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Physics, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
2 Department of Physics, Faculty of Science, J. E. Purkinje University in Ústı́ nad Labem,
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Abstract
We investigate the fully general class of non-expanding, non-twisting and
shear-free D-dimensional geometries using the invariant form of geodesic
deviation equation which describes the relative motion of free test particles.
We show that the local effect of such gravitational fields on the particles
basically consists of isotropic motion caused by the cosmological constant �,
Newtonian-type tidal deformations typical for spacetimes of algebraic type D
or II, longitudinal motion characteristic for spacetimes of type III, and type
N purely transverse effects of exact gravitational waves with D(D − 3)/2
polarizations. We explicitly discuss the canonical forms of the geodesic
deviation motion in all algebraically special subtypes of the Kundt family
for which the optically privileged direction is a multiple Weyl aligned null
direction, namely D(a), D(b), D(c), D(d), III(a), III(b), IIIi, IIi, II(a), II(b),
II(c) and II(d). We demonstrate that the key invariant quantities determining
these algebraic types and subtypes also directly determine the specific local
motion of test particles, and are thus measurable by gravitational detectors.
As an example, we analyze an interesting class of type N or II gravitational
waves which propagate on backgrounds of type O or D, including Minkowski,
Bertotti–Robinson, Nariai and Plebański–Hacyan universes.

PACS numbers: 04.20.Jb, 04.50.−h, 04.30.−w

1. Introduction

Spacetimes of the Kundt class are defined by a purely geometric property, namely that they
admit a geodesic null congruence which is non-expanding, non-twisting and shear-free. In the
context of four-dimensional general relativity, such vacuum and pure radiation spacetimes of
type N, III, or O were introduced and initially studied 50 years ago by Kundt [1, 2].

The whole Kundt class is, in fact, much wider. It admits a cosmological constant,
electromagnetic field, other matter fields and supersymmetry. The solutions may be of various

0264-9381/13/205016+24$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0264-9381/30/20/205016
mailto:podolsky@mbox.troja.mff.cuni.cz
mailto:robert.svarc@mff.cuni.cz
http://stacks.iop.org/CQG/30/205016


Class. Quantum Grav. 30 (2013) 205016 J Podolský and R Švarc

algebraic types and can be extended to any number D of dimensions. All Kundt spacetimes
(without assuming field equations) can be written as

ds2 = gpq(u, x) dxpdxq + 2 gup(r, u, x) du dxp − 2 du dr + guu(r, u, x) du2, (1)

see [1–9]. In this metric, the coordinate r is an affine parameter along the optically privileged
null congruence k = ∂r (with vanishing expansion, twist and shear), u = const. label null
(wave)surfaces, and x ≡ (x2, x3, . . . , xD−1) are D − 2 spatial coordinates in the transverse
Riemannian space. The spatial part gpq of the metric must be independent of r, all other metric
components gup and guu can be functions of all the coordinates (r, u, x).

The Kundt class of spacetimes is one of the most important families of exact solutions
in Einstein’s general relativity theory, see chapter 31 of the monograph [3] or chapter 18 of
[4] for reviews of the standard D = 4 case. It contains several famous subclasses, both in four
and higher number of dimensions, with interesting mathematical and physical properties. The
best-known of these are pp-waves (see [3–6, 10–14] and references therein) which admit a
covariantly constant null vector field. There are also VSI and CSI spacetimes [5, 6, 11–16] for
which all polynomial scalar invariants constructed from the Riemann tensor and its derivatives
vanish and are constant, respectively. Moreover, all the relativistic gyratons known so far
[17–24], representing the fields of localized spinning sources that propagate with the speed
of light, are also specific members of the Kundt class. Vacuum and conformally flat pure
radiation Kundt spacetimes provide an exceptional case for the invariant classification of exact
solutions [25–31], and all type D pure radiation solutions are also known [32, 33]. All vacuum
Kundt solutions of type D were found and classified a long time ago [34] and generalized to
electrovacuum and any value of the cosmological constant [35, 36]. These contain a subfamily
of direct-product spacetimes, namely the Bertotti–Robinson, (anti-)Nariai and Plebański–
Hacyan spacetimes of type O and D (see chapter 7 of [4], [23] and [24] for higher-dimensional
generalizations) representing, for example, extreme limits and near-horizon geometries. With
Minkowski and (anti-)de Sitter spaces they form the natural backgrounds for non-expanding
gravitational waves of types N and II [37–44].

In our studies here we consider the fully general class of Kundt spacetimes of an arbitrary
dimension D � 4 (results for the standard general relativity are obtained by simply setting
D = 4). Taking the spacetime dimension as a free parameter D, we can investigate whether
the extension of the Kundt family to D > 4 exhibits some qualitatively different features and
unexpected properties. Our paper is thus also a contribution to the contemporary research
analyzing various aspects of Einstein’s gravity extended to higher dimensions. Explicit Kundt
solutions help us illustrate specific physical properties and general mathematical features of
such theories.

Specifically, we systematically investigate the complete D � 4 Kundt class of solutions
using geodesic deviation and discuss the corresponding effects on free test particles. In section 2
we summarize the equation of geodesic deviation, introduce invariant amplitudes of the
gravitational field, and we discuss them for the fully general Kundt family of geometries.
In section 3 we derive expressions for these amplitudes, and in section 4 we evaluate them
explicitly for all algebraically special Kundt spacetimes for which the optically privileged
congruence is generated by a multiple Weyl aligned null direction (WAND). The main results
are presented in section 5 where we discuss the specific structure of relative motion of
test particles for all possible algebraic types and subtypes of such Kundt geometries, see
subsections 5.1–5.12. In the final section 6 we present a particular example, namely an
interesting class of type II and N non-expanding gravitational waves on D and O backgrounds
of any dimension.
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2. Geodesic deviation in the fully general Kundt spacetime

Relative motion of nearby free test particles (without charge and spin) is described by the
equation of geodesic deviation [45, 46]. It has long been used as an important tool for studies
of four-dimensional general relativity, in particular to analyze fields representing gravitational
waves and black hole spacetimes (see [47–50] for more details and references). In our recent
work [50] generalizing [41] we demonstrated that the equation of geodesic deviation in any D-
dimensional spacetime can be expressed in the invariant form (using Einstein’s field equations
Rab − 1

2 R gab + � gab = 8π Tab)

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1) + �2S Z(1) + 1√

2
(�1T j − �3T j ) Z( j)

+ 8π

D − 2

[
T(1)(1)Z

(1) + T(1)( j)Z
( j) −

(
T(0)(0) + 2 T

D − 1

)
Z(1)

