochner identity

4!a1...ap ¼ r2!a1...ap � pRicn½a1!
n
a2...ap�

þ pðp� 1Þ
2

Rmn½a1a2!
mn

a3...ap�: (3.18)

In particular, for a scalar h, there is 4h ¼ r2h.
The Hodge theory tells us that any form! can be written

using its potential �, copotential �, and harmonic !H as

! ¼ d�þ div�þ!H: (3.19)

The potentials can be restricted by additional gauge con-
ditions

div� ¼ 0; d� ¼ 0: (3.20)

The harmonic part satisfies

d!H ¼ 0; div!H ¼ 0; (3.21)

which, of course, implies 4!H ¼ 0.
For compact spaces the splitting (3.19) is unique and

(3.21) is equivalent to 4!H ¼ 0. For noncompact spaces
this splitting is not unique and (3.21) is a stronger restric-
tion than 4!H ¼ 0. However, even in the noncompact
cases, reasonable boundary conditions can guarantee
uniqueness of the Hodge splitting. Usually, we will assume
such conditions to be satisfied, at least for the background
gravitational and electromagnetic fields.

IV. THE FIELD EQUATIONS

In this section we present the field equations in the
transverse-space formalism. We also explicitly solve the
r dependence of the fields.

A. The Maxwell equations

Transverse projections of various components of the
Maxwell equations

6Essentially, we do not distinguish between the transverse
forms and vectors. Since the metric q is nondegenerate, it does
not usually lead to any confusion. One has to be careful only in
situations when the metric q changes with the external parameter
u. In such a case lowering and raising indices does not commute
with the u derivative.

7In our convention 4 is a negative-definite operator and it has
the same sign as the Laplace-Beltrami operator, cf. Eq. (3.18).
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STdF ¼ 0; STdivF ¼ 0 (4.1)

give the equations [37,39]

_B¼0; dB¼0; _s¼�dE; ds¼B
�
; (4.2)

and

_E¼0;

ðEaþa �B�sÞ� ¼�divB;

divðEaþa �B�sÞ¼E
� þ�E;

(4.3)

respectively. We solve the r dependence of s by setting

s ¼ �rdEþ �; where _� ¼ 0: (4.4)

The Maxwell equations are then equivalent to

_E ¼ 0; _B ¼ 0; _� ¼ 0; (4.5a)

B
� ¼ d�; dB ¼ 0; (4.5b)

dEþ divB ¼ 0; (4.5c)

divðEaþ a �B� �Þ ¼ E
� þ�E; (4.5d)

where we used div ðdivBÞ ¼ 0.
Let us note that, as a consequence of the Maxwell

equations, we may also split the one-form dE � B into its
gradient and divergence parts:

dE �B� divðEBÞ þ 1
2 dðE2Þ: (4.6)

B. Gyraton stress-energy conservation

The divergence of the stress-energy tensor (2.15) can be
written as

ßSTdivTgyr ¼ ðð�ju þ j � aÞ� þ divjÞ STdu� ðjÞ�: (4.7)

The condition (2.16) can thus be solved by setting

ju ¼ rdivjþ 
 (4.8)

with

ð
Þ� ¼ 0; ðjÞ� ¼ 0: (4.9)

C. The Einstein equations

Finally, we split the Einstein equations with the cosmo-
logical constant �,

STRic� 1
2
STRgþ�g ¼ ßT; (4.10)

where the total stress-energy tensor T ¼ TEM þ Tgyr has
the form

ßT¼�tot STdu_ STdrþjtotu
STdu STduþ STdu_jtotþßTTT;

(4.11)

with the transverse components given by

�tot ¼ �; (4.12)

jtotu ¼ 2H�þ ß"oðEa� sÞ2 þ rdivjþ 
; (4.13)

jtot ¼ ��a� ß"oðs� EaÞ � ðEqþ BÞ þ j; (4.14)

T TT ¼ "o
2
E2qþ "o

�
B2 � 1

2
B2q

�
: (4.15)

Since the gyratonic stress-energy tensor is trace-free, we
have

ðD� 4Þ� ¼ ßT�
�: (4.16)

Trace and trace-free parts of the total transverse stress-
energy tensor (4.15) are

ßT
TTi

i ¼ 2�þ ðD� 4Þ�; (4.17)

1

"o
Ttf

TT ¼ B2 � 2

D� 2
B2q: (4.18)

Now, we will perform the first steps in integration of the
Einstein equations.

1. Metric function H

Substituting (3.5), (3.6), and (4.11) into (4.10), we easily
check that the components rr and rT of the Einstein equa-
tions are trivially satisfied. The ru component gives

1
2R ¼ �þ�: (4.19)

The trace of the Einstein equations implies

1

2
R� €H ¼ �D� 4

D� 2
�þ D

D� 2
�: (4.20)

Eliminating the transverse scalar curvature R from these
two equations, we obtain the equation for €H:

€H ¼ �þD� 4

D� 2
�� 2

D� 2
�: (4.21)

Taking into account the first two equations in (4.5), we find
that H can be integrated explicitly to

H ¼ 1

2

�
�þD� 4

D� 2
�� 2

D� 2
�

�
r2 þ grþ h; (4.22)

where � and � are defined in (2.11), and the functions g and
h are (possibly u-dependent) scalar functions on the trans-
verse space N.

