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A numerically solvable two-dimensional model introduced by the authors �Phys. Rev. A 73, 032721 �2006��
is used to investigate the validity of the nonlocal approximation to the dynamics of resonant collisions of
electrons with diatomic molecules. The nonlocal approximation to this model is derived in detail, all underly-
ing assumptions are specified, and explicit expressions for the resonant and nonresonant �background� T matrix
for the studied processes are given. Different choices of the so-called discrete state, which fully determines the
nonlocal approximation, are discussed, and it is shown that a physical choice of this state can in general give
poorer results than other choices that minimize the nonadiabatic effects and/or the background terms of the T
matrix. Background contributions to the T matrix, which are usually not considered in the resonant theory of
electron-molecule collisions, can contribute significantly not only to elastic but also to vibrational excitation
cross sections. Dissociative attachment cross sections, however, are found to be properly described in the
nonlocal model with any choice of discrete state that minimizes the importance of nonadiabatic effects and
goes to the proper limit at large internuclear separation.
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I. INTRODUCTION

In a previous paper �1� �referred to hereafter as paper I�,
we introduced a simple two-dimensional model of electron
collisions with diatomic molecules which enabled us to study
the dynamics of inelastic resonant processes such as vibra-
tional excitation

e− + AB�vi� → e− + AB�vf� �1�

and dissociative electron attachment

e− + AB�vi� → A + B−. �2�

The advantage of this model with one electronic and one
nuclear degree of freedom is that we can solve it exactly,
without the Born-Oppenheimer approximation, using appro-
priate numerical techniques developed recently by Rescigno
and McCurdy �2,3�. Therefore, within our model we are able
to obtain the essentially exact cross sections of the studied
processes �1� and �2�. Accordingly we can use this model to
compare various approximate methods that have been em-
ployed to calculate the cross sections for resonant electron-
molecule collisions, in particular the often used local com-
plex potential �LCP� approximation �4,5� and the more
sophisticated nonlocal, complex, and energy-dependent po-
tential approximation �we refer to this approximation as the

nonlocal approximation for brevity� on which the nonlocal
resonance model of Domcke et al. is based �see �6� and
references therein�.

In I we defined a model Hamiltonian and constructed
N2-like and NO-like models embracing all essential features
of the corresponding real electron-molecule systems. As ex-
pected, the LCP approximation, defined from the exact en-
ergy of the pole of the S matrix for fixed-nuclei electron
scattering, yielded satisfactory results for energies suffi-
ciently above threshold but failed to reproduce the energy
dependence of the cross sections near threshold.

In this paper, we focus on a detailed study of the nonlocal
approximation based on the Feshbach projection-operator
formalism �6� and its comparison with the exact results of
the two-dimensional model calculations. For that purpose,
we give a thorough derivation of the nonlocal approximation
to the two-dimensional model in Sec. III and write an ex-
plicit decomposition of the T matrix for vibrational excita-
tion into background and resonant terms. It will be shown
that the background terms, which were usually considered
only for elastic scattering, can play an important role even
for the inelastic vibrational excitation process.

The nonlocal approximation is completely determined by
the so-called discrete state �we assume only one isolated
resonance in our work�. Once this state is given for all inter-
nuclear distances, other quantities appearing in the nonlocal
approximation can be at least in principle calculated. The
same numerical techniques that we used for solving the two-
dimensional problem can be efficiently applied to solve the
nonlocal approximation equations �see Sec. IV for details�
and thus we are able to obtain reliable results for any given
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discrete state. Several alternative definitions of the discrete
state can be found in the literature �see, for example, �7–11��
including the unique definition of Lippmann and O’Malley
�12� based on the physical significance of this state. But
implementation of these definitions is elaborate and it is not
the purpose of this paper to decide which of these definitions
gives the best nonlocal approximation. Instead, we decided
to investigate the nonlocal approximation by choosing sev-
eral different discrete states which vary with the internuclear
distance in a well-defined way, and it will be shown in Sec.
VI that the physical choice of the discrete state as a square-
integrable function which approximates the electronic wave
function calculated at the resonant energy does not in general
give better results than the other, quite arbitrary, choices of
the discrete state. On the contrary, we will provide evidence
that the smoothness of the discrete state and of the orthogo-
nal electronic continuum states is essential to obtain quanti-
tatively correct results within the nonlocal approximation but
only if the contributions of background terms are properly
included.

II. SUMMARY OF THE TWO-DIMENSIONAL MODEL

The detailed description of our two-dimensional model
was given in I. Here we briefly summarize basic equations to
define quantities needed for a discussion of the nonlocal
resonance theory. We should note that the normalization of
continuum states used here is different from that used in I, to
be consistent with the energy normalization chosen in other
papers dealing with the nonlocal theory.

We denote the unperturbed energy-normalized electronic
continuum states by

Jk
l �r� =�2k

�
rjl�kr� �3�

where k denotes the electron momentum, l is the electron
angular momentum, and jl is the spherical Bessel function of
the first kind �13� �in I the continuum states were chosen to
be rjl�kr��. We consider molecular angular momenta to be
zero; thus the unperturbed energy-normalized molecular-
anion continuum state is simply

EK�R� =� 2�

�K
sin�KR� �4�

where K is the relative momentum of A and B− in the disso-
ciative attachment channel and � denotes the reduced mass
of the molecule AB. In accord with the energy normalization,
the definition of the cross sections must also be changed �see
below�.

The full Hamiltonian of our model of the system e−+AB
is

H = H0 + Vint�R,r� , �5�

H0 = TR + V0�R� + Tr +
l�l + 1�

2r2 , �6�

where

TR = −
1

2�

d2

dR2 , Tr = −
1

2

d2

dr2 �7�

are kinetic energy operators and R and r denote the molecu-
lar and electronic coordinates, respectively.

The exact wave function describing the model system at a
given energy E=Evi

+Ei can be written as

��+� = ��vi
Jki

l � +
1

E − H + i�
Vint��vi

Jki

l � , �8�

where �vi
�R� is an initial vibrational state of the neutral mol-

ecule �an eigenfunction of TR+V0�R�� and Jki

l describes an
incoming electron with momentum ki. The wave function
�E

+�R ,r� given by Eq. �8� is obviously an eigenfunction of
the full Hamiltonian H with energy E.