]
, (2)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − �2T (i j)Z( j) + 1√

2
(�1T i − �3T i ) Z(1) − 1

2
(�0i j + �4i j ) Z( j)

+ 8π

D − 2

[
T(i)(1) Z(1) + T(i)( j) Z( j) −

(
T(0)(0) + 2 T

D − 1

)
Z(i)

]
, (3)

i, j = 2, . . . , D − 1. Here Z(1), Z(2), . . . , Z(D−1) are spatial components Z(i) ≡ e(i) · Z of the
separation vector Z between the two test particles in a natural interpretation orthonormal
frame {ea}, ea · eb = ηab, where e(0) = u is the velocity vector of the fiducial test
particle, and Z̈(1), Z̈(2), . . . , Z̈(D−1) are the corresponding relative physical accelerations
Z̈(i) ≡ e(i) · (D2Z/dτ 2). The coefficients Tab ≡ T (ea, eb) denote frame components of the
energy–momentum tensor (T is its trace), and the scalars

�0i j = Cabcd ka mb
i kc md

j ,

�1T i = Cabcd ka lb kc md
i , �1i jk = Cabcd ka mb

i mc
j md

k ,

�2S = Cabcd ka lb lc kd, �2i jkl = Cabcd ma
i mb

j mc
k md

l ,

�2T i j = Cabcd ka mb
i lc md

j , �2i j = Cabcd ka lb mc
i md

j , (4)

�3T i = Cabcd la kb lc md
i , �3i jk = Cabcd la mb

i mc
j md

k ,

�4i j = Cabcd la mb
i lc md

j ,

with indices i, j, k, l = 2, . . . , D − 1, are components of the Weyl tensor with respect to the
null frame {k, l, mi} associated with {ea} via relations k = 1√

2
(u + e(1)), l = 1√

2
(u − e(1)),

mi = e(i), see figure 1.
The Weyl tensor components (4) are listed by their boost weight and directly generalize

the standard Newman–Penrose complex scalars �A known from the D = 4 case [50, 51]. In
equations (2), (3), only the ‘electric part’ of the Weyl tensor with respect to u represented by
the scalars in the left column of (4) occurs. All these scalars exhibit the standard symmetries
of the Weyl tensor, for example

�4i j = �4(i j) , �4k
k = 0, �3i jk = �3i[ jk] . (5)

Moreover, there are relations between the left and right columns of (4), namely

�1T i = �1k
k

i , �3T i = �3k
k

i ,

�2S = �2T k
k , �2T [i j] = 1

2�2i j , �2T (i j) = 1
2�2ik j

k . (6)

Finally, let us remark that our notation which uses the symbols �A... in any dimension is related
to the notations employed elsewhere, namely in [5, 12], [52, 53], and [6, 54]. Identifications

3
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Figure 1. Evolution of the separation vector Z that connects particles moving along geodesics γ (τ ),
γ̄ (τ ) is given by the equation of geodesic deviation (2) and (3). Its components are expressed in
the orthonormal frame {ea} with e(0) = u. The associated null frame {k, l, mi} is also indicated.

Table 1. Different equivalent notations used in the literature for those Weyl scalars that occur in
the equation of geodesic deviation (2), (3).

�0i j �1T j �2S �2T i j �3T j �4i j

C0i0 j −C010 j −C0101 −C0i1 j C101 j C1i1 j Coley et al [5, 12]
−	 −	i j � j 2 �i j Pravda et al [52, 53]


i j −� j −	 −	i j � ′
j 
′

i j Durkee et al [6, 54]

Table 2. Other Weyl tensor components and their form in the GHP notation.

�1i jk �2i jkl �2i j �2T [i j] �2T (i j) �3i jk

C0i jk Ci jkl −C01i j −C1i jk Coley et al [5, 12]
�i jk 	i jkl −2 	A

i j −	A
i j −	S

i j −� ′
i jk Durkee et al [6, 54]

for the components present in the invariant form of the equation of geodesic deviation are
summarized in table 1 (more details can be found in [50]). The remaining (independent)
components of the Weyl tensor are listed in table 2.

For the most general Kundt spacetime (1), the null interpretation frame adapted to
an arbitrary observer moving along the timelike geodesic γ (τ ), whose velocity vector is
u = ṙ ∂r + u̇ ∂u + ẋp∂p (normalized as u · u = −1, so that u̇ �= 0), takes the form3

k = 1√
2 u̇

∂r,

l =
(√

2 ṙ − 1√
2 u̇

)
∂r +

√
2 u̇ ∂u +

√
2 ẋp∂p, (7)

mi = 1

u̇
mp

i ( gpu u̇ + gpq ẋq) ∂r + mp
i ∂p,

where mp
i satisfy gpq mp

i mq
j = δi j to fulfil the normalization conditions mi · m j = δi j,

k · l = −1. Notice that the vector k is oriented along the non-expanding, non-twisting and
shear-free null congruence k = ∂r defining the Kundt family. Moreover, u = 1√

2
(k + l) and

3 In this paper, i, j, k, l are frame labels, whereas the indices p, q, m, n denote the spatial coordinate components.
For example, mp

i stands for the pth spatial coordinate component of the vector mi.
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e(1) = 1√
2
(k − l) = √

2 k − u. The spatial vector e(1) is thus uniquely determined by the
optically privileged null congruence of the Kundt family and the observer’s velocity u. For
this reason we call such a special direction e(1) longitudinal, while we refer to the D − 2
directions e(i) = mi are transverse.

To evaluate the scalars (4) we have to project coordinate components of the Weyl tensor
Cabcd of the generic Kundt spacetime, which can be found in appendix A of [9], onto the
interpretation frame (7). SinceCrprq = 0, we immediately obtain �0i j = 0, while the remaining
Weyl scalars are in general non-zero. The relative motion of free test particles in any D-
dimensional Kundt spacetime (1), determined by the equation of geodesic deviation (2), (3),
can thus be naturally decomposed into the following components.

• The presence of the cosmological constant � is encoded in the term(
Z̈(1)

Z̈(i)

)
= 2�

(D − 1)(D − 2)

(
1 0
0 δi j

) (
Z(1)

Z( j)

)
. (8)

It causes isotropic motion of test particles, which is typical for (maximally symmetric)
‘background’ spacetimes of constant curvature, namely Minkowski space, de Sitter space
and anti-de Sitter space.