2. Equation for the transverse metric q

The trace of the transverse part of the Einstein equations
is a linear combination of Eqs. (4.19) and (4.20). The trace-
free part, together with Eq. (4.19), gives the following
equation for the transverse metric:

Ric ¼ 2

D� 2
ð�þ�Þqþ ßTtf

TT; (4.23)
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where Ttf
TT is determined by (4.18). As a consequence of

vanishing divergence of the Einstein tensor, one also ob-
tains

div ðEBÞ ¼ 1

D� 2
d�: (4.24)

3. Equation for the metric one-form a

The uT component of Einstein’s equations gives

� 1
2 divf þ €Haþ ß"oðs� EaÞ � ðEqþBÞ þ d _H

¼ d�� 1
2divq

� þ j: (4.25)

This expression is linear in r (with the r dependence
hidden just in _H and s). Using (4.24) it can be shown that
the r term is a consequence of the already known
field equations. The r-independent part gives the equation
for a:

� 1
2divf þ €Haþ ß"oð� � EaÞ � ðEqþBÞ þ dg

¼ d�� 1
2divq

� þ j: (4.26)

4. Equation for g

Finally, the uu component leads to an expression qua-
dratic in r. Using (4.6) and (4.24), and the fact that E is
harmonic [which is a consequence of (4.5c)] it is possible
to show that the quadratic term is trivial. The linear term in
r gives

4gþ2a �d €Hþðdiva��Þ €Hþ2ß"oð��EaÞ �dE¼divj:

(4.27)

In fact, it turns out that this equation is equivalent to the
divergence of (4.26). To show this, one has to employ the
trace of the u derivative of (4.23) and the geometrical
relation

Ric
�

ijq
ij ¼ �24�þ 1

2rirjq
�
ij: (4.28)

which follows from the fact that, thanks to relation
rq ¼ 0, the transverse covariant derivative can be u
dependent.

5. Equation for h

Finally, the remaining r-independent part of the uu
component of the Einstein equations gives the equation
for h:

4hþ2a �dgþ €Ha2þðdiva��Þg�ß"oð��EaÞ2þ 1
2 f

2

¼ 1
2q

� 2�diva
� þ�

�
þ
: (4.29)

V. DISCUSSION OF THE EQUATIONS

A. Decoupling the equations and adjusting the
electromagnetic field to the geometry

The Einstein equations for the transverse metric (4.23)
and the Maxwell equations for the electromagnetic field
(4.5) are coupled, so that they cannot be solved one after
another. This significantly complicates the process of find-
ing explicit solutions. However, we can restrict the general-
ity of the electromagnetic field in such a way that a
solvable system is obtained, which describes the evolution
of gyratonic matter accompanied by the gravitational wave
in a nondynamical electromagnetic field.
Namely, we will restrict ourselves to the cases when the

right-hand side of (4.23) is given just by tensors obtained in
an algebraic way from the transverse metric q. We will
assume some special geometrical and/or topological struc-
ture of the transverse space N, and a suitably adjusted
uniform electromagnetic field.
In Sec. VI we will discuss two important explicit ex-

amples. In both of them the electric field is taken to be
constant, E ¼ constant. In the first case we will assume
that the magnetic part is completely missing, B ¼ 0. In the
second case we will assume that the geometry of the trans-
verse spaceN is a direct product of two-dimensional spaces,
and the magnetic field is given by a linear combination of
canonical two-forms on these two-dimensional components.
In both these cases the right-hand side of (4.23) only

depends on a finite number of constants characterizing the
electromagnetic field and on the preselected form of the
transverse geometry. By choosing these electromagnetic
constants, we can find the corresponding transverse geome-
try. On such background we can solve the remaining field
equations.
Actually, such restrictions imposed on the electromag-

netic field are not excessively strong. Taking the gradient
and divergence of Eqs. (4.5c) together with (4.5b), we find
that both E and B must be a harmonic zero-form and a
two-form, respectively,

4 E ¼ 0; 4B ¼ 0: (5.1)

Imposing the natural assumption of finiteness of the fields
at infinity of the transverse space, or restricting to compact
transverse spaces, mathematical theorems guarantee that E
is constant and that B can be nontrivial only for some
topologically special spaces. If we, in addition, assume
that both � and � are constants [which simplifies
the structure of the function H, cf. Eq. (4.21)], we obtain
the condition B2 ¼ constant. Nontrivial harmonic two-
forms B with a constant square can only exist in very
special spaces, of which the direct-product spaces dis-
cussed below are significant representatives.

B. Backgrounds

To build up a physical intuition for more compli-
cated solutions, it is convenient first to distinguish an
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electrovacuum nondynamical background geometry char-
acterized by the transverse metric q, the electric scalar E,
and the magnetic two-form B. Moreover, we assume that
these electromagnetic quantities are ‘‘uniform’’ in the sense
that they are characterized just by a finite number of constant
parameters.

Subsequently, the dynamical geometries will be ob-
tained as a ‘‘deformation’’ of these backgrounds due to
the presence of gravitational waves and gyratonic matter.
Such dynamical degrees of freedom will be described by
the metric one-form a, the metric scalars g and h [intro-
duced in (4.22)], and the electromagnetic one-form �
[introduced in (4.4)].

Specifically, by the background geometry we understand
the metric (2.1) with

a ¼ 0; g ¼ 0; h ¼ 0; (5.2)

accompanied by the electromagnetic field (2.9) with

� ¼ 0 (5.3)

and vanishing gyratonic matter,

ju ¼ 0; j ¼ 0: (5.4)

The field equations simplify considerably if � and � are
transverse-space constants. In view of (2.11) we thus as-
sume

E ¼ constant; B2 ¼ constant: (5.5)

This implies that E and B have the harmonic character,

dE ¼ 0; dB ¼ 0; divB ¼ 0; (5.6)

see relations (4.5) and (3.21).8 The transverse metric q
must then satisfy Eqs. (4.23) and (4.18):

Ric ¼ 2

D� 2
ð�þ�Þqþ ß"o

�
B2 � 2

D� 2
B2q

�
: (5.7)

Finally, we have to deal with a possible u dependence of
the background quantities. To simplify the analysis of the
field equations we restrict ourselves to the simplest case

q
� ¼ 0; E

� ¼ 0; B
� ¼ 0: (5.8)

The expansion parameter (3.10) then vanishes, � ¼ 0.
Notice that in four spacetime dimensions the assumption
q ¼ 0 is not necessary: This could always be locally
achieved by a suitable gauge transformation. In higher
dimensions, this is generally not possible.