The T matrices for vibrational excitation and dissociative
attachment are given by

Tvi→vf

VE �E� = ��vf
Jkf

l �Vint��+� , �9�

Tvi

DA�E� = �EKDA
�b�V0 + Vint − Vb��+� , �10�

where �vf
and Jkf

l �r� are the final vibrational and electronic
states, respectively. EKDA

�R� describes the relative motion of
the nuclei with the momentum KDA and �b�r� is a bound
state of the electron, both in the dissociative attachment
channel. We assume there is only one electronic bound state
�b�r� satisfying the equation

	Tr +
l�l + 1�

2r2 + Vb�r�
�b�r� = − Ea�b�r� , �11�

where Vb�r� is given as the limit of the interaction potential
for very large internuclear distances,

Vb�r� = lim
R→�

Vint�R,r� , �12�

and Ea is the electron affinity of the “atom” B.
Finally we give the formulas for the cross sections,

�vi→vf

VE �E� =
4�3

ki
2 �Tvi→vf

VE �E��2, �13�

�vi

DA�E� =
4�3

ki
2 �Tvi

DA�E��2 �14�

with coefficients corresponding to the choice of energy-
normalized continuum states.

III. THEORY OF THE NONLOCAL APPROXIMATION

The basic assumption leading to the nonlocal resonance
theory of electron-molecule collisions �6� is the formation of
a metastable molecular anion �AB�− during the collision, i.e.,
the electron is captured by the molecule into a quasibound
�resonant� state which can be approximately described by a
normalized square-integrable wave function. The derivation
of the nonlocal resonance theory is then based on the Fesh-
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bach projection-operator formalism �14,15� with operators
chosen to project on the resonant and nonresonant parts of
the electronic Hilbert space.

Here, we will proceed in three steps. First we define
projection operators Q and P playing a central role in the
Feshbach theory of resonance processes. Then we decom-
pose the scattering T matrix into the resonant and back-
ground �nonresonant� terms and give explicit formulas for
them. Finally, we derive the effective one-dimensional
Schrödinger equation describing the nuclear dynamics of the
resonance state �AB�− in a nonlocal, complex, and energy-
dependent potential. The solution of this basic equation of
the nonlocal resonance theory contains all information
needed for calculation of resonance contributions to the vi-
brational excitation and dissociative attachment cross sec-
tions within the Born-Oppenheimer approximation.

A. Projection operators Q and P

The operator Q projecting on the resonant part Q of the
electronic Hilbert space Hel is given by

Q = ��d���d� , �15�

where �d�r ;R� is a normalized, square-integrable, and in
general complex wave function approximately describing the
electron in a resonant state after being captured by the mol-
ecule. To simplify our derivation, we assume that there is a
single isolated electronic resonance state becoming a bound
state for large internuclear distances, which is true for all our
models.

The projector P on the complementary �nonresonant or
background� part P of Hel is simply

P = 1 − Q . �16�

Let us now define energy-normalized electronic states
�k

+�r ;R� as the eigenstates of the electronic Hamiltonian

Hel = Tr +
l�l + 1�

2r2 + Vint�R,r� �17�

restricted on the P space, i.e.,

PHelP��k
+� =

k2

2
��k

+� , �18�

where a boundary condition for �k
+ is determined by the in-

coming wave Jk
l �r�. In terms of the states �k

+, which are
usually called background scattering states, the projector P
can be expressed in the form

P =� ��k
+���k

+�k dk . �19�

In a similar way we define electronic states �k
−�r ;R� but with

a different boundary condition in which Jk
l �r� stands for an

outgoing wave function. The P operator expressed in these
states has the same form as in Eq. �19�. It should be noted
here that, even if �d�r ;R� is chosen to be independent of R,
the background states �k

±�r ;R� are always parametrically de-
pendent on R because of the explicit R dependence of the
operator Hel.

Before proceeding further we denote the matrix elements
of V0+Hel in the basis ��d ,�k

+
 as

Vd�R� = V0�R� + ��d�Hel��d� , �20�

Vdk
+ �R� = ��d�Hel��k

+� , �21�

Vkk�
+ �R� = ��k

+�V0�R� + Hel��k�
+ �

= �V0�R� + k2/2�	�k2/2 − k�2/2� , �22�

where the last equality follows from Eq. �18� and energy
normalization of the continuum states. It is important to re-
alize that Vkk�

+ is diagonal only because of the appropriate
choice of �k

+�r�. It will be shown later that this choice is
necessary to get the effective one-dimensional equation de-
scribing the nuclear dynamics in a nonlocal potential. In ad-
dition to the matrix element Vdk

+ �R�, we will need a matrix
element

Vdk
− �R� = ��d�Hel��k

−� �23�

to define the background and resonant T matrix for vibra-
tional excitation.

B. Background and resonant T matrices
for vibrational excitation

We begin by writing the full Hamiltonian given by Eq. �5�
in the form

H = H0 + V1 + V2, �24�

where H0 is given by Eq. �6�, and

V1 = PHelP − Tr −
l�l + 1�

2r2 = PHelP − Hel + Vint, �25�

V2 = Hel − PHelP . �26�

The motivation for the choice of V1 is to express the T matrix
�more precisely, only its resonant part� in terms of ��v�k

+�
instead of the unperturbed initial or final state ��vJk

l �. We can
easily see that the state ��vi

�ki

+ � is an eigenfunction of

H0 + V1 = TR + V0 + PHelP �27�

within the Born-Oppenheimer approximation, which will be
defined explicitly later �see Eq. �48� below�.

By employing the two-potential formula for the scattering
T matrix �see �16�, p. 202� we get

Tvi→vf

VE = ��vf
�kf

− �V1��vi
Jki

l � + ��vf
�kf

− �V2��+� , �28�

where �+�R ,r� is given by Eq. �8�, or equivalently, apart
from the Born-Oppenheimer approximation used for the per-
turbed initial state, by

��+� = ��vi
�ki

+ � +
1

E − H + i�
V2��vi

�ki

+ � . �29�

The last equation shows that we can take �vi
�R��ki

+ �r ;R� as
the initial state of the system to determine the wave function
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�+�R ,r�, which we will use later to derive the effective
equation for the nuclear dynamics.