• The terms �2S and �2T (i j) are responsible for Newtonian-like tidal deformations since the
motion of test particles is given by(

Z̈(1)

Z̈(i)

)
=

(
�2S 0

0 −�2T (i j)

) (
Z(1)

Z( j)

)
, (9)

where �2S = �2T k k . These effects are typically present in type D spacetimes.
• The scalars �3T j and �1T j represent longitudinal components of the gravitational field

resulting in specific motion associated with the spatial direction +e(1) and −e(1),
respectively. Such terms cause accelerations(

Z̈(1)

Z̈(i)

)
= − 1√

2

(
0 �AT j

�AT i 0

)(
Z(1)

Z( j)

)
, (10)

where �AT j stand for either �3T j or −�1T j which are mutually equivalent under k ↔ l,
see (4). These scalars combine motion in the privileged longitudinal direction ±e(1) with
motion in the transverse spatial directions e(i). Such effects typically occur in spacetimes
of type III, in particular IIIi.

• The scalars �4i j , characteristic for type N spacetimes, can be interpreted as amplitudes
of transverse gravitational waves propagating along the spatial direction +e(1). These
components of the field influence test particles as(

Z̈(1)

Z̈(i)

)
= −1

2

(
0 0
0 �4i j

) (
Z(1)

Z( j)

)
. (11)

They obviously cause purely transverse effects because there is no acceleration in the
privileged longitudinal direction e(1). The scalars �4i j form a symmetric traceless matrix
of dimension (D − 2) × (D − 2), see (5). This matrix describing the amplitudes of
gravitational waves has 1

2 D(D − 3) independent components corresponding to distinct
polarization modes.

More details about these general effects of any gravitational field on test particles can be
found in [50]. Their explicit discussion in the context of Kundt spacetimes will be presented
in subsequent sections of this contribution.

There are also specific direct effects of matter in the equation of geodesic deviation (2),
(3) which are determined by the frame components of the corresponding energy–momentum
tensor Tab. As an explicit illustration, we present here two physically interesting examples:

5
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• For pure radiation (or ‘null dust’) aligned along the null direction k, the energy–momentum
tensor is Tab = ρ kakb where ρ represents radiation density. Its trace vanishes, T = 0, and
the only non-vanishing components of Tab in the equation of geodesic deviation (2), (3)
reduce to (

Z̈(1)

Z̈(i)

)
= − 4π ρ

D − 2

(
0 0
0 δi j

) (
Z(1)

Z( j)

)
. (12)

There is no acceleration in the longitudinal spatial direction e(1) and the effect in the
transverse space is isotropic. Moreover, since ρ > 0, it causes a radial contraction which
may eventually lead to exact focusing.

• For an electromagnetic field aligned with the Kundt geometry (i.e., Fab kb = E ka where
k = ∂r) the most general form of the Maxwell tensor is

F = E dr ∧ du + σp du ∧ dxp + 1
2Bpq dxp ∧ dxq. (13)

Evaluating the energy–momentum tensor Tab = 1
4π

(
Fac Fb

c − 1
4 gab Fcd F cd

)
in the

interpretation orthonormal frame, the corresponding effects on (uncharged) test particles,
as given by the equation of geodesic deviation, take the form(

Z̈(1)

Z̈(i)

)
=

(
T T j

Ti Ti j

)(
Z(1)

Z( j)

)
, (14)

where

T = − 2

D − 2

[
(E2 + B2) + D − 4

D − 1
(E2 − B2)

]
,

Ti = − 2

D − 2
mp

i

[
ẋq

(
E2gpq + B2

pq
) + u̇ (EEp − BpqEm gqm)

]
,

Ti j = 2

D − 2

[
mp

i mq
j B2

pq − δi j

(
B2 + D − 4

D − 1
(E2 − B2) + ẋpẋq

(
E2gpq + B2

pq

)

+2 u̇ ẋp(EEp − BpqEm gqm) + u̇2 EpEq gpq

)]
, (15)

with convenient auxiliary variables defined as

Ep ≡ E gup − σp, B2
pq ≡ BpmBqn gmn, B2 ≡ 1

2BpmBqn gpqgmn. (16)

The motion simplifies considerably if the magnetic field is absent (Bpq = 0):

T = − 2

D − 2

2D − 5

D − 1
E2,

Ti = − 2

D − 2
mp

i (gpq ẋqE2 + u̇ EEp), (17)

Ti j = − 2

D − 2
δi j

(
D − 4

D − 1
E2 + gpq ẋpẋqE2 + 2 u̇ ẋpEEp + u̇2EpEqgpq

)
,

in particular when D = 4 and σp = 0 (in which case Ep = Egup).

3. Explicit evaluation of the Weyl scalars �A...

The invariant amplitudes �A... of various gravitational field components (9)–(11) combine the
local curvature of the Kundt spacetime with the kinematics of specific motion along an arbitrary
timelike geodesic γ (τ ). These should be evaluated at any given event corresponding to the
actual position of the observer along γ (τ ), with its actual velocity u = ṙ ∂r + u̇ ∂u + ẋp∂p .

6
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The scalars �2S, �2T i j , �1T j , �3T j , �4i j (and �0i j = 0) which enter the geodesic deviation
equation (2), (3) can most conveniently be expressed explicitly if we employ the relation
between the interpretation null frame (7) (adapted to the chosen geodesic observer) and the
natural null frame for the Kundt geometry (1) which is

knat = ∂r,

lnat = 1
2 guu ∂r + ∂u, (18)

mnat
i = mp

i ( gup ∂r + ∂p).

The transition between the null frames (18) and (7) is a Lorentz transformation associated
with the choice of different (timelike) observers, as explained in more detail in section 5 and
appendix C of our work [50]. Specifically, the general interpretation frame is obtained from the
natural one by combining a boost followed by a null rotation with fixed knat (see equations (C3)
and (C1) of [50]),

k = Bknat,

l = B−1lnat +
√

2 Limnat
i + |L|2Bknat, (19)

mi = mnat
i +

√
2 Li Bknat,

where |L|2 ≡ δi jLiL j and

B = 1√
2 u̇

, Li = gpq mp
i ẋq. (20)

Conversely, the natural frame (18) is obtained from the interpretation frame (7) as a particular
case when

√
2 u̇ = 1, ẋp = 0 (and thus

√
2 ṙ − 1 = 1

2 guu due to the assumed normalization
u · u = −1), i.e., B = 1, Li = 0. This corresponds to special observers with no motion in the
transverse spatial directions (ẋp = 0 for all p = 2, . . . , D − 1).