To summarize, the metric of the background spacetimes
reads

g ¼ ��r2 STdu STdu� STdu _ STdrþ q; (5.9)

where the constant �� is

�� ¼ 2

D� 2
�� ��D� 4

D� 2
� (5.10)

[so that €H ¼ ���; see (4.21)] and the Maxwell tensor is

F ¼ E STdr ^ STduþ B: (5.11)

The spacetimes (5.9), (5.10), and (5.11) which satisfy
(5.7) are of type D or are conformally flat. Indeed, the only
nonvanishing components of the Weyl tensor in the natural
null frame m0 ¼ k ¼ @r, m1 ¼ � 1

2��r2@r � @u, mi ¼
mk

i@k (where the transverse vectors are normalized as
qklm

k
im

l
j ¼ �ij) are

STC0101 ¼
1

D� 1

�
D� 4

D� 2
ððD� 1Þ�þ ðD� 3Þ�Þ � 2�

�
;

STC0i1j ¼
1

D� 2
ðSTC0101�ij � ßTtf

TTijÞ;
STCijkl ¼ Cijkl;

(5.12)

where the trace-free part Ttf
TT of the transverse

stress-energy tensor is defined in (4.18), and C is the
Weyl tensor of the transverse metric q. All these Weyl
scalars are of boost weight 2, and thus the spacetimes
are of type D. In the particular case when all of them
vanish, the spacetimes are conformally flat. This occurs
if, and only if, the cosmological constant is uniquely
related to the uniform electric and magnetic fields as � ¼
1
2ß"oðD� 4ÞðE2 þ 1

D�2B
2Þ, the trace-free part of the total

transverse stress-energy tensor vanishes (Ttf
TT ¼ 0), and the

transverse space is conformally flat (C ¼ 0).

C. The field equations for gravitational
waves and gyratons

‘‘Nonbackground’’ solutions with gravitational waves
and gyratons which we will consider do not change the
background quantities q, E, and B. However, such solu-
tions will have a different spacetime geometry from the
background, since the metric (2.1) will additionally contain
the metric one-form a, and the scalars g and h, and the
electromagnetic field (2.9) will contain the term with one-
form �.
The remaining nontrivial Maxwell equations (4.5b) and

(4.5d) reduce to

d� ¼ 0; (5.13)

divðEaþ a � B� �Þ ¼ 0: (5.14)

Equations (4.26), (4.27), and (4.29) for a, g, and h simplify
to

1
2 divf þ��a� ß"oð� � EaÞ � ðEqþBÞ � dg ¼ �j;

(5.15)

8In the compact cases, or assuming sufficiently strong bound-
ary conditions in the noncompact case, Eq. (4.5c) already en-
forces (5.6) without a priori assuming that E is constant.
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4g���diva ¼ divj; (5.16)

and

4h¼ 
�2a �dgþ��a2�gdivaþß"oð��EaÞ2� 1
2 f

2;

(5.17)

respectively.
Now, we can distinguish two important classes of such

solutions. The first is the class of pure gravitational waves,
propagating on the backgrounds (5.9), characterized by the
absence of the gyratonic-matter source, j ¼ 0.

The second, more general class of solutions represents
the gravitational and electromagnetic response to the non-
trivial gyratonic matter j. These solutions thus describe
external fields around the beam of null fluid with inner spin.

D. Geometry of the temporal surfaces Tx

Until now, we have concentrated mostly on the geometry
of the Riemannian transverse space N, because it was
convenient to formulate the field equations in terms of
quantities on this space. However, it is also important to
investigate the geometry of the complementary temporal
surface Tx. The restriction of the spacetime metric (2.1) to
these surfaces yields the Lorentzian metric

g jTx
¼ �2H STdu STdu� STdu _ STdr: (5.18)

The only nontrivial curvature characteristic of any two-
dimensional metric is the Gaussian curvature K. For the
metric (5.18) it turns out to be K ¼ � €H. Substituting the
definitions (4.22) and (5.10) we obtain

K ¼ ��: (5.19)

It is interesting that the temporal geometry only depends
on the single background parameter��; i.e., it remains the
same even if the gravitational wave or gyratonic contribu-
tions are present.

In particular, we find that the background spacetimes
have the direct-product formM ¼ T � N, with the geome-
try (5.9) given as the product of the two-dimensional
temporal component T of constant Gaussian curvature
��, and the transverse component N with the metric q
satisfying (5.7).

For such backgrounds, it is possible to perform the
transformation of the temporal metric (5.18) to the canoni-
cal form. Namely, the transformation

U ¼ 1

��u
; V ¼ 4

��r
þ 2u (5.20)

(or U ¼ u and V ¼ r for �� ¼ 0) leads to

g jTx
¼ �ð1� 1

2��UVÞ�2 STdU _ STdV: (5.21)

According to the sign of the constant �� there are three
possibilities: For �� ¼ 0 the temporal surface Tx is the
two-dimensional Minkowski space M2, for �� > 0 it is

the two-dimensional de Sitter space dS2, and for �� < 0
we get the two-dimensional anti-de Sitter space AdS2. The
characteristic scale of the (anti-)de Sitter space is given by

‘ ¼ 1=
ffiffiffiffiffiffiffiffiffij��

p j.
For nonbackground solutions, the geometries of the

temporal surfaces and the transverse spaces do not change.
However, the spacetime geometry (2.1) is not of the direct-
product form due to the nontrivial metric one-form a.

