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Abstract. Numerical solution of coupled radial differential equasowhich are encountered in multichannel scattering
problems is presented. Numerical approach is based on thieigation of the exterior complex scaling method and thésfini
elements method with the discrete variable representafiois method can be used not only to solve multichannelestagt
problem but also to find bound states and resonance posaimhsvidths directly by diagonalization of the correspogdin
complex scaled Hamiltonian. Efficiency and accuracy of tiighod is demonstrated on an analytically solvable twawbk
problem.
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INTRODUCTION

In atomic, molecular, and nuclear physics the quantum-iagichl scattering problems are very important. If at least
one of colliding particles cannot be considered as an eleangone and can be found in different excited states then
we have to deal with multichannel scattering. Electronisiolhs with atoms and molecules are basic examples of such
multichannel processes.

In a certain range of energies (typically below a threshdlaization or dissociation) the general multichannel
scattering theory [1] leads, after the partial wave anajytsi a system of coupled radial differential equations Wwhic
have to be solved with appropriate boundary conditions tainlthe cross sections of processes of interest.

Several numerical methods were proposed to solve these &fiptoblems, for example tliRmatrix method [2]. In
this paper we discuss an application of the exterior comgdakng method combined with the finite-element method
and the discrete variable representation [3] to the mudtictel problem.

MATHEMATICAL FORMULATION OF THE PROBLEM

We consider the following system of coupled linear différ@requations given in a concise form as
(E—H)Wsc=VW¥ 1)
which describes a system of the total enefggnd the multichannel Hamiltonian

1 d®> lg(lg+1
Haﬁ = 505 (Eﬁ + % +£a) —i—VaB(r) (2)

depends on the reduced masschannel angular momenka, and channel threshold energigs For simplicity of
our discussion, we suppose that channel potential$r ) and coupling¥/,g(r) are of short-range, i.e. they fall faster
than 1/r? asr — oo,

In the multichannel scattering problems the initial stdteon the right-hand-side of (1) is given as an energy-
normalized free-particle wave function in the chanmel

Wia(r) = @W%kama(kar) 3)



wherek, are channel wave numbégg = /2l (E — &) andj; (2) is the spherical Bessel function of the first kind [4].
The scattered wave functidfs. satisfies the outgoing boundary condition in the open charara is bound in the
closed channels. Onéddy. is determined one can calculate the physical wave funéton= W; + Wy and the cross
sections
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where the final stat@¥; is of the form (3) witha; replaced witho;.

Og;—a (E) Wivwt? 4)

NUMERICAL METHOD

To solve the system of coupled differential equations (Ihhe outgoing (open channels) or exponentially decaying
(closed channels) boundary conditions we have made useeoimtthod of the exterior complex scaling (ECS)
implemented using a combination of the finite-element mg(fr@M) and the discrete variable representation (DVR).
This method was proposed by [3] as an efficient numerical mpéthod to solve Schroédinger equation (to find both
bound states and scattering states) and reviewed recar{y where applications of this method for three particle
Coulombic break-up problem can be found.

The exterior complex scaling method is a generalizatiorhefwell-known complex scaling method which was
found to be an efficient way to determine resonance posiaoswidths in quantum-mechanical problems (see e.g.
[6]). By rotating the radial coordinate by the angl¢o the complex plane at a sufficiently large distange

R(r):{ r, . r<rp, )

rn+(r—rp)€en, r>ry.

one effectively changes the wave functions describingrasoce and scattering states to bound ones. Therefore we can
look for them in a quadratically integrable basis. Furtherenif we apply the transformation (5) to the Hamiltonian
(2) and calculate the inversion ¢E — H) in Eq. (1) then we obtain the scattered wave funct&g with the correct
outgoing boundary condition on the intervalr,). For details see e.g. [5].

A choice of the square-integrable basis constructed usiitg #lements with the DVR basis in each element proved
to be one of the most efficient ways to implement the exteronglex scaling method. Details on how to construct
such a basis using Lagrange interpolating polynomials amgs& L obatto quadrature can be found in [3] and [5]. The
main advantages of this basis are that the potential engrpator is diagonal and the kinetic energy operator is band
and represented with high accuracy owing to the use of the$shabatto quadrature. Thus this method results in very
sparse matrices for systems like (1) and efficient algomstfon solving sparse linear systems can be applied.