Under the Lorentz transformation (19), the Weyl scalars change as

�0i j = 0 , �1T i = B �nat
1T i , �1i jk = B �nat

1i jk ,

�2S = �nat
2S − 2

√
2 �nat

1T i BLi,

�2i jkl = �nat
2i jkl − 2

√
2 B

(
L[l�

nat
1k]i j − L[i�

nat
1 j]kl

)
,

�2i j = �nat
2i j +

√
2 �nat

1ki j BLk − 2
√

2 �nat
1T [i BL j] ,

�2T i j = �nat
2T i j +

√
2 �nat

1ik j BLk −
√

2 �nat
1T i BL j,

�3i jk = B−1�nat
3i jk +

√
2

(
�nat

2li jk Ll − �nat
2 jk Li + 2L[ j�

nat
2T k]i

)
+ 4�nat

1T [ j Lk] BLi − 2
(
�nat

1 jli Lk + �nat
1l jk Li − �nat

1kli L j
)

BLl + �nat
1i jk B|L|2,

�3T i = B−1�nat
3T i +

√
2 �nat

2i j L j −
√

2
(
�nat

2T ki Lk + �nat
2S Li

)
+2

(
2�nat

1T j Li − �nat
1k ji Lk

)
BL j − �nat

1T i B|L|2,
�4i j = B−2�nat

4i j + 2
√

2 B−1
(
�nat

3T (i L j) − �nat
3(i j)k Lk

)
+2�nat

2ik jl LkLl − 4�nat
2T k(i L j)L

k + 2�nat
2T (i j) |L|2 − 2�nat

2S LiL j − 4�nat
2k(i L j)L

k

−2
√

2 B
(
2�nat

1kl(i L j)L
kLl + �nat

1(i j)k Lk|L|2 + �nat
1T (i L j) |L|2 − 2�nat

1T k LkLiL j
)
, (21)

see expressions (C5) and (C7) of [50] in the particular case when �0i j = 0. The scalars �nat
A...

represent the components (4) of the Weyl tensor in the natural null frame (18). Recall that the
coordinate components of Cabcd were presented in appendix A of [9]. These scalars can also be
used purely locally. For some purposes, it is not necessary to evaluate all the functions along
γ (τ ) and express them in terms of the proper time τ of the geodesic observer. For example,
to determine the algebraic type of the spacetime at any given event, we only need to consider
the values of the constants �nat

A... and their mutual relations. Moreover, they directly determine
the actual acceleration of test particles in various spatial directions.

7
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4. Algebraically special Kundt spacetimes

In our recent work [9], we analyzed the geometric and algebraic properties of all Kundt
spacetimes for which the optically privileged (non-expanding, non-twisting, shear-free)
congruence is generated by the null vector field k = ∂r that is a multiple WAND.

Specifically, �nat
0i j = 0 immediately confirms the results of [6, 7, 55] that a generic Kundt

geometry represented by the metric (1) is (at least) of algebraic type I (subtype I(b), in fact) and
k = knat is WAND. In [9] we also demonstrated that the general Kundt spacetime of algebraic
type II with respect to the double WAND k in any dimension D can be written in the form (1)
with gup = ep + fp r (at most) linear in r,

ds2 = gpq dxpdxq + 2 (ep + fp r) du dxp − 2 du dr + guu(r, u, x) du2, (22)

where gpq(u, x), ep(u, x), fp(u, x), p = 2, . . . , D − 1, are functions independent of r.
For such algebraically special Kundt geometries (22) with the multiple WAND k = knat

there is �nat
1T j = 0 = �nat

1i jk . Moreover, in [9] we explicitly evaluated all the remaining Weyl
scalars �nat

A... of the boost weights 0,−1,−2. After lengthy calculations, we obtained the
following surprisingly simple expressions, namely

�nat
2S = D − 3

D − 1

[
1

2
guu,rr − 1

4
f p fp + 1

D − 2

( SR

D − 3
+ f

)]
, (23)

�nat
2T (i j) = �̃nat

2T (i j) + 1

D − 2
δi j �

nat
2S , (24)

�̃nat
2T (i j) = mp

i mq
j

D − 2

[(
SRpq − 1

D − 2
gpq

SR

)
+ 1

2
(D − 4)

(
fpq − 1

D − 2
gpq f

)]
, (25)

�nat
2i jkl = �̃nat

2i jkl − 2

(D − 3)(D − 4)
(δik δ jl − δil δ jk)�nat

2S

+ 2

D − 4

(
δik�

nat
2T ( jl) − δil�

nat
2T ( jk) − δ jk�

nat
2T (il) + δ jl�

nat
2T (ik)

)
, (26)

�̃nat
2i jkl = mm

i mp
j m

n
kmq

l
SCmpnq, (27)

�nat
2i j = 2 �nat

2T [i j] = mp
i mq

j Fpq, (28)

�nat
3T j = −mp

j

D − 3

D − 2

[
1

2
(r fp guu,rr + guu,rp − fp,u) + ep

(
1

2
guu,rr − 1

4
f q fq

)

+ 1

4
f qeq fp − 1

2
f qEqp − 1

D − 3
Xp − r

(
1

2
f qFqp + 1

D − 3
Yp

)]
, (29)

�nat
3i jk = �̃nat

3i jk + 1

D − 3

(
δi j �

nat
3T k − δik �nat

3T j

)
, (30)

�̃nat
3i jk = mp

i mm
j mq

k

[(
Xpmq − 2

D − 3
gp[m Xq]

)
+ r

(
Ypmq − 2

D − 3
gp[m Yq]

)]
, (31)

�nat
4i j = mp

i mq
j

(
Wpq − 1

D − 2
gpq W

)
, (32)

8
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in which gpq mp
i mq

j = δi j ,

Xpmq ≡ e[q||m]||p + Fqm ep + Fp[m eq] + ep[m fq] − fp[m eq] + gp[m,u||q], (33)

Ypmq ≡ f[q||m]||p + Fqm fp + Fp[m fq], (34)

Wpq ≡ − 1
2 (guu)||p||q + 1

2 guu f(p||q) + 1
2 guu,(p fq)

− 1
2 guu,r(r f(p||q) + epq) − 1

2 guu,rr(r2 fp fq + 2r f(peq) + epeq)

+ 1
2 [( fp,u − guu,rp)(r fq + eq) + ( fq,u − guu,rq)(r fp + ep)]

+ r2gmnFmpFnq + r
(

f(p,u||q) − 2gmnEm(pFq)n + f mFm(p eq) − emFm(p fq)

)
+ e(p,u||q) − 1

2 gpq,uu + gmnEmpEnq + f mEm(p eq) − emEm(p fq)

+ 1
4 (emem fp fq + f m fmepeq) − 1

2 f mem f(peq), (35)

and their contractions are

Xq ≡ gpmXpmq, Yq ≡ gpm Ypmq, W ≡ gpq Wpq. (36)

Note that Wpq = Wqp, while Xpmq = −Xpqm and Ypmq = −Ypqm, so that Xq and Yq are the only
non-trivial contractions of Xpmq and Ypmq, respectively.