VI. EXPLICIT SOLUTIONS IN
PARTICULAR CASES

A. Waves and gyratons with vanishing B

As the first explicit example of higher-dimensional
Kundt spacetimes with exact gravitational waves and gy-
ratons, we consider a simple case in which the magnetic
fieldB is absent. Necessarily, it follows from (4.5c) that the
electric field E is uniform, i.e.,

E ¼ constant; B ¼ 0: (6.1)

The metric thus takes the form

g ¼ ð��r2 � 2g r� 2hÞ STdu STdu� STdu _ STdr

þ STdu _ aþ q; (6.2)

where the constant ��, introduced in (5.10), is now

�� ¼ 2

D� 2
��D� 3

D� 2
ß"oE

2; (6.3)

and the Maxwell tensor is

F ¼ E STdr ^ STduþ STdu ^ �; (6.4)

constrained by the remaining Maxwell equations (5.13)
and (5.14),

d� ¼ 0; (6.5)

div� ¼ E diva: (6.6)

The Einstein equation (5.7) for B ¼ 0 reduces to

Ric ¼ �þq; (6.7)

where the constant �þ is

�þ ¼ 2

D� 2
�þ 1

D� 2
ß"oE

2 (6.8)

(so that �þ���¼ß"oE
2	0). The ðD� 2Þ-dimensional

Riemannian transverse space N with the metric q can thus
be an arbitrary Einstein space, with its scalar curvature
determined by the constant R ¼ 2�þ ß"oE

2.
The remaining field equations (5.15), (5.16), and (5.17)

for a, g, h are

1
2 divf þ��a� ß"oEð� � EaÞ � dg ¼ �j; (6.9)

4 g���diva ¼ divj; (6.10)
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4h ¼ 
� 2a � dgþ��a2 � gdiva

þ ß"oð� � EaÞ2 � 1
2 f

2: (6.11)

When we take the exterior derivative d of Eq. (6.9) we
immediately obtain

1
2 4 f þ�þf ¼ �dj; (6.12)

while by taking the complementary div of (6.9), Eq. (6.10)
for g is recovered.

The problem of finding explicit solutions g, F which
represent gravitational waves and external fields related to
a gyratonic source has thus been decoupled, and the
Einstein-Maxwell equations can be integrated step by
step. First, take any metric q which satisfies (6.7). Then
solve Eq. (6.12) for f (in the absence of the gyraton
it is just the homogeneous Helmholtz equation 4f þ
2�þf ¼ 0). This can be subsequently integrated to yield
a via da ¼ f . Clearly, a rotational part9 of a is not fixed
here. However, thanks to the gauge freedom (A4) it can be
chosen arbitrarily.

The Maxwell field one-form � in (6.4) is then obtained
as a solution of Eqs. (6.5) and (6.6). Equation (6.10) gives
the metric function g and, finally, we find the metric
function h by solving Eq. (6.11).

In fact, this procedure can be made even more explicit if
we employ the potentials corresponding to these quantities.
Namely, the metric one-form a can be parametrized using a
scalar potential� and a copotential two-form�, as in (3.19),

a ¼ d�� div�; (6.13)

wherewe assume the gauge fixing conditiond� ¼ 0 andwe
ignore a possible harmonic part aH. (Nontrivial harmonics
would be important only in compact transverse spaces with
special topology. We will include these harmonic terms in
the more detailed discussion in the next subsection.) The
potentials thus satisfy f ¼ da ¼ �4 � and diva ¼ 4�.
Analogously, we introduce the potentials for the gyratonic
source j:

j ¼ d�� div�: (6.14)

Because of the constraint (6.5), the electromagnetic one-
form � can be written in terms of a scalar potential ’ only,

� ¼ d’: (6.15)

Since div� ¼ 4’, the remaining Maxwell equation
(6.6) takes the form 4’ ¼ E diva ¼ E4 �, i.e.,

4ð’� E�Þ ¼ 0: (6.16)

This always admits a solution for the electromagnetic
potential ’, once the scalar potential � of a is known.

Similarly, Eq. (6.10) for the metric function g takes the
form

4ðg����Þ ¼ 4�: (6.17)

Only the combination g���� is thus determined by the
field equations. By inspecting the gauge transformation
(A4) we observe that this is the only gauge-invariant
combination of g and �. The remaining information in g
and � is gauge dependent. Therefore, g or � can be chosen
arbitrary and, in particular, we can always achieve either
� ¼ 0 or g ¼ 0.
Using the relations f ¼ da ¼ �4 � and dj ¼ �4 �,

we may also rewrite Eq. (6.12) for f as

4
�
1
2 4 �þ�þ�

�
¼ �4 �: (6.18)

The equations for the potentials ’, �, and � can be
integrated, assuming uniqueness of the solution of the
Laplace equation. We obtain

’ ¼ E�; (6.19)

g ¼ ���þ� (6.20)

1
2 4 �þ�þ� ¼ ��; (6.21)

where � is arbitrary. Possible pure harmonic contributions
to these potentials can be ignored since they are annihilated
when evaluating the quantities a and �.
In particular, pure gravitational waves without a gyra-

tonic source (
 ¼ 0, � ¼ 0, � ¼ 0), using the gauge
� ¼ 0, are given by the metric

g ¼ð��r2�2hÞ STdu STdu� STdu_ STdrþ STdu_aþq:

(6.22)

The transverse metric q solves (6.7), a ¼ �div� with the
potential two-form � satisfying

4�þ 2�þ� ¼ 0; (6.23)

and the metric function h satisfies

4 h ¼ �þa2 � 2�2þ�2: (6.24)

Here, the constants ��, �þ are given by (6.3) and (6.8),
respectively. The electric field is just F ¼ ESTdr ^ STdu.