The second term of Eq. �28� corresponds to the resonant
part of the T matrix as defined in �6� and is fully determined
by the resonant part Q�+ of the full wave function defined
below in Eq. �40�. Using Eqs. �16�, �23�, and �26�, and the
orthogonality ��k

− ��d�=0, we obtain

Tvi→vf

res = ��vf
�kf

− �Hel − PHelP��+� = ��vf
�kf

− �PHelQ��+� .

�30�

This expression can be further simplified if we define
�d

+�R�= ��d ��+�r where �¯�r means an integration over the
electronic coordinate r only. In terms of the resonant nuclear
wave function �d

+, for which we will derive the effective
Schrödinger equation in the following subsection, the reso-
nant part of the T matrix can be written as

Tvi→vf

res = ��vf
�Vdkf

−*��d
+� . �31�

Note that this expression differs slightly from the result of
Domcke �Ref. �6�, Eq. �4.14�� where the matrix Vdk without a
superscript, which corresponds to the matrix element Vdk

+ de-
fined by Eq. �21�, was, in our opinion, used incorrectly. This
small difference becomes important when the background
terms defined below are added to the resonant T matrix, since
the coupling matrix elements Vdk

± are in general complex
even when the discrete state is real. The reason why we
cannot use Vdk

+ instead of Vdk
− is that, in general, in spite of

the fact that �k
− belongs to P space,

��kf

− ��k
+� � 	�kf

2/2 − k2/2� , �32�

and therefore

��kf

− �PHelQ��d� � ��kf

+ �Hel��d� . �33�

Instead, if we consider a special case of the real discrete state
and if we realize that for the radial case with a real discrete
state

�k
−�r� = „�k

+�r�…*, �34�

we can simplify the matrix element between electronic wave
functions in �30� as

��kf

− �PHelQ��d� = ��kf

− �Hel��d� = ��d�Hel��kf

+ � = Vdkf

+ ,

�35�

where we assumed that Hel is a Hermitian operator. Note that
in this special case we can use the matrix element Vdk

+ but
without complex conjugation. In the three-dimensional case,
Eq. �34� must be modified to

�k�
− = ��−k�

+ �*, �36�

and thus Vdk�
* in Eq. �4.14� of �6� should be replaced by Vd,−k�

under the assumption that �d is real, otherwise Vdk�
−* must be

used.
We now return to Eq. �28�. Its first term is generally called

the background scattering T matrix and reads

Tvi→vf

bg = ��vf
�kf

− �PHelP − Hel + Vint��vi
Jki

l �

= ��vf
�kf

− �Vint − PHelQ��vi
Jki

l �

= ��vf
�kf

− �Vint��vi
Jki

l � − ��vf
�Vdkf

−*Jdki

l ��vi
� , �37�

where

Jdki

l �R� =� dr �d
*�r;R�Jki

l �r� �38�

is the overlap of the unperturbed incoming wave with the
discrete state. These background terms are nonzero even for
inelastic vibrational excitation, but generally small when
compared to the resonant part of the T matrix. For an ex-
ample where these terms are not negligible, see the results
for the F2-like model in Sec. VI below.

C. Nuclear wave equation

To derive the equation that determines the effective
nuclear dynamics in the nonlocal model, we begin by defin-
ing the outgoing, scattered wave part of the full wave func-
tion,

�sc
+ �R,r� = �+�R,r� − �vi

�R��ki

+ �r� . �39�

Since P+Q=1 we can next write

�sc
+ �R,r� = Q�sc

+ �R,r� + P�sc
+ �R,r�

= �d
+�R��d�r;R� +� �k

+�R��k
+�r;R�k dk ,

�40�

where we have used Eqs. �15� and �19� and defined �k
+�R�

= ��k
+ ��sc

+ �r, the P space counterpart of �d
+�R�. We next write

Eq. �29� in differential form,

�E − H���sc
+ � = �Hel − PHelP���vi

�ki

+ � . �41�

By using Eq. �40� and projecting on the above equation, first
with the discrete state ��d� and then with the background
scattering states ��k

+�, we obtain a set of coupled equations,

E�d
+�R� − TR�d

+�R� − Vd�R��d
+�R� −� Vdk

+ �R��k
+�R�k dk

= Vdki

+ �R��vi
�R� , �42�

E�k
+�R� − TR�k

+�R� − Vdk
+ �R�*�d

+�R�

−� Vkk�
+ �R��k�

+ �R�k�dk� = 0, �43�

where we used definitions �20�–�22� and the orthonormality
of the electronic basis, and where we approximated the terms
containing the nuclear kinetic energy operator TR as

� dr �d
*�r;R�TR�d�r;R��d

+�R� � TR�d
+�R� , �44�

� dr �d
*�r;R�TR�k

+�r;R��k
+�R� � 0, �45�
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� dr„�k
+�r;R�…*TR�d�r;R��d

+�R� � 0, �46�

� dr„�k
+�r;R�…*TR�k

+�r;R��k
+�R� � TR�k

+�R� . �47�

This approximation requires the discrete state �d�r ;R� and
the background continuum states �k

+�r ;R� to depend
smoothly on the internuclear distance R, so that their deriva-
tives with respect to R,

��d�r;R�
�R

� 0,
��k

+�r;R�
�R

� 0, �48�

are negligible when compared to the derivatives of the
nuclear wave functions �d

+�R� and �k
+�R�. In accord with

O’Malley �17�, we consider these conditions to be equivalent
to the statement that we employ the Born-Oppenheimer ap-
proximation in all nonlocal approximation calculations. We
should contrast this statement with the view expressed by
Domcke et al. �6,18�, who claim that the nonlocal resonance
theory goes beyond the Born-Oppenheimer approximation
by taking into account the nonlocality of the effective poten-
tial, and thus includes some non-Born-Oppenheimer effects.

