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Abstract. Numerical solution of coupled radial differential equations which are encountered in multichannel scattering
problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-
elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering
problem but also to find bound states and resonance positionsand widths directly by diagonalization of the corresponding
complex scaled Hamiltonian. Efficiency and accuracy of thismethod is demonstrated on an analytically solvable two-channel
problem.
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INTRODUCTION

In atomic, molecular, and nuclear physics the quantum-mechanical scattering problems are very important. If at least
one of colliding particles cannot be considered as an elementary one and can be found in different excited states then
we have to deal with multichannel scattering. Electron collisions with atoms and molecules are basic examples of such
multichannel processes.

In a certain range of energies (typically below a threshold of ionization or dissociation) the general multichannel
scattering theory [1] leads, after the partial wave analysis, to a system of coupled radial differential equations which
have to be solved with appropriate boundary conditions to obtain the cross sections of processes of interest.

Several numerical methods were proposed to solve these kinds of problems, for example theR-matrix method [2]. In
this paper we discuss an application of the exterior complexscaling method combined with the finite-element method
and the discrete variable representation [3] to the multichannel problem.

MATHEMATICAL FORMULATION OF THE PROBLEM

We consider the following system of coupled linear differential equations given in a concise form as

(E−H)Ψsc = VΨi (1)

which describes a system of the total energyE and the multichannel Hamiltonian

Hαβ = δαβ

(

1
2µ

d2

dr2 +
lα(lα +1)

2µr2 + εα

)

+Vαβ (r) (2)

depends on the reduced massµ , channel angular momentalα , and channel threshold energiesεα . For simplicity of
our discussion, we suppose that channel potentialsVαα(r) and couplingsVαβ (r) are of short-range, i.e. they fall faster
than 1/r2 asr → ∞.

In the multichannel scattering problems the initial stateΨi on the right-hand-side of (1) is given as an energy-
normalized free-particle wave function in the channelαi

Ψi,α (r) = δααi

√

2µ
πkα

kαr j lα (kα r) (3)



wherekα are channel wave numberskα =
√

2µ(E− εα) and j l (z) is the spherical Bessel function of the first kind [4].
The scattered wave functionΨsc satisfies the outgoing boundary condition in the open channels and is bound in the
closed channels. OnceΨsc is determined one can calculate the physical wave functionΨ+ = Ψi + Ψsc and the cross
sections

σαi→α f (E) =
4π3

k2
αi

|ΨT
f VΨ+|2 (4)

where the final stateΨ f is of the form (3) withαi replaced withα f .

NUMERICAL METHOD

To solve the system of coupled differential equations (1) with the outgoing (open channels) or exponentially decaying
(closed channels) boundary conditions we have made use of the method of the exterior complex scaling (ECS)
implemented using a combination of the finite-element method (FEM) and the discrete variable representation (DVR).
This method was proposed by [3] as an efficient numerical gridmethod to solve Schrödinger equation (to find both
bound states and scattering states) and reviewed recently in [5] where applications of this method for three particle
Coulombic break-up problem can be found.

The exterior complex scaling method is a generalization of the well-known complex scaling method which was
found to be an efficient way to determine resonance positionsand widths in quantum-mechanical problems (see e.g.
[6]). By rotating the radial coordinate by the angleη to the complex plane at a sufficiently large distancerη

R(r) =

{

r, r < rη ,
rη +(r − rη)eiη , r > rη .

(5)

one effectively changes the wave functions describing resonance and scattering states to bound ones. Therefore we can
look for them in a quadratically integrable basis. Furthermore, if we apply the transformation (5) to the Hamiltonian
(2) and calculate the inversion of(E−H) in Eq. (1) then we obtain the scattered wave functionΨsc with the correct
outgoing boundary condition on the interval〈0, rη 〉. For details see e.g. [5].

A choice of the square-integrable basis constructed using finite elements with the DVR basis in each element proved
to be one of the most efficient ways to implement the exterior complex scaling method. Details on how to construct
such a basis using Lagrange interpolating polynomials and Gauss-Lobatto quadrature can be found in [3] and [5]. The
main advantages of this basis are that the potential energy operator is diagonal and the kinetic energy operator is band
and represented with high accuracy owing to the use of the Gauss-Lobatto quadrature. Thus this method results in very
sparse matrices for systems like (1) and efficient algorithms for solving sparse linear systems can be applied.