B. Waves and gyratons on any direct-product
transverse space

In this section we switch on the background magnetic
field. However, since the two-form B must be harmonic,
we expect that it can be nontrivial only in spaces with a
special topology.10

9The rotational part of a is given by the gradient of a potential,
and therefore its exterior derivative vanishes. See the discussion
of potentials following Eq. (6.13).

10For a compact transverse space, a space of nontrivial har-
monic two-forms is equivalent to the second cohomology group.
In a noncompact case we have an analogous relation if we
assume reasonably restrictive boundary conditions for the back-
ground field.
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1. The direct-product ansatz

An important example of such topologically special
spaces is a transverse ðD� 2Þ-dimensional space N which
has a direct-product structure

N ¼ 0N � 1N � 2N � � � � ; (6.25)

where the components KN, K ¼ 1; 2; . . . are two-
dimensional while 0N is an (optional) exceptional compo-
nent of an arbitrary dimension on which the magnetic field
vanishes. The direct-product structure is reflected also in
the metric which takes a simple orthogonal form

q ¼ X
K¼0;1;...

Kq: (6.26)

The metrics Kq act only on the vectors tangent to the Kth
component, and they are independent of a position in any
other Lth component LN, L � K.

The harmonic two-formB can be found using the ansatz

B ¼ X
K¼1;2;...

KB K�; (6.27)

where K" is the Levi-Civita two-form of the metric Kq in
the two-dimensional component KN, and each KB is a
scalar. The harmonic conditions (5.6) now enforce the
uniformity of the background electromagnetic field,
namely, that the component E and the scalars KB must be
transverse-space constants:

E ¼ constant; KB ¼ constant: (6.28)

Consequently, the magnetic two-form B is covariantly
constant on the transverse space N,

rB ¼ 0: (6.29)

We also obtain

B2 ¼ X
K¼1;2;...

KB2 Kq; B2 ¼ X
K¼1;2;...

KB2: (6.30)

Clearly, the case discussed in the previous section cor-
responds to the trivial choices

KB ¼ 0; (6.31)

with possibly only the 0N component present and the two-
dimensional components missing.

We also assume an adjusted structure for the one-forms
a, �, and j, as given below.

2. Equation for the transverse metric q

A straightforward consequence of the direct-product
ansatz (6.26) is that the Riemann and Ricci tensors have
a similar structure,

R ¼ X
K¼0;1;...

KR; Ric ¼ X
K¼0;1;...

KRic; (6.32)

with KR and KRic depending only on a position in the Kth
component KN; see e.g. [40]. The trace-free transverse
stress-energy tensor (4.18) reads

1

"o
Ttf

TT ¼
X

K¼1;2;...

�
KB2 � 2

D� 2
B2

�
Kq: (6.33)

Substituting this into (4.23) we obtain the equation which
can be split into the orthogonal components tangent to KN,
namely,

KRic ¼ K�þKq; (6.34)

K ¼ 0; 1; 2; . . . , where the constants K�þ are now given as

K�þ ¼ 2

D� 2
ð�þ �Þ þ ß"o

�
KB2 � 2

D� 2
B2

�
; (6.35)

and we set 0B ¼ 0.
Equation (6.34) implies that each component KN is an

Einstein space. For the two-dimensional components K ¼
1; 2; . . . , it means that the metric Kq is the standard homo-
geneous metric of a sphere S2, plane E2, or hyperbolic
plane H2, depending on the sign of its Gaussian curvature,
which is given by K�þ.
The zeroth component 0N (whose 0B ¼ 0) must also be

an Einstein space, but for higher dimensions its geometry is
not fixed uniquely. For the maximally symmetric choice
of 0N, see the work [41]. On the other hand, if the zeroth
component 0N is just one dimensional, its curvature
vanishes, 0�þ ¼ 0. This implies the restriction �þ�¼0
and consequently K�þ ¼ ß"o

KB2.
Combining any transverse-space product of 0N, S2, E2,

or H2 of curvatures K�þ with the temporal surface T of
constant curvature �� [see (5.19)], we obtain a great
number of higher-dimensional generalizations of (anti-)
Nariai, Bertotti-Robinson, Plebański-Hacyan, and
Minkowski spaces which are well-known direct-product
four-dimensional spacetimes [7,8,36].

3. Potentials

As in the previous case B ¼ 0, it is very useful to
introduce the potentials for the one-forms a and j.
However, for completeness, we will now also include
harmonic terms in their Hodge decompositions (3.19).
The metric one-form a may be parametrized using a

scalar potential � and a copotential two-form � as in (3.19),

a ¼ d�� div�þ aH; (6.36)

where d� ¼ 0 and aH is a harmonic one-form. These po-
tentials satisfy

da ¼ �4 �; diva ¼ 4�: (6.37)

Now we can explicitly formulate the condition that the
metric one-form a is adjusted to the direct-product struc-
ture. We will assume that the copotential � has a similar
structure as B given in (6.27),
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� ¼ 0�þ X
K¼1;2;...

K�K�: (6.38)

The copotential gauge condition d� ¼ 0 then implies
dK� ^ K� ¼ 0 and d0� ¼ 0, which means that the scalars
K� only depend on a position in the component KN, and 0�
on a position in 0N. The two-form f ¼ da inherits a
similar structure,

f ¼ 0f þ X
K¼1;2;...

Kf K�; (6.39)

0f ¼ �4 0�; Kf ¼ �4 K�: (6.40)

The divergent part �div� of the metric one-form a can
be written as

� div� ¼ �div 0�þ X
K¼1;2;...