The last term in Eq. �43� can be simplified because of the
definition of �k

+�r ;R� in Eq. �18�. By using Eq. �22� we ob-
tain

� Vkk�
+ �R��k�

+ �R�k�dk� = �V0�R� + k2/2��k
+�R� . �49�

Note that, if we were to choose the electronic basis ��d ,�k
+


completely independent of R, making all nonadiabatic terms
neglected in Eqs. �44�–�47� exactly zero, the continuum-
continuum coupling Vkk�

+ would be inevitably nondiagonal
and difficult to deal with.

Using �49� we can formally solve Eq. �43� and write

�k
+�R� =� dR�G0

+�E,R,R��Vdk
+ �R��*�d

+�R�� , �50�

where

G0
+�E� = �E − TR − V0 − k2/2 + i��−1. �51�

By inserting this expression into �42� we finally get the fa-
miliar working equation of the nonlocal approximation,

�E − TR − Vd�R���d
+�R� −� dR�F�E,R,R���d

+�R��

= Vdki

+ �R��vi
�R� , �52�

with the nonlocal, complex, and energy-dependent potential

F�E,R,R�� =� dR�� Vdk
+ �R�G0

+�E,R,R��Vdk
+ �R��*k dk .

�53�

Once the solution �d
+ of Eq. �52� is obtained, it can be used

to evaluate the resonant part of the T matrix with Eq. �31�

and the corresponding resonant contribution to the vibra-
tional excitation cross section via Eq. �13�.

The dissociative attachment cross section is determined
solely from the asymptotic behavior of �d

+, using the formula

�vi

DA�E� =
2�2

ki
2

KDA

�
lim
R→�

��d
+�R��2, �54�

which, apart from the Born-Oppenheimer approximations
made in the process of deriving Eq. �52�, is equivalent to Eq.
�14�. The proof of this assertion is given in the Appendix.
Within the nonlocal approximation, there are no contribu-
tions to the dissociative attachment cross section similar to
the background terms of the T matrix in Eq. �37� for vibra-
tional excitation. This observation will be seen to have sig-
nificant consequences.

IV. EXACT SOLUTION AND IMPLEMENTATION
OF THE NONLOCAL APPROXIMATION
USING EXTERIOR COMPLEX SCALING

As in I, we have made use of the exterior complex scaling
�ECS� method with an implementation that combines finite
elements with the discrete-variable representation �DVR�, as
developed by Rescigno and McCurdy �2,3�. We employed
this method to numerically solve both the two-dimensional
problem and the nonlocal nuclear wave equation �Eq. �52��.
In I we provided details of how this method was imple-
mented for the two-dimensional problem and how the cross
sections can be extracted from the wave functions via surface
integrals. Here we focus on how the ECS method can be
used to compute the nonlocal potential of Eq. �53� and to
solve Eq. �52�.

The problem of evaluating the nonlocal potential in Eq.
�53� is usually resolved by expansion of the Green’s function
�Eq. �51�� into eigenstates of TR+V0�R�, which are the mo-
lecular vibrational states �v�R�. But such an expansion leads
to a singular integral over electron energies, which is difficult
to treat unless one assumes a particular energy dependence
of the discrete-state–continuum coupling Vdk

+ �R� to be able to
evaluate this singular integral analytically �see, e.g., Ref.
�6��.

In order to perform calculations in the nonlocal approxi-
mation for an arbitrary discrete state �d�r ;R� and to avoid
any assumptions about the energy dependence of the cou-
pling Vdk

+ �R� when evaluating the nonlocal potential �Eq.
�53�� we have made use of the ECS method together with a
DVR basis for both the electronic and nuclear degrees of
freedom to discretize the P space. The key step in the calcu-
lation is a scheme for evaluating the nonlocal operator
F�E ,R ,R�� of Eq. �53�, which we can write as

F�E,R,R�� = ��d�HelP
1

P�E − Hel − TR − V0 + i��P
PHel��d�r.

�55�

We discretize both the electronic ��ri�� and nuclear ��Rj��
coordinates by introducing an exterior complex-scaled DVR
basis for each degree of freedom. We then solve, for each
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discrete value of the nuclear coordinate Rj, the electronic
Born-Oppenheimer eigenvalue problem

�
k

�PHelP�i,k�n�rk;Rj� = En�Rj��n�ri;Rj� . �56�

Note that the electronic operator P is here represented as a
matrix in the electronic DVR basis �with associated quadra-
ture weights wi�:

P�Rj�i,k = 	i,k − Q�Rj�i,k, �57�

Q�Rj�i,k = �wi�d�ri;Rj��d�rk;Rj��wk. �58�

We thus obtain, for each value of the nuclear coordinate Rj, a
set of discretized complex energies En�Rj� lying in the fourth
quadrant of the complex plane �see, for example, Ref. �19�,
Fig. 2�. Because the complex-scaled operator PHelP is sym-
metric, but not Hermitian, we have to use for the wave func-
tions �n�r ;R� the scalar product defined without complex
conjugation. The coupling elements Vdn�Rj� between the dis-
crete state and the discretized continuum states can then be
approximated as

Vdn�Rj� =� dr �d�r;Rj�Hel�r,Rj��n�r;Rj�

=� dr �n�r;Rj�Hel�r,Rj��d�r;Rj�

� �
i,k

�wi�d�ri;Rj�Hel�Rj�i,k�n�rk;Rj��wk, �59�

where, to simplify the discussion, we have assumed that the
discrete state is real and localized in the inner region where
the electronic coordinate is not complex scaled.

Having calculated the complex electronic potential curves
En�Rj� and coupling terms Vdn�Rj�, we can complete the
evaluation of the nuclear Green’s function by constructing

F�E,Ri,Rj� = �
n

�WiVdn�Ri�M�n�i,j
−1Vdn�Rj��Wj , �60�

where the weights in Eq. �60� are those associated with the
nuclear DVR basis, and M�n� is the matrix representation of
the operator for nuclear motion in this representation:

M�n�i,j = �E − TR − V0�R� − En�R��i,j . �61�

Note that we have avoided singularities in constructing the
inverse of M�n� since the energies En�R� are complex
whereas the total energy E of the system is always real.