In these expressions we have introduced convenient geometric quantities

f p ≡ gpq fq, (37)

fp||q ≡ fp,q − �m
pq fm, (38)

f p
||p ≡ gpq fp||q, (39)

fpq ≡ f(p||q) + 1
2 fp fq, (40)

f ≡ gpq fpq = f p
||p + 1

2 f p fp, (41)

Fpq ≡ f[p||q] = f[p,q], (42)

f[m||q]||p ≡ f[m,q],p − �n
pm f[n,q] − �n

pq f[m,n], (43)

fp,u||q ≡ ( fp,u)||q = fp,uq − fn,u �n
pq, (44)

f(p,u||q) ≡ f(p,q),u − fn,u �n
pq, (45)

ep ≡ gpqeq, (46)

ep||q ≡ ep,q − �m
pqem, (47)

epq ≡ e(p||q) − 1
2 gpq,u, (48)

Epq ≡ e[p||q] + 1
2 gpq,u, (49)

e[m||q]||p ≡ e[m,q],p − �n
pme[n,q] − �n

pqe[m,n], (50)

ep,u||q ≡ (ep,u)||q = ep,uq − en,u �n
pq, (51)

e(p,u||q) ≡ e(p,q),u − en,u �n
pq, (52)

gp[m,u||q] ≡ gp[m,q],u + 1
2

(
�n

pm gnq,u − �n
pq gnm,u

)
, (53)

(guu)||p||q ≡ guu,pq − guu,n �n
pq, (54)

�guu ≡ gpq(guu)||p||q. (55)

9
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Table 3. The classification scheme of algebraically special Kundt geometries (22) in any dimension
D with k = knat = ∂r being a multiple WAND. For type D subclass, the vector lnat = 1

2 guu ∂r + ∂u

is a double WAND. If all conditions for type D are satisfied and conditions for the subtypes II(a),
II(d), II(c), II(d) are also valid, we obtain the subtypes D(a), D(b), D(c), D(d), respectively. The
subtype D(abcd) is equivalent to type O. In the classic D = 4 case, conditions for II(b), II(c) and
III(b) are always satisfied.

Type Necessary and sufficient conditions

II(a) guu = a(u, x) r2 + b(u, x) r + c(u, x) where a = 1
4 f p fp − 1

D−2

(
SR

D−3 + f
)

II(b) SRpq − 1
D−2 gpq

SR = − 1
2 (D − 4)

(
fpq − 1

D−2 gpq f
)

II(c) SCmpnq = 0
II(d) Fpq = 0

III II(abcd)

III(a) a,p + fp a = 0 where a = 1
4 f p fp − 1

D−2

(
SR

D−3 + f
)

b,p − fp,u = 2
D−2 ep

(
SR

D−3 + f
)

− 1
2 f qeq fp + f qEqp + 2

D−3 Xp

III(b) Xpmq = 1
D−3

(
gpm Xq − gpq Xm

)

N III(ab)

O N with Wpq = 1
D−2 gpq W (special case O’ is Wpq = 0)

D 1
2

(
r fp guu,rr + guu,rp − fp,u

)
+ ep

(
1
2 guu,rr − 1

4 f q fq

)
= r

(
1
2 f qFqp + 1

D−3Yp

)
− 1

4 f qeq fp + 1
2 f qEqp + 1

D−3 Xp

Xpmq = 1
D−3

(
gpm Xq − gpq Xm

)
and Ypmq = 1

D−3

(
gpm Yq − gpq Ym

)
Wpq = 1

D−2 gpq W

The symbol || indicates covariant derivative with respect to the spatial metric gpq in the
transverse (D − 2)-dimensional Riemannian space. The corresponding Riemann and Ricci
tensors are SRmpnq and SRpq, the Ricci scalar is SR and the Weyl tensor reads SCmpnq. All the
quantities (37)–(53) are independent of the coordinate r.

The explicit Weyl scalars (23)–(32) in the natural frame (18) enabled us in [9] to determine,
without assuming any field equations, the classification scheme of all algebraic types and
subtypes with respect to the multiple WAND k = ∂r. A summary of such Kundt geometries
(22) in any dimension D is presented in table 3.

5. Geodesic deviation in Kundt spacetimes with a multiple WAND k

In the remaining parts of this paper we will discuss an important family of algebraically special
Kundt spacetimes (22). As described in the previous section, Weyl scalars of the two highest
boost weights vanish identically, �nat

0i j = 0, �nat
1T i = 0 = �nat

1i jk . From (21) we then immediately
obtain

�0i j = 0, �1T i = 0, �1i jk = 0. (56)

The geodesic deviation equations (2), (3) (omitting the frame components of Tab encoding the
direct influence of matter, for example (12) or (14)) for the case of the Kundt class of (vacuum)
spacetimes (22) thus reduce to

10
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Z̈(1) = 2�

(D − 2)(D − 1)
Z(1) + �2S Z(1) − 1√

2
�3T j Z( j), (57)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − �2T (i j) Z( j) − 1√

2
�3T i Z(1) − 1

2
�4i j Z( j). (58)

The corresponding Weyl scalars in the interpretation null frame are given by expressions (21)
with (20), which now simplify considerably due to (56):

�2S = �nat
2S , �2T i j = �nat

2T i j ,

�3T i =
√

2 u̇ �nat
3T i +

√
2 ẋp gpq

((
�nat

2i j − �nat
2T ji

)
mjq − �nat

2S mq
i

)
,

�4i j = 2 u̇2�nat
4i j + 4 u̇ ẋp gpq

(
�nat

3T (i m
q
j) − �nat

3(i j)k mkq
)

+2 ẋpẋq
(

gpq �nat
2T (i j) − gpm gqn �nat

2S mm
i mn

j + gpm gqn �nat
2ik jl mkmmln

−2 gpm gqn
(
�nat

2k(i + �nat
2T k(i

)
mn

j)m
km

)
, (59)

where mjq ≡ δi jm q
i and both the frame indices i, j, k, l and the coordinate indices p, q, m, n

take the ranges 2, 3, . . . , D − 1. The coefficients �nat
A... are explicitly given by expressions