RESULTS FOR TWO-CHANNEL PROBLEM

As atesting model on which the efficiency of the numericallmodtdescribed above will be demonstrated was chosen
an analytically solvable-wave () two-channel problem [1] where channel potentials and Bogg have a form of
potential wells

Vap(r) = { oI (6)
The analytical solution of this problem and detailed disows of its properties can be found in [1] or [7]. Here we
only compare our results with the exact ones for numeridalesi1 = vop = —2,vip =1 = -1/2,1p =1, =0,
ande; = 2 (all values are given in atomic units) which were also usgd].

Because of the discontinuity at= ry one has to choose the numerical grid carefully. By emplofiimite elements
we can handle such a point of discontinuity easily by placng endpoint of two neighboring elements to it and
evaluating the potential at it as a weighted mean of the fedtright limits where weights are the quadrature weights
at this point taken from the left and right element resp. Tegdnumerical grid which we used in our calculations is

n= 40°, Npyr= 15N, = 83,Ng = 6, (7)
endpoints of elements {rmin=0,1,r, = 2,3,6,14,rmax= 30}
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FIGURE 1. Spectrum of the complex scaled Hamiltonian for the two-clehmproblem (6) using the numerical grid (7) with
n = 40° (circles) andq = 30° (crosses).

whereNpy r denotes the number of the DVR basis functions (the same madament) N, is the number of elements
andNy, = (Npvr— 1)Ng — 1 is the total number of basis functions (see [3] for detalls)e complex part of the grid
must start at the radius where all the potentials and cogplame negligible (here we have chosgn= 2 > rg) and
must be sufficiently large to allow the wave functions to falkero.

In Fig. 1, the spectrum of the complex scaled Hamiltoniam#) the potential matrix (6) is shown for the numerical
grid (7) with two different scaling angles = 40° (circles) and 30 (crosses). Energies of bound states and resonances
(for sufficiently large scaling angles) should be indepenadd the scaling angle in contrast to the continuum states
which are rotated by the angl&)2The energy of the bound state in the first chanbgl-£ —2.4309650981) and of
the resonance in the second chanigl=£ 1.8315168862- 0.0290733628 were determined with the relative error
less than 100,

When solving the scattering problem one can expect to find@nance in the elastic cross sectmn,; at energy
ReE;. We can see such a resonant structure in Fig. 2, upper pamaigwhe exact cross sections (lines) are compared
with the cross sections obtained using the numerical glidifthe lower panel of Fig. 2 we plotted the relative error
of the cross sectioa ., for the grid (7) and for three other grids. We can see that feel inethod gives very accurate
results even for quite small number of basis functibpgrelative error of order 10° for N, = 53 for energies not too
close to thresholds). Inaccuracy at very small energiesrati vicinity of the thresholds where a new channel opens
is due to very slow decrease of the wave functions on the aaxgantour (5) as — rmax (wave functions on the
complex part of the grid are proportional to éxqkqr), thus the smaller the channel wave number is, the sloweeis th
decrease of the wave function and the more inaccurate isatbalation because in our approach we set a boundary
conditionW(rmax) = 0). Asrmax is increased (the number of basis functions must also beased correspondingly
to obtain high accuracy) we can get very accurate resultsfevevery small energies and energies close to thresholds
(see results for last two grids in Fig. 2, lower panel).

CONCLUSIONS

The numerical grid method which employs the exterior compigaling technique and the finite elements with the
DVR basis was used to solve the system of coupled radiardifteal equations. This method proved to be an efficient
tool to solve both the eigenvalue problem (when one needsdloflor positions and widths of resonances) and the
scattering problem for even with a relatively small numbidsasis functions one can get highly accurate results.
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FIGURE 2. Upper panel: dependence of the cross sections for all tramsion the total energy (lines — exact results, points —
numerical results). Lower panel: the relative error of toenerical values of the cross section .1 for four different grids.
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