Having constructed F�E ,Ri ,Rj�, we can then solve the
nuclear wave equation �Eq. �52�� in the same nuclear DVR
representation. Note that the coupling element Vdk

+ �R� ap-
pearing on the right-hand side of Eq. �52� and in the T ma-
trices in Eqs. �31� and �37� are at specific real electron ener-
gies and hence must be evaluated directly using Eq. �21�
where the background continuum function �k

+�r ;R� is ob-
tained by solving Eq. �18� in the electronic DVR basis under
exterior complex scaling.

V. SPECIFIC TWO-DIMENSIONAL MODELS

In the next section, we investigate the accuracy of the
nonlocal approximation and compare it with exact results of
the two-dimensional calculations. For that purpose we con-
structed two-dimensional models for electronic collisions
with N2, NO, and F2 molecules. We used the same param-
etrization of the N2-like and NO-like models as in I and
constructed another model for the molecule F2. Functions
specifying the interaction between electronic and nuclear de-
grees of freedom in all models are of the form

V0�R� = D0�e−2
0�R−R0� − 2e−
0�R−R0�� , �62�

Vint�r,R� = − ��R�e−
�R�r2
, �63�

��R� = �� +
�0

1 + e�1�R−R�� , �64�

�0 = ��c − ����1 + e�1�Rc−R��� , �65�


�R� = 
c, �66�

and numerical values of the adjustable parameters are listed
in Table I.

The resulting two-dimensional potentials V�R ,r� and cor-
responding potential energy curves for the N2-like and NO-
like models can be found in paper I, Figs. 2 and 3. The basic
characteristics of the two-dimensional potential of the F2-like
model shown in Fig. 1 are similar to the N2 and NO models,
but in this case the potential well into which the electron is
captured �in the region where r�2� is much deeper at larger
internuclear distances, corresponding to the large electron
affinity of fluorine.

In Fig. 2 we plot the potential energy curves for the
F2-like model with several vibrational states. The curve la-
beled V0�R� is the potential energy of the neutral molecule

TABLE I. Parameters of the N2-, NO-, and F2-like models,
given in atomic units, so that the resulting potential V�R ,r� is in
hartrees.

Parameter N2 NO F2

� 12 766.36 13 614.16 17 315.99

l 2 �d wave� 1 �p wave� 1 �p wave�
D0 0.75102 0.2363 0.0598


0 1.15350 1.5710 1.5161

R0 2.01943 2.1570 2.6906

�� 6.21066 6.3670 18.8490

�1 1.05708 5.0000 3.2130

R� −27.9833 2.0843 1.8320

�c 5.38022 6.0500 18.1450

Rc 2.40500 2.2850 2.5950


c 0.40000 1.0000 3.0000
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and is plotted along with the local, adiabatic potential curve
of the anion, E�R��Eres�R�− i
�R� /2, which is simply V0�R�
plus the resonance eigenvalue of Hel under complex scaling.
The potential of the molecular anion is complex for R�Rc,
and the width 
�R� is illustrated by the shaded area around
the real part Eres�R� of the potential. Note that the asymptote
of the molecular-anion potential energy curve lies deeply be-
low the ground vibrational state of the neutral molecule �as
in the real electron-F2 system� and therefore, as we will see
below, there is no threshold in the dissociative attachment
cross section and no oscillatory structure in the vibrational
excitation cross sections �in contrast with the NO-like
model�.

VI. SENSITIVITY OF THE NONLOCAL APPROXIMATION
TO CHOICE OF THE DISCRETE STATE

It is not our purpose here to test the various methods that
have been proposed to determine the discrete state �such as a
stabilization method �8,9�, applied to electron collisions with
H2 �18� and N2 �20� molecules, or a recently proposed
Feshbach-Fano R matrix method �10,11��, but rather to show
the sensitivity of the cross sections computed with the non-
local model with several well-defined choices for the discrete
state.

In general, the discrete state for large internuclear dis-
tances should become the bound state of the electron at-
tached to one of the atoms

lim
R→�

�d�r;R� = �b�r� , �67�

where �b is defined by Eq. �11�. Because the bound state is
the eigenfunction of Hel, the discrete-state–continuum cou-
pling Vdk�R� goes to zero �see Eq. �21�� as R→�. If we were
to choose the discrete state differently we would get a non-
zero discrete-state–continuum coupling even for very large
internuclear distances, which has no physical meaning.
Therefore we define all discrete states to satisfy the condition
�67�.

We will consider three specific examples in the following
sections. We first show that an intuitive choice of the discrete
state is not generally optimal because it can change rapidly
with internuclear distance in the resonant region. We then
consider an R-independent discrete state, which produces es-
sentially exact results, but only if the background T matrix
terms �Eq. �37�� are included for elastic and vibrational ex-
citation. Finally, we choose a discrete state that varies
smoothly with the internuclear distance and observe that un-
der certain circumstances the background terms can be very
small and the resonant term obtained within the nonlocal
approximation can be sufficient to reproduce the exact re-
sults for inelastic collisions.

A. “Intuitive” choice of discrete state: Breakdown
of the Born-Oppenheimer approximation

Since the nonlocal approximation assumes the existence
of a resonant electronic state which can be approximated by
a square-integrable function, one might think that the best
results would be obtained if the discrete state were to be
chosen as a close approximation to the fixed-nuclei–electron
scattering wave function calculated at the resonant energy.

The resonant energy can be determined at each internu-
clear distance R, as it was in I, using the exterior complex
scaling method. When this energy is real and negative, it is
the energy of the electronic bound state, which we can define
as the discrete state. When the energy is complex, we choose
its real part to solve the electron scattering problem and trun-
cate smoothly the obtained wave function at an arbitrary dis-
tance rd, with the restriction that rd be sufficiently large to
get a proper limit �Eq. �67��. To obtain a discrete state that
varies smoothly with the internuclear distance R at the cross-
ing point, we multiply the discrete state defined via the scat-
tering wave function by the appropriate factor exp�−i	�R�� to
make it real and to normalize it to unity.