(23)–(32). Notice that in (59), not only the ‘electric part’ but also the ‘magnetic part’ of
the Weyl tensor with respect to unat occur due to the relative velocity ẋp between u and
unat = 1√

2
(knat + lnat). For completeness, the remaining ‘magnetic’ Weyl tensor components

in the interpretation frame that do not enter directly the equations of geodesic deviation (57),
(58) are

�2i j = �nat
2i j , �2i jkl = �nat

2i jkl ,

�3i jk =
√

2 u̇ �nat
3i jk +

√
2 ẋp gpq

(
�nat

2li jk mlq − �nat
2 jk mq

i + 2 m q
[ j�

nat
2T k]i

)
. (60)

The specific relative motion of free test particles in any algebraically special Kundt
spacetime (22) with a multiple WAND k thus consists of isotropic influence of the cosmological
constant �, Newtonian-like tidal deformations represented by �2S, �2T (i j) , longitudinal
accelerations associated with the direction +e(1) given by �3T j , and by transverse gravitational
waves propagating along +e(1) encoded in the symmetric traceless matrix �4i j . These
components were described separately in (8)–(11). The invariant amplitudes (59) combine
the curvature of the Kundt spacetime with the kinematics of the specific geodesic motion.
In contrast to longitudinal and transverse effects, the Newtonian-like deformations caused by
�2S and �2T (i j) are independent of the observer’s velocity components ẋp and u̇.

We will now describe systematically the canonical structure of the relative motion of free
test particles in all possible algebraic types and subtypes of the Kundt family summarized in
table 3.

5.1. Type O Kundt spacetimes

For type O Kundt spacetimes, the Weyl tensor vanishes identically, so that all the Weyl scalars
�nat

A... given by (23)–(32) are zero. In view of (59), the geodesic deviation equations (57), (58)
for the type O vacuum Kundt spacetimes reduce to

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1), Z̈(i) = 2�

(D − 2)(D − 1)
Z(i). (61)

There is thus no distinction between the (generically privileged) longitudinal spatial direction
e(1) and the transverse spatial directions e(i), i = 2, . . . , D − 1. The relative motion is isotropic
and fully determined by the cosmological constant �, see (8). This is in full agreement with

11
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the well-known fact [3, 4] that the only type O vacuum spaces are just Minkowski space, de
Sitter space or anti-de Sitter space.

For non-vacuum type O (conformally flat) Kundt spacetimes, it is necessary to add the
terms representing direct influence of matter. For example, in the case of pure radiation (‘null
dust’) aligned along k, the components (12) have to be superposed, and the equations of
geodesic deviation become

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1), Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − 4π ρ

D − 2
Z(i). (62)

Since ρ > 0, there is now an additional radial contraction in the transverse subspace.
For aligned electromagnetic field, the additional matter terms are given by (14).

5.2. Type N Kundt spacetimes

As shown in [9], for type N Kundt spacetimes (22) (with quadruple WAND k = ∂r) the only
non-trivial Weyl scalars are �nat

4i j . Considering (59), the geodesic deviation equations (57), (58)
for vacuum type N spacetimes thus take the form

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1), (63)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − u̇2 �nat

4i j Z( j), (64)

where, due to (32),

�nat
4i j = mp

i mq
j

(
Wpq − 1

D − 2
gpq W

)
(65)

is a symmetric and traceless matrix fully determined by Wpq. The symmetric matrix Wpq

introduced in (35) simplifies, using all relevant conditions in table 3 (cf [9]), to

Wpq ≡ r
[

1
2 a gpq,u + U(p||q) + U(p fq)

]
− 1

4 [(c,p −c fp)||q + (c,q −c fq)||p] − 1
2 b epq + (

a − 1
4 f m fm

)
epeq + Z(pq), (66)

in which

Up ≡ 1
2 fp,u − 1

4 f q fq ep + 1
4 f qeq fp − 1

2 f qEqp − 1
D−3 Xp, (67)

Zpq ≡ 1
4 emem fp fq + ep,u||q − 1

2 gpq,uu − emEmp fq + gmnEmpEnq − 2
D−3 Xp eq, (68)

and its trace is W = gpqWpq . The matrix �nat
4i j represents the amplitudes of Kundt gravitational

waves in any dimension D. In general, their effect is superposed on the isotropic influence of
the cosmological constant �, as given by (61). In the case D = 4 this has been analyzed and
described in our previous work [41].

Since the set of (D − 2) × (D − 2) scalars �nat
4i j forms a symmetric and traceless matrix,

it has in general N ≡ 1
2 D(D − 3) independent components corresponding to the polarization

modes of the gravitational wave. The remaining freedom in the choice of the transverse
vectors mi of the interpretation frame (7) is given by the spatial rotations m′

i = 	i
j m j, where

	i
j 	k

l δ jl = δik, which leave the null frame vectors k, l unchanged. These rotations belong
to the SO(D − 2) group with Nrot ≡ 1

2 (D − 2)(D − 3) independent generators. Therefore, the
number of physical degrees of freedom is

N − Nrot = D − 3. (69)

This is exactly the number of independent eigenvalues of the matrix �nat
4i j which fully

characterize the geodesic deviation deformation of a set of test particles. The sum of all

12
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the eigenvalues must vanish (the traceless property), so that there is at least one positive and
one negative eigenvalue. The number of distinct options of dividing the remaining eigenvalues
into three groups with positive, null and negative signs is

(D−2
2

)
. Concerning the signs of the

eigenvalues, we can thus distinguish 1
2 (D − 2)(D − 3) geometrically and physically distinct

cases.
Diagonalizing −�nat

4i j and denoting its eigenvalues as A2,A3, . . . , we obtain

− �nat
4i j = diag(A2,A3, . . . ,AD−1) where

D−1∑
i=2

Ai = 0. (70)

In view of (64), the relative motion of (initially static) test particles is such that they recede
in spatial directions with positive eigenvalues Ai > 0 , while they converge with negative
eigenvalues Ai < 0 . In the directions where Ai = 0 the particles stay fixed.

In the classic D = 4 case, there is just one possibility, namely A3 = −A2, and the
diagonalized matrix of the gravitational wave amplitudes takes the form

− �nat
4i j =

(
A2 0
0 −A2

)
. (71)

In the transverse two-dimensional space perpendicular to the privileged propagation direction
e(1), we observe the standard gravitational wave effect, in which the set of test particles expands
in the direction e(2) when A2 > 0 and simultaneously contracts by the same amount in the
perpendicular direction e(3) (or vice versa if A2 < 0), unless one has the trivial case A2 = 0.