K� � dK�; (6.41)

which means that the projection on the directions tangent
to the Kth component depends only on a position in this
component.

We require a similar property also for the harmonic part
aH,

aH ¼ X
K¼0;1;...

KaH; (6.42)

with KaH depending only on a position in KN and being
harmonic only on this component,11

dKaH ¼ 0; divKaH ¼ 0: (6.43)

Note, however, that the spatial dependence of the rotational
part d� of the metric one-form a is not restricted like the
divergent part �div� and the harmonic aH. We will see
shortly that this part can be solved explicitly, in general,
without any assumptions on its direct-product structure.

Let us also mention a useful property of the copotential
�. Using the fact that the two-dimensional metrics Kq are
maximally symmetric, with the curvature tensors KRic
and KR expressed just in terms of Kq, and using its
direct-product form (6.38), the Weitzenböck-Bochner
identity (3.18) reduces to

4� ¼ r2�: (6.44)

Finally, we can introduce the potentials for the gyratonic
source j. We assume a similar structure as for a,

j ¼ d�� div �þ jH; (6.45)

with d� ¼ 0 and

� ¼ 0�þ X
K¼1;2;...

K� K�; (6.46)

in which K� depends only on a position in KN, and 0� on a
position in 0N. The harmonic jH splits into the harmonics
on each component,

jH ¼ X
K¼0;1;...

KjH; dKj ¼ 0; divKj ¼ 0: (6.47)

Now we can explicitly integrate the field equations.

4. Electromagnetic one-form �

The electromagnetic one-form � satisfies condition
(5.13) which implies the existence of a scalar potential ’,

� ¼ d’þ �H; (6.48)

with �H being a harmonic one-form. Clearly div� ¼ 4’.
Taking into account the definition (6.36), the identities

(6.29), (6.37), and (6.44) and relation12 divð� � BÞ ¼
�B � d�, the Maxwell equation (5.14) leads to the ex-
plicit equation for the potential ’,

4 ð’� E��B � �Þ ¼ 0: (6.49)

Ignoring the possibility of nontrivial scalar harmonics in
the noncompact case (and neglecting trivial additive con-
stants), it can be solved as

’ ¼ E�þ B � � ¼ E�þ X
K¼1;2;...

KB K�: (6.50)

For the one-form � we thus obtain

� ¼ E d�þ X
K¼1;2;...

KB dK�þ �H: (6.51)

We assume that the harmonic part �H splits into the
corresponding harmonic one-forms on each component
KN, similarly as for aH,

� H ¼ X
K¼0;1;...

K�H; (6.52)

with K�H depending only on a position in KN and satisfying

dK�H ¼ 0; divK�H ¼ 0: (6.53)

5. Rotational part of a and the metric function g

Now we analyze the equations for the metric one-form
a. First we substitute the potentials (6.36) and (6.45) into
(5.16), obtaining

4 ðg����Þ ¼ ��: (6.54)

11Thanks to the orthogonal character of the metric and our
assumption about the spatial dependence of aH, we do not have
to distinguish here the exterior derivative d or the divergence div
on the whole space N and its components KN.

12This relation holds for any harmonic B and one-form �.
Indeed, let � be a ðD� 4Þ-form dual to B, that is, B ¼ ��.
Then divð� �BÞ¼div�ð�^�Þ¼ ð�1ÞD�3 ��1dð�^�Þ. Using
the Leibnitz rule and d� ¼ 0, we obtain divð� � BÞ ¼
� � ð� ^ d�Þ ¼ �B � d�.
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Ignoring trivial additive constants (and possible scalar
harmonics in the noncompact case) we solve this equation
explicitly as

g���� ¼ �: (6.55)

We observe that the metric function g is closely related
to the potential �. Only their difference is determined by
the potential � of the gyraton source j. This has a clear
physical reason: Both g and � change under gauge trans-
formation (A4), namely,

~g ¼ gþ��c ; ~� ¼ �þ c : (6.56)

Therefore, they cannot be uniquely determined by the field
equations. However, their combination g���� is gauge
invariant and uniquely given by the source �. We can
actually achieve any particular form of g (or of �, respec-
tively) by choosing a suitable gauge transformation. Useful
gauge fixing conditions are g ¼ 0, or � ¼ 0, or ’ ¼ 0 [if
E � 0, cf. Eq. (6.50)].

6. Divergent part of a

The potential � determines the rotational part of a,
cf. Eq. (6.36). The equation for the divergent part of a
[encoded in the copotential �, or also in the two-form f ,
cf. (3.7)] can be extracted by taking the exterior derivative
of Eq. (5.15):

1
2 4 f þ ð�� þ ß"oE

2Þf � ß"od ½ð� � EaÞ � B� ¼ �dj:

(6.57)

Substituting for a, s, and j the corresponding expressions
with potentials, a rather involved calculation then leads to

1
2 4 f þ

�
��qþ ß"oðE2qþ B2Þ

�
� f ¼ 4�: (6.58)

Here we have repeatedly used the block structures (6.27)
and (6.38), of B and �, which imply

ðdiv�Þ �B ¼ �X
K

KB d K�;

i.e., dððdiv�Þ �BÞ ¼ 0, and

B �X
K

KB dK� ¼ �X
K

KB2divðK� K�Þ;

so that dðB �PK
KBdK�Þ ¼ �B2 � 4� ¼ B2 � f . The as-

sumptions (6.43) and (6.53) on the harmonic parts of aH

and �H also guarantee that these harmonic terms do not
contribute to (6.58).