F2−like model

VE →
←

DA

1
2

3
4

5
R (a0)0 1 2 3 4 5r

−5

−3

−1

1

E (hartrees)

(in units of a0)

FIG. 1. �Color online� Effective two-dimensional potential
V0�R�+ l�l+1� /2r2+Vint�R ,r� for the F2-like model. Internuclear
distances are given in units of the Bohr radius a0=5.291 772 1
�10−11 m. Energies are in units of hartrees, where 1 hartree
=4.359 748�10−18 J.
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FIG. 2. �Color online� Target and anion potential energy curves
for the F2-like model with only some vibrational states plotted.
Energies E are in units of hartrees and internuclear distances R are
in units of a0. Shaded area illustrates the width 
�R� associated with
the complex anion potential �see text�.
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In Fig. 3, we plot the resulting discrete state for the
N2-like model for several internuclear distances �upper
panel� together with the corresponding discrete-state poten-
tial Vd�R� �lower left panel� and energy-dependent resonance
width defined as


�E,R� = 2��Vdk
+ �R��2, E = k2/2. �68�

The cutoff function was chosen as

f�r� = 1 −
1

1 + e−�r−rd� �69�

where rd=10a0. Although the discrete-state potential Vd�R� is
smooth and almost coincides with the real part of the local
complex potential defined in I, the discrete state �d�r ;R� and
the discrete-state–continuum coupling Vdk

+ �R� evidently
change rapidly for small internuclear distances, suggesting
that the Born-Oppenheimer approximation introduced in
Eqs. �44�–�48� could break down.

The vibrational excitation cross sections from the ground
state to final states vf=0 ,1 ,8 for the N2-like model are plot-
ted in Fig. 4. In this and the following figures we compare

the results of calculations obtained using the exact two-
dimensional model �full curve�, the local complex potential
approximation investigated in I �short-dashed curve�, and the
nonlocal approximation with �crosses� and without �long-
dashed curve� the background terms in Eq. �37�. As one
might expect for this benchmark case, the agreement be-
tween the exact and approximate results is rather good, but
not perfect. Not surprisingly, the importance of background
scattering to the cross sections is seen to decrease with in-
creasing inelasticity, but there is still a nonzero contribution
for 0→1 vibrational excitation. As the vibrational excitation
cross section to higher vibrational states becomes smaller,
the discrepancies increase due to the breakdown of the Born-
Oppenheimer approximation �48�.

Similar results were obtained for the NO- and F2-like
models, as seen in Figs. 5 and 6. In these cases the variation
of the discrete state with R is greater than in the N2-like
model due to the rapid increase of the resonant energy with
decreasing internuclear distance. Differences between the ex-
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FIG. 3. �Color online� N2-like model with the physical choice of
the discrete state. Upper panel: the discrete state, in units of a0

−1/2, at
several internuclear distances; Lower left panel: the potential en-
ergy curve of the neutral molecule, V0�R� �solid line�, the real part
of the local complex potential of the molecular anion, Eres�R� �short
dashed line�, and the discrete-state potential Vd�R� �long-dashed
line�, which in this case almost coincides with Eres�R�; Lower right
panel: the R dependence of the width defined by Eq. �68� at ener-
gies 0.01, 0.05, and 0.10 hartrees.
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FIG. 4. �Color online� Vibrationally elastic �top panel� and in-
elastic �0→1, middle panel, and 0→8, bottom panel� cross sec-
tions, in units of a0

2, for the N2-like model. The exact cross sections
for our two-dimensional model �solid line� are compared with cross
sections obtained using the local complex potential approximation
�short-dashed line� and the nonlocal approximation without �long-
dashed line� and with �crosses� the background terms. The discrete
state was chosen as the resonant scattering wave function cutoff
around r=10a0 �see text for details�.
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act and model cross sections are correspondingly more pro-
nounced. Large differences are also seen in the dissociative
attachment cross sections, shown in the lower panel of Fig.
6. This is a clear demonstration of the breakdown of the
Born-Oppenheimer approximation, since, as we have shown,
there is no background contribution to this process in the
nonlocal approximation. Note that the threshold behavior of
the cross sections is correct in the nonlocal approximation
due to the energy dependence of the coupling Vdk

+ and non-
local potential of Eq. �53�, unlike in the local complex po-
tential approximation where the resonance width is energy
independent �see I�.

B. Discrete state independent of internuclear distance:
Minimizing nonadiabatic terms and importance

of background terms

The Born-Oppenheimer approximation can be validated
and the effects of the nonadiabatic terms neglected in Eqs.
�44�–�47� minimized by choosing the discrete state �d�r ;R�
to be independent of R. In that case, the approximations �44�
and �46� are exact and the other two are expected to be valid
as well because the electronic Hamiltonian Hel given by Eq.
�17� is smoothly dependent on R, and the continuum states
�k�r ;R� are eigenstates of the operator PHelP, where P is
now independent of R.

An obvious choice of the R-independent discrete state is
the bound state �b�r� of the electron as R→�, otherwise the
condition of Eq. �67� would not be satisfied. In Fig. 7 we plot
the discrete-state potential Vd�R� for this particular choice
together with the potential energy curves for all three models
described in Sec. V �left panels� and the corresponding reso-
nance widths as defined in Eq. �68� for three energies �right
panels�. We can see that, unlike in the previous section, the
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FIG. 5. �Color online� As in Fig. 4, with vibrational excitation
cross sections for the NO-like model.

FIG. 6. �Color online� As in Fig. 4, with 0→1 vibrational exci-
tation �top panel� and dissociative electron detachment �bottom
panel� cross sections for the F2-like model.

FIG. 7. �Color online� Potential energy curve of the neutral mol-
ecule, V0�R� �solid line�, the real part of the local complex potential
of the molecular anion, Eres�R� �short-dashed line�, and the discrete-
state potential Vd�R� �long-dashed line�, for the N2-, NO-, and
F2-like models �left panels�. The R dependence of the width defined
by �68� at energies 0.01, 0.05, and 0.10 hartrees and the width 
�R�
used in the local complex potential approximation calculations
�right panels�.
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widths are smooth functions of the internuclear distance in
all cases.

In Fig. 8 we show the cross sections for the same pro-
cesses as in Figs. 4–6 �except for the 0→1 vibrational exci-
tation in N2 where the curves are graphically indistinguish-
able� obtained with the R-independent discrete state. The
most striking feature we can observe in this figure is that in
all cases the nonlocal approximation gives essentially exact
cross sections if the background terms given by Eq. �37� are
included. However, there are now cases where it does not
suffice to consider only the resonant contribution �Eq. �31��
to the T matrix, not only for elastic scattering, but also for
inelastic vibrational excitation �compare especially the cross
sections for 0→1 vibrational excitation in the F2-like
model�. For dissociative attachment, where there are no
background contributions, the nonlocal model with an
R-independent choice of discrete state gives exact results.