In higher dimensions, many more possibilities and new observable effects arise. For
example, in the first non-trivial case D = 5, the corresponding transverse space spanned by
(e(2), e(3), e(4)) is three-dimensional. Concerning the deformation of a three-dimensional test
sphere in this space, there are three physically distinct situations determined by A2,A3,A4,
namely:

• two eigenvalues are positive and one is negative, see figure 2(a),
• one eigenvalue is positive and two are negative, see figure 3(a),
• one eigenvalue is positive, one is zero and one is negative, see figure 4(a).

From the point of view of a gravitational wave detector located in our (1+3)-dimensional
‘real’ universe locally spanned by the vectors (u, e(1), e(2), e(3)) where e(1) is the propagation
direction, (e(2), e(3)) defines the plane of the detector, while e(4) is the extra (directly
unobservable) dimension, we would see the following ‘peculiar’ effects in which the usual
traceless property in (e(2), e(3)) is violated:

• both A2,A3 �= 0 (either positive or negative), A4 = −(A2 + A3) due to (70):

− �nat
4i j =

⎛
⎝A2 0 0

0 A3 0
0 0 −(A2 + A3)

⎞
⎠ . (72)

In the directly observable first sector of dimension 2 × 2, the eigenvalues A2 and A3 can
have arbitrary values now. Thus, the ring of test particles in these two directions (a section
through the 3-sphere in the transverse space) may

• recede in both directions e(2), e(3) (A2,A3 > 0 ⇒ A4 < 0) as in figure 2(b),
• converge in both directions e(2), e(3) (A2,A3 < 0 ⇒ A4 > 0) as in figure 3(d),
• recede in one direction and converge in the other, but not by the same amount (A2, A3

have opposite signs, |A2| �= |A3| ⇒ A4 �= 0) as in figures 2(c), (d) or figures 3(b), (c),

13
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(a) (b)

(c) (d)

Figure 2. Deformation of a sphere of test particles in the case when two eigenvalues of −�nat
4i j are

positive and one is negative (D = 5, the wave propagates in the direction e(1), and the transverse
3-space shown is spanned by e(2), e(3), e(4)). Plot (a) is a global view, (b), (c), (d) are views from
the top, front, right, respectively.

(a) (b)

(c) (d)

Figure 3. Deformation of a sphere of test particles in the case when one eigenvalue of −�nat
4i j is

positive and two are negative.

• behave as in the standard D = 4 general relativity (A3 = −A2 ⇒ A4 = 0) as in
figure 4(c), that is

− �nat
4i j =

⎛
⎝A2 0 0

0 −A2 0
0 0 0

⎞
⎠ . (73)
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(a) (b)

(c) (d)

Figure 4. Deformation of a sphere of test particles in the case when one eigenvalue of −�nat
4i j is

positive, one is zero and one is negative.

• A3 = 0 or A2 = 0, so that

− �nat
4i j =

⎛
⎝A2 0 0

0 0 0
0 0 −A2

⎞
⎠ or − �nat

4i j =
⎛
⎝0 0 0

0 A3 0
0 0 −A3

⎞
⎠ . (74)

We can distinguish two subcases of this anomalous behavior, namely

• A2 > 0 or A3 > 0 as in figure 4(b),
• A2 < 0 or A3 < 0 as in figure 4(d).

Finally, in principle, it may also happen that the higher-dimensional gravitational wave
would propagate in the extra spatial dimension e(4), say. Due to the formal swap e(1) ↔ e(4),
this would imply A4 = 0 and A1 �= 0. In our real (1+3)-dimensional universe we would
thus observe the complete three-dimensional transverse space with peculiar ‘longitudinal’
deformation of a sphere of test particles.

5.3. Type III Kundt spacetimes

For type III Kundt spacetimes (22) (which have a triple WAND k = ∂r), all the Weyl tensor
components of the boost weight 0 vanish, �nat

2S = �nat
2T i j = �nat

2i j = �nat
2i jkl = 0. The equations of

geodesic deviation (57), (58) thus become

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1) − u̇ �nat

3T j Z( j), (75)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − u̇ �nat

3T i Z(1) − u̇2 �nat
4i j Z( j)

−2 u̇ ẋpgpq
(
�nat

3T (i m
q
j) − �nat

3(i j)k mkq
)
Z( j). (76)
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Using the conditions summarized in the first four rows of table 3, expressions (29)–(32) for
the non-trivial Weyl scalars �nat

3T j , �nat
3i jk , �nat

4i j reduce to

�nat
3T j = −mp

j

D − 3

D − 2

[
(a,p + fp a) r

+1

2

(
b,p − fp,u − 2 ep

D − 2

( SR

D − 3
+ f

)
+ 1

2
f qeq fp − f qEqp − 2

D − 3
Xp

)]
,

�nat
3i jk = �̃nat

3i jk + 1

D − 3

(
δi j �

nat
3T k − δik �nat

3T j

)
,

�̃nat
3i jk = mp

i mm
j mq

k

(
Xpmq − 1

D − 3
(gpm Xq − gpq Xm)

)
,

�nat
4i j = mp

i mq
j

(
Wpq − 1

D − 2
gpq W

)
, (77)

where a = 1
4 f p fp − 1

D−2

( SR
D−3 + f

)
, Xq ≡ gpmXpmq , W ≡ gpq Wpq and

Xpmq = e[q||m]||p + ep[m fq] − fp[m eq] + gp[m,u||q],

Wpq = −r2
[

1
2 a||p||q + 1

2 a f(p||q) + 3
2 a,(p fq) + a fp fq

]
− r

[
1
2 b||p||q + 1

2 b,(p fq) + aepq + 2a f(peq) + 2a,(peq) − f(p fq),u − f(p,u||q)

]
− 1

2 c||p||q + 1
2 c f(p||q) + 1

2 c,(p fq) − 1
2 bepq − b,(peq) − aepeq

+ e(p fq),u + e(p,u||q) − 1
2 gpq,uu + gmnEmpEnq + f mEm(p eq) − emEm(p fq)

+ 1
4 (emem fp fq + f m fmepeq) − 1

2 f mem f(peq). (78)

In addition to the isotropic influence of the cosmological constant � and the transverse effects
of gravitational waves described by �nat

4i j (which are typical for type O and N spacetimes,
respectively), type III Kundt spacetimes feature a longitudinal effect proportional to the scalars
�nat

3T j , see (75). Moreover, from (76) we conclude that there is also an additional kinematic
effect for non-static observers — those with a non-vanishing velocity in the transverse space,
ẋp �= 0. Measuring relative motions between geodesic observers with non-trivial spatial
velocities we can thus determine other components of the curvature tensor, namely the
symmetric part of �nat

3i jk .
If, and only if, �nat

4i j = 0, the geometry is of algebraic type IIIi with respect to the triple
WAND knat and WAND lnat.