Splitting (6.58) into independent parts tangent to each
component, we obtain the equations for 0f and Kf :

1
2 4 0f þ 0�þ0f ¼ 0� (6.59)

and

1
2�

Kf þ K�þKf ¼ 4K�; (6.60)

K ¼ 1; 2; . . . , with

K�þ ¼ �� þ ß"oðE2 þ KB2Þ; (6.61)

which is equivalent to the relation (6.35).
Equation (6.59) repeats Eq. (6.18) for the case B ¼ 0

(recall that f ¼ �4 �). Equation (6.60) an analogous
equation for the scalar quantities Kf on each two-
dimensional component KN. All these equations have the
linear form of the Helmholz equation, which can be solved
in terms of the Green functions. For maximally symmetric
two-dimensional components KN, these can be written
down explicitly (see, e.g., [36]). It is important to observe
that K�þ is the Gaussian curvature of the two-metric on
KN, K ¼ 1; 2; . . . , which determines the scalar Laplace
operator in Eq. (6.60). For positive values K�þ > 0, the
geometry is spherical and the coefficient in front of the
linear term is related to the eigenvalue of this Laplace
operator. The equation thus has a solution even in the
absence of sources.
After solving the Helmholz equations for the compo-

nents of f , the potentials K� can then be obtained by
solving the Poisson equations (6.40). Alternatively, we
can also substitute (6.40) into (6.59) and (6.60).
Integration of the outer Laplace operator gives the
Helmholz equations

1
2 4 0�þ 0�þ0� ¼ �0�; (6.62)

1
2 4 K�þ K�þK� ¼ �K�; (6.63)

cf. Eq. (6.21).

7. Harmonic parts aH and �H

The harmonic forms aH and �H do not enter Eqs. (6.54)
and (6.60) but they cannot be ignored in the original field
equation (5.15). Substituting here the expressions for po-
tentials (6.36), (6.45), and (6.51) and using the field equa-
tions (6.55) and (6.63), we obtain the constraint for these
harmonics as

��aH � ß"oð�H � EaHÞ � ðEqþ BÞ þ jH ¼ 0: (6.64)

Contracting with ðEq�BÞ from the right, using the anti-
symmetry of B and definition (2.13), we obtain

ß"oðE2qþ B2Þ � ð�H � EaHÞ ¼ ðEqþ BÞ � ð��aH þ jHÞ:
(6.65)

Splitting onto the components KN, we thus obtain

K�H¼E KaHþ
E KqþKB K�

ß"oðE2þKB2Þ � ð��KaHþKjHÞ: (6.66)

This expresses the electromagnetic harmonic one-form�H
in terms of the harmonic parts of the metric one-form a and
the source j.
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8. Equation for h

The only remaining quantity is the metric scalar function
h. It is determined by Eq. (5.17), where all the terms on the
right-hand side can be obtained after solving all the field
equations discussed above. We thus obtain the Poisson
equation, albeit with a rather complicated source.

C. Character of the background geometries for the
waves and gyratons

1. Direct-product spacetimes

Let us shortly summarize and discuss the background
geometries of the spacetimes studied. Clearly, the geome-
tries given by (5.9), (5.10), and (5.11) with the spatial part
q satisfying (6.7), or (6.26)with (6.34), are generalizations of
four-dimensional direct-product spacetimes; see, e.g., [7,8].

In D ¼ 4, the metric of such spacetimes is given by the
sum of a homogeneous Lorentzian two-metric on T with a
homogeneous Riemannian two-metric onN. Depending on
the signs of the curvatures of these components this yields
vacuum (anti-)Nariai and Minkowski, or electrovacuum
Bertotti-Robinson and Plebański-Hacyan spacetimes. The
waves and gyratons on these backgrounds were discussed
in detail in our previous work [36].

We observe that the higher-dimensional case studied
here generalizes these spacetimes in two natural ways:
(i) It represents a direct-product spacetime with one two-
dimensional homogeneous Lorentzian component and one
Riemannian component of a general dimensionD� 2with
the Einstein geometry and vanishing magnetic field. (ii) It
is a direct-product spacetime composed of one Lorentzian
and several Riemannian two-dimensional homogeneous
components with independent uniform magnetic fields
associated with each of the spatial components. Of course,
we also admit a straightforward combination of both these
cases. Notice that case (i) generalizes the particular forms
of (anti-)Narai and Bertotti-Robinson spacetimes dis-
cussed in [41], where N ¼ ED�2, SD�2, or HD�2.

Inspecting relation (6.61) we find that the Gaussian
curvatures K�þ of the spatial two-dimensional compo-
nents KN must be greater than or equal to the Gaussian
curvature �� of the temporal surface T. They are equal to
�� if, and only if, the electric field E and the correspond-
ing magnetic component KB vanish simultaneously. The
richest family of spacetimes is thus obtained if the tempo-
ral surface has the anti-de Sitter geometry,�� < 0. In such
a case the spatial components can be either spheres S2,
planes E2, or hyperbolic planes H2. For the flat temporal
surface, �� ¼ 0, all spatial components must be spheres
S2, except the case in which the electric and magnetic
fields are missing, implying flat spatial components.
Indeed, for �� ¼ 0, all the spatial Gaussian curvatures
read K�þ ¼ ß"oðE2 þ KB2Þ. Finally, for the de Sitter tem-
poral surface, �� > 0, the spatial components must be
spheres.

Recall that in any dimensionD 	 4 these direct-product
spacetimes are of algebraic type D or are conformally flat,
cf. (5.12).

2. Kähler structure

An important subcase is obtained when the dimension
D� 2 is even, the exceptional zeroth component is miss-
ing, and all D�2

2 components of the background magnetic

field are the same,

KB ¼ b; (6.67)

with the constant b given by b2 ¼ 2
D�2B

2. In such a case

B2 ¼ b2q. The magnetic field B (6.27) can thus be renor-
malized to become a Kähler two-form !,

! ¼ 1

b
B ¼ X

K¼1;2...