These results can be explained if we notice the increase in
the resonance width from one system to another. The largest
width is found in the F2-like model and, because the back-
ground contribution to the cross section depends on this
width through the coupling Vdk

− �R� in Eq. �37�, one might
expect that the bigger the width, the more important the
background contributions.

C. “Compact” discrete state varying smoothly
with internuclear distance: Decreasing

background terms

In view of the previous results, it is obvious to question
whether it is possible to pick a discrete state which depends
smoothly on R and for which the nonadiabatic effects and the
background contributions to inelastic collisions are simulta-
neously small.

To address this question we compare the results obtained
with the nonlocal model for several well-defined discrete
states. To do that in a systematic way, we define �d�r ;R� as
the lowest-lying bound state of a certain electronic Hamil-
tonian which depends parametrically on R as in Eq. �17�,
only the function ��R� in Eq. �63� is changed in such a way
that the resulting potential supports one bound state for all
internuclear distances. Thus �d�r ;R� satisfies

	Tr +
l�l + 1�

2r2 − �d�R�e−
cr2
�d�r;R� = Ed�d�r;R� .

�70�

In our calculations we used two different functions �d�R� to
define �d�r ;R�. The first one is a slight modification of ��R�
defining the two-dimensional model �see Eq. �64��,

FIG. 8. �Color online� Comparison of the cross sections as in Figs. 4–6 for the discrete state chosen to be the bound state of the electron
as R→� for all internuclear distances, i.e., independent of R. The vibrational excitation 0→1 cross section for the N2-like model is omitted,
because results of all calculations are practically the same in this particular case.
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�d�R� = �q�R� = �� +
q�0

1 + e�1�R−R�� , �71�

which depends on a parameter q. Note that for q=0 we
would obtain the same R-independent discrete state as in the
previous section since �d�R�=��. For sufficiently large q
�0, we would get resonant states instead of bound states for
small internuclear distances, and the definition of the discrete
state would not be unambiguous. Therefore we take q�0
which will be sufficient for our discussion. The second
choice of �d�R� given by

�d�R� = �spec�R� = �� +
�−� − ��

1 + ecd�R−Rd� �72�

is much more flexible, depending on three parameters �−�,
cd, and Rd ��� is given in Table I�. Because the background
contributions to the cross sections are largest for the F2-like
model, we will show results only for this specific model.

In Fig. 9, top panel, we plot �q�R� for four different val-
ues of q �q=0, −0.5, −1.0, and −1.5�, and �spec�R� for two
different values of �−� ��−�=23 �denoted �spec,1� and �−�

=25 ��spec,2��, with cd=1.5 and Rd=4. These functions were
used to define different discrete states for the F2-like model,
shown in the bottom panel for the internuclear distance R
=2.5a0. Corresponding discrete-state potentials Vd�R� and
resonance widths 
�E ,R� for E=0.1 hartree are shown in the
middle panels of this figure. Resonant contributions to the
cross sections �see Eq. �31�� obtained using the nonlocal ap-
proximation defined by these discrete states are compared
with the exact cross sections in Fig. 10. Note that we have
included no background contributions in the data plotted in
Fig. 10.

We observe that the resonant contribution to the cross
sections can be very sensitive to the choice of the discrete
state �d�r ;R�. Our first choice of �d�R�=�q�R�, which would
seem to be quite reasonable �the discrete-state potential
Vd�R� follows closely the real part Eres�R� of the local com-
plex potential�, gives rather satisfactory results �especially
for q about −0.5�, but much better agreement of the resonant
contribution of the nonlocal approximation with the exact
cross sections was obtained for counterintuitive choices of
discrete states defined by �spec�R� for which the discrete-state
potential Vd�R� is farther from Eres�R�. Notice in Fig. 9 that
for �d�r ;R� defined by �spec�R� the resonance width 
�E ,R�
is a much smoother function of R than for the other choices
of �d�r ;R�, especially in the region around the crossing
point, which might be one reason why the background con-
tributions given by Eq. �37� are much smaller in these par-
ticular cases.

We have thus found that the less intuitive choices for the
discrete state, which result in relatively larger differences
between Vd�R� and Eres�R� at small R, and which therefore
shift more information about the system into the nonlocal
part of the potential F�E ,R ,R�� rather than into Vd�R�, can
give better results than the more intuitive choices. These
nonintuitive choices apparently increase the resonant contri-
bution relative to the background. In our particular model

study, this happens when the discrete state is rather compact
�more localized; see Fig. 9, bottom panel� compared with the
bound state of the electron as R→� and with the resonant
states used in Sec. VI A.

We should note that if we were to include the background
contributions to the cross sections we would again get very
good agreement with the exact cross sections in all
cases except the one defined by �q�R� with q=−1.5, where
small discrepancies due to the breakdown of the Born-
Oppenheimer approximation were found �we can see this in
the dissociative attachment cross section in the bottom panel
of Fig. 10�.

FIG. 9. �Color online� Top panel: ��R�, which defines the inter-
action potential Vint�r ,R�, and �d�R�, which defines the discrete
state �d�r ;R�, for the F2-like model. Middle panels: discrete-state
potentials and R dependence of the resonance width 
�E ,R� for E
=0.1 hartree, corresponding to different discrete states defined by
�d�R�. Bottom panel: discrete states at R=2.5a0.
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VII. CONCLUSION

In this work we have investigated, using the two-
dimensional model introduced in I, the nonlocal approxima-
tion to the dynamics of resonant electron scattering from
diatomic molecules. We have completely rederived the basic
equations of the nonlocal approximation in the context of
this two-dimensional model and have given explicit expres-
sions for the background contributions to the vibrational ex-
citation cross sections.