5.4. Subtype III(a)

For the subtype III(a) of Kundt spacetimes, there is �nat
3T j = 0, see table 3 and [9]. The equations

of geodesic deviation (75), (76) thus simplify to

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1), (79)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − u̇2 �nat

4i j Z( j) + 2 u̇ ẋpgpq�̃
nat
3(i j)k mkq Z( j). (80)

Apart from the cosmological background �-term, there are only transverse effects given by
the scalars �nat

4i j and �̃nat
3(i j)k . The latter contribution is purely kinematical, i.e., it is absent for

ẋp = 0. For such static observers, the geodesic deviation is the same as for type N spacetimes,
cf (63), (64). The specific contributions of �̃nat

3(i j)k can be identified by considering non-static
observers with mutual velocities ẋp �= 0.
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5.5. Subtype III(b)

For the subtype III(b) of Kundt spacetimes, there is �̃nat
3i jk = 0, see table 3 and [9]. In such a

case, the equations (75), (76) become

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1) − u̇ �nat

3T j Z( j), (81)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − u̇ �nat

3T i Z(1) − u̇2 �nat
4i j Z( j)

−2
D − 2

D − 3
u̇ ẋpgpq

(
�nat

3T (i m
q
j) − δi j

D − 2
�nat

3T k mkq

)
Z( j). (82)

The geodesic deviation is thus fully determined by the scalars �, �nat
4i j and �nat

3T j via the
corresponding isotropic, transverse and longitudinal effects, respectively. For observers with
non-vanishing spatial velocities ẋp �= 0, transverse motion is modified by the presence of �nat

3T j .
This additional effect is traceless since δi j �nat

3T (i m
q
j) = �nat

3T i miq.

5.6. Type D Kundt spacetimes

For type D Kundt spacetimes (22) with a double WAND knat = k = ∂r and a double WAND
lnat = 1

2 guu ∂r + ∂u, all the Weyl scalars �nat
A... vanish, except for the boost weight 0. Therefore,

the equations of geodesic deviation are (57), (58) with

�2S = �nat
2S , �2T (i j) = �nat

2T (i j) ,

�3T i =
√

2 ẋp gpq

((
�nat

2i j − �nat
2T ji

)
mjq − �nat

2S mq
i

)
,

�4i j = 2 ẋpẋq
(

gpq �nat
2T (i j) − gpm gqn �nat

2S mm
i mn

j + gpm gqn �nat
2ik jl mkmmln

− 2 gpm gqn
(
�nat

2k(i + �nat
2T k(i

)
mn

j)m
km

)
, (83)

where �nat
2S , �nat

2T i j , �nat
2i j , �nat

2i jkl are explicitly given by expressions (23)–(28).
For static observers that do not move in the transverse spatial directions (ẋp = 0), we have

�3T i = 0 = �4i j , so that the equations simplify considerably to

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1) + �nat

2S Z(1), (84)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − �nat

2T (i j) Z( j). (85)

We can now explicitly discuss specific particle motion in various algebraic subtypes of the
Kundt spacetimes of type D.

5.7. Subtype D(a)

The subtype D(a) is defined by the condition

�nat
2S = 0. (86)

This is equivalent to guu = a r2 + b r + c where a = 1
4 f p fp − 1

D−2

( SR
D−3 + f

)
, cf (23) and the

first row in table 3. The geodesic deviation equations (84), (85) reduce to

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1), (87)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − �nat

2T (i j) Z( j), (88)
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(a) (b)

Figure 5. Deformation of a sphere of static test particles in the subtype D(b) when D = 5 for the
cases (a) �nat

2S < 0, (b) �nat
2S > 0. Unlike in figures 2–4, here we show e(1), e(2), e(3), where e(1) is

the longitudinal direction (oriented horizontally) while e(2), e(3) (plotted perpendicularly) are two
directions of the transverse 3-space (the third equivalent transverse direction e(4) is suppressed).

where, in view of (24), (86), we have �nat
2T (i j) = �̃nat

2T (i j) which is explicitly expressed by
(25). There is no longitudinal Newtonian motion, see (87), and the transverse Newtonian
deformations (88) are traceless since δi j �nat

2T (i j) = �nat
2T i

i = �nat
2S = 0, see (6). Interestingly, in

higher dimensions, the local behavior of test particles in subtype D(a) spacetimes, as given by
expressions (87), (88), is very similar to the effect caused by type N gravitational waves (63),
(64). Due to this close formal similarity, we can use figures 2–4 to illustrate particle motion in
the D = 5 case. Such a situation does not appear in the D = 4 case since �nat

2T (i j) = �̃nat
2T (i j) = 0,

as we can see from (25).
For geodesics with spatial velocities ẋp �= 0, there are additional terms �3T i , �4i j given

by (57), (58), (83). The scalars �nat
2i j , �nat

2i jkl take the form (28) and (26), (27).

5.8. Subtype D(b)

The subtype D(b) occurs if, and only if, �̃nat
2T (i j) = 0. From (24) it thus follows that

�nat
2T (i j) = 1

D − 2
δi j �

nat
2S . (89)

Due to (25), this is equivalent to SRpq − 1
D−2 gpq

SR = − 1
2 (D − 4)

(
fpq − 1

D−2 gpq f
)
, see [9]

and the second row in table 3. For such Kundt geometries, the equations of geodesic deviation
(84), (85) take the form

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1) + �nat

2S Z(1), (90)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − δi j

D − 2
�nat

2S Z( j). (91)

We can see that the Newtonian part of the gravitational field is now fully determined by
a single scalar �nat

2S given by (23). Moreover, motion in the transverse spatial directions
i, j = 2, . . . , D − 1 is isotropic (its sum is fully offset to zero by the longitudinal motion,
δi j �nat

2T (i j) = �nat
2S ). A sphere of test particles, initially at rest, is thus deformed into a rotational

ellipsoid with the axis e(1), see figure 5. Interestingly, this type of behavior enables us to
determine experimentally the dimension D of the spacetime. Subtracting the isotropic motion
given by �, it is possible