K�; (6.68)

compatible with the transverse metric q given by (6.26).
Indeed, thanks to Eq. (6.29) and the fact that b ¼ constant,
the two-form ! equips the transverse space N not only
with an almost Kähler structure but also with the Kähler
structure.
Notice that the assumption (6.67) implies that the trace-

free stress-energy tensor (4.18) vanishes,

T tf
TT ¼ 0: (6.69)

Such a condition thus guarantees a considerable simplifi-
cation of the transverse part of the Einstein equations
(4.23), even without assuming the direct-product structure
of the transverse manifold made in (6.25). Moreover, the
Maxwell equations (4.5) imply that the two-form (6.68)
provides the almost Kähler structure for the transverse
space N. Interestingly, such solutions are analogous to
expanding Robinson-Trautman electrovacuum spacetimes
in D 	 4 [42].
This brings up an interesting open question whether there

exist backgrounds outside the class discussed in Sec. VI,
i.e., thosewithout the direct-product structure, whichwould
still satisfy the assumption (6.69) and for which it would be
possible to separate the remaining field equations. Themain
difficulty here lies in the separation of the equation for the
divergent part of the metric one-form a.

VII. SUMMARY

We presented a new large class of gyraton solutions of the
Einstein-Maxwell equations in higher dimensions, in par-
ticular, the gyratons on type D or conformally flat back-
ground spacetimes which are formed as a direct product of
constant-curvature two-spaces (and a possible additional
Einstein space of an arbitrary dimension in which the mag-
netic field vanishes). In four dimensions these background
spacetimes involve the famous (anti-)Nariai, Bertotti-
Robinson, and Plebański-Hacyan spacetimes. The back-
ground geometries are solutions of the Einstein-Maxwell
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equations corresponding to the uniform background electric
and magnetic fields. These gyraton solutions belong to the
Kundt family of shear-free, twist-free, and nonexpanding
spacetimes.

Gyratons describe the gravitational field created by a
stress-energy tensor of a spinning (circularly polarized)
high-frequency beam of radiation of electromagnetic, neu-
trino, or any other massless fields. They also provide a good
approximation for the gravitational field of a beam of
ultrarelativistic particles with an intrinsic spin. The gyra-
tons generalize standard vacuum or pure radiation ppwaves
or Kundt waves by admitting a nonzero angular momentum
of the source. This leads to nontrivial uT components of the
Einstein equations, in addition to the pure radiation uu
component which appears for the simplest pp waves and
Kundt waves.We have shown that all the Einstein-Maxwell
equations can be solved explicitly for any distribution of
such matter sources. Namely, the task has been reduced
to a linear problem involving scalar Green functions on
separate transverse components, which are typically two-
dimensional sphere, plane, or hyperboloid.
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APPENDIX: GAUGE FREEDOM

The construction of the transverse spaces and splitting
of the metric in the form (2.1) is not unique. It contains
three partially ambiguous choices—gauges. The choice
of the coordinate u (u gauge), the choice of the coordinate
r (r gauge), and the choice of the flow w (w gauge).

The foliation of null hypersurfaces S defines the coor-
dinate u up to a reparametrization

u ! ~u ¼ fðuÞ; (A1)

with a one-to-one function f of one variable. The repar-
ametrization has to be accompanied by rescaling of
k and r; however, the transverse foliation N and the
temporal surfaces T are unchanged. Different quantities
transform as follows:

~u ¼ f; ~r ¼ 1

f0
r;

~k ¼ f0k; ~w ¼ 1

f0

�
wþ f00

f0
rk

�
;

~H ¼ 1

f02

�
H þ f00

f0
r

�
; ~a ¼ 1

f0
a; ~q ¼ q:

(A2)

Clearly, the u gauge changes both derivatives along
k and w.
The r-gauge freedom is related to the fact that the affine

parameter of the geodesic generated by k is defined up to a
constant. The coordinate function r is thus defined up to the
r-independent shift:

r ! ~r ¼ rþ c ; _c ¼ 0: (A3)

Such a shift changes the transverse-space foliation,
although the typical transverse space N is unchanged.
The r gauge thus modifies the embedding 
u;r of N into

spacetime M. If we additionally require that the temporal
foliation T remains unchanged, we find that the change of r
has to be accompanied by

~u ¼ u; ~r ¼ rþ c ;

~k ¼ k; ~w ¼ w� c
�
k;

~H ¼ H� c
�
; ~a ¼ aþ dc ; ~q ¼ q;

(A4)

where dc represents the gradient on the transverse space,
i.e., only transverse components of the spacetime gradient
STdc . We also see that the r gauge changes just the deriva-
tive along w.
Finally, the w gauge leaves the transverse spaces N

unchanged but changes the identification of them for
different values of the coordinate u. When restricted to
the typical transverse space N, it can be viewed as the
u-dependent (and r-independent) family of diffeomor-
phisms of N. The generator of this family of diffeomor-
phisms is exactly the vector field � by which the w gauge
modifies the flow w [39]:

w ! ~w ¼ wþ �; _� ¼ 0: (A5)

The corresponding changes of the metric quantities are

~u ¼ u; ~r ¼ r;

~k ¼ k; ~w ¼ wþ �;

~H ¼ H � a � � � 1
2�

2; ~a ¼ aþ �; ~q ¼ q:

(A6)

As for the r gauge, only the u derivative is modified.
It is explained in more detail in [39] that, although

both the transverse spaces N and the temporal planes T
are not determined uniquely by the spacetime geometry,
the assumption _a ¼ 0 of the existence of the temporal
planes orthogonal to the transverse spaces is independent
of a specific choice of the gauge, in particular, of the
choices of N.
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[40] F. A. Ficken, Ann. Math. 40, 892 (1939).
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