RESULTS FOR TWO-CHANNEL PROBLEM

As a testing model on which the efficiency of the numerical method described above will be demonstrated was chosen
an analytically solvables-wave (Jα) two-channel problem [1] where channel potentials and couplings have a form of
potential wells

Vαβ (r) =

{

vαβ , r < r0,
0, r > r0.

(6)

The analytical solution of this problem and detailed discussion of its properties can be found in [1] or [7]. Here we
only compare our results with the exact ones for numerical valuesv11 = v22 = −2, v12 = v21 = −1/2, r0 = 1, ε1 = 0,
andε2 = 2 (all values are given in atomic units) which were also used in [7].

Because of the discontinuity atr = r0 one has to choose the numerical grid carefully. By employingfinite elements
we can handle such a point of discontinuity easily by placingone endpoint of two neighboring elements to it and
evaluating the potential at it as a weighted mean of the left and right limits where weights are the quadrature weights
at this point taken from the left and right element resp. The basic numerical grid which we used in our calculations is

η = 40◦, NDVR = 15,Nb = 83,Nel = 6,
endpoints of elements= {rmin = 0,1, rη = 2,3,6,14, rmax= 30} (7)
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FIGURE 1. Spectrum of the complex scaled Hamiltonian for the two-channel problem (6) using the numerical grid (7) with
η = 40◦ (circles) andη = 30◦ (crosses).

whereNDVR denotes the number of the DVR basis functions (the same in each element),Nel is the number of elements
andNb = (NDVR−1)Nel −1 is the total number of basis functions (see [3] for details). The complex part of the grid
must start at the radius where all the potentials and couplings are negligible (here we have chosenrη = 2 > r0) and
must be sufficiently large to allow the wave functions to fallto zero.

In Fig. 1, the spectrum of the complex scaled Hamiltonian (2)with the potential matrix (6) is shown for the numerical
grid (7) with two different scaling anglesη = 40◦ (circles) and 30◦ (crosses). Energies of bound states and resonances
(for sufficiently large scaling angles) should be independent of the scaling angle in contrast to the continuum states
which are rotated by the angle 2η . The energy of the bound state in the first channel (Eb = −2.4309650981) and of
the resonance in the second channel (Er = 1.8315168862−0.0290733625i) were determined with the relative error
less than 10−10.

When solving the scattering problem one can expect to find a resonance in the elastic cross sectionσ1→1 at energy
ReEr . We can see such a resonant structure in Fig. 2, upper panel, where the exact cross sections (lines) are compared
with the cross sections obtained using the numerical grid (7). In the lower panel of Fig. 2 we plotted the relative error
of the cross sectionσ1→1 for the grid (7) and for three other grids. We can see that the used method gives very accurate
results even for quite small number of basis functionsNb (relative error of order 10−8 for Nb = 53 for energies not too
close to thresholds). Inaccuracy at very small energies andin the vicinity of the thresholds where a new channel opens
is due to very slow decrease of the wave functions on the complex contour (5) asr → rmax (wave functions on the
complex part of the grid are proportional to exp(−kα r), thus the smaller the channel wave number is, the slower is the
decrease of the wave function and the more inaccurate is the calculation because in our approach we set a boundary
conditionΨ(rmax) = 0). As rmax is increased (the number of basis functions must also be increased correspondingly
to obtain high accuracy) we can get very accurate results even for very small energies and energies close to thresholds
(see results for last two grids in Fig. 2, lower panel).

CONCLUSIONS

The numerical grid method which employs the exterior complex scaling technique and the finite elements with the
DVR basis was used to solve the system of coupled radial differential equations. This method proved to be an efficient
tool to solve both the eigenvalue problem (when one needs to look for positions and widths of resonances) and the
scattering problem for even with a relatively small number of basis functions one can get highly accurate results.
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FIGURE 2. Upper panel: dependence of the cross sections for all transitions on the total energy (lines – exact results, points –
numerical results). Lower panel: the relative error of the numerical values of the cross sectionσ1→1 for four different grids.
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