We have constructed three two-dimensional models simi-
lar to the real diatomic systems and used several well-defined

discrete states to probe the relevance of the nonlocal approxi-
mation for the description of the studied processes. We have
found that an inappropriate choice of the discrete state,
though it would seem to be supported by physical assump-
tions of the theory of resonant processes, can lead to inaccu-
rate results due to the breakdown of the Born-Oppenheimer
approximation. On the other hand, if we pick a discrete state
that is independent of, or varies smoothly with, the internu-
clear distance, then we can obtain cross sections within the
nonlocal approximation that agree very well with the exact
cross sections, not only for the case of dissociative attach-
ment, but also for vibrational excitation. In the latter case,
however, good agreement is guaranteed only if the back-
ground contributions to the vibrational excitation T matrix
are taken into account.

Although we have been able to find for our two-
dimensional model particular discrete states for which the
background contributions are negligible, it is not clear that
this will also be the case when we deal with a real diatomic
system. Therefore, we suggest that new ab initio methods
proposed to calculate the discrete-state potential Vd�R� and
the discrete-state–continuum coupling Vdk

+ �R� �such as, e.g.,
the Feshbach-Fano R matrix procedure �10,11�� should also
consider developing tools for calculation of these back-
ground contributions to the vibrational excitation T matrix.

Because of the difficulty of incorporating the background
contributions into the nonlocal resonance model �6�, which
does not define a discrete state explicitly but rather assumes
some functional dependence for the discrete-state potential
Vd�R� and for the discrete-state–continuum coupling Vdk

+ �R�,
the parameters of which are usually found by fitting eigen-
phase sums for fixed-nuclei electron scattering, we did not
use this approach here. Nevertheless, it would probably be
worthwhile to see whether the nonlocal approximation de-
fined by such a method would also give negligible back-
ground contributions for all inelastic processes, as is usually
assumed.

Another important question which requires further study
is when the nonlocal approximation breaks down. The only
approximation we made in the process of derivation of the
nonlocal approximation was the Born-Oppenheimer approxi-
mation expressed by Eq. �48�. It was first used for the per-
turbed initial and final states, Eqs. �28� and �29�, and later for
matrix elements of the nuclear kinetic energy operator, Eqs.
�44�–�47�. Although one can always choose the discrete state
to be slowly varying with or completely independent of the
internuclear distance, it is not obvious that the background
scattering states will also vary slowly, especially for polar
molecules such as hydrogen halides for which the dipole
interaction of the electron with the molecule can change rap-
idly with the internuclear distance. Moreover, the reduced
mass of the molecule in all our models was quite large
�greater than 104me�; with hydrogen-containing diatomics,
non-Born-Oppenheimer corrections are likely to be more im-
portant. Therefore, further tests of the nonlocal approxima-
tion using H2-, HF-, or HCl2-like two-dimensional models
should be carried out.

In summary, we have found that the nonlocal model gives
an excellent description of the scattering process in cases
where the collision is well described by electron capture into

FIG. 10. �Color online� Elastic �top panel�, vibrational excita-
tion 0→1 �middle panel�, and dissociative attachment �bottom
panel� cross sections for the F2-like model. The exact cross sections
of the two-dimensional model �solid line� are compared with the
resonant contribution �see Eq. �31�� to cross sections obtained using
the nonlocal approximation with different choices of the discrete
state �line types as in Fig. 9�. Note that no background contributions
are included in these results.
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a compact, localized state. If this state varies smoothly with
internuclear distance, then the conditions underlying the
Born-Oppenheimer approximation are satisfied and the non-
local model can work quite well in describing dissociative
attachment, even close to threshold. For vibrational excita-
tion, background contributions to the T matrix can become
important in cases where the resonance width becomes large
over nuclear geometries that lie within the Franck-Condon
region of the initial state. The F2 example presents such a
situation for vibrational excitation. In such cases there can be
considerable sensitivity of the computed cross sections to the
choice of the discrete state, reflected in either large back-
ground contributions or a breakdown of the Born-
Oppenheimer approximation. This may simply be a reflec-
tion of the fact that electron scattering in cases involving
broad resonances is difficult to describe with a pure reso-
nance model.
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APPENDIX

Here we show explicitly that there are no background
terms in the dissociative attachment cross section �except
terms neglected due to the Born-Oppenheimer approxima-
tion� if the discrete state �d�r ;R� �see Eq. �15�� is chosen
properly to coincide with the electronic bound state �b�r� as
R→� �see Eq. �11��.

To derive the formula �54� for the dissociative attachment
cross section within the nonlocal approximation we begin
with the exact cross section �see I, Sec. III B, for details,
noting that the coefficient 4� /ki was changed to 2�2 /ki

2 due
to the energy normalization of the electronic continuum
states, Eq. �3�� given by

�vi

DA�E� =
2�2

ki
2 lim

R→�
�

0

�

F� DA�R,r� · n�Rdr , �A1�

where ki is the momentum of an incoming electron and the

flux F� DA projected into the dissociative attachment channel
in the direction of a unit vector n�R for the molecular coordi-
nate R can be written as

F� DA · n�R =
1

2�i
	�PDA�sc

+ �* �

�R
PDA�sc

+

− PDA�sc
+ �

�R
�PDA�sc

+ �*
 . �A2�

The expression �A1� for the cross section is equivalent to
�14� where the T matrix is given by �10�.

The projector operator PDA is defined as

PDA�sc
+ �R,r� = �b�r��

0

�

�b
*�r���sc

+ �R,r��dr . �A3�

If we substitute �sc
+ from Eq. �40� and realize that only the

limit as R→� is important for evaluation of the cross sec-
tion, we obtain

lim
R→�

PDA�sc
+ �R,r� = �b�r� lim

R→�
�d

+�R� , �A4�

under the assumption

lim
R→�

�d�r;R� = �b�r� . �A5�

For the projected flux �A2� we finally get

lim
R→�

F� DA · n�R =
KDA

�
��b�r��2 lim

R→�
��d

+�R��2, �A6�

where we have used

lim
R→�

�

�R
�d

+�R� = lim
R→�

iKDA�d
+�R� , �A7�

which follows from the asymptotic behavior of the scattered
wave function �see I, Eq. �16��.

Because the electronic bound state �b�r� is normalized the
integration over the electronic coordinate r in Eq. �A1� is
trivial, and we finally obtain Eq. �54� for the dissociative
attachment cross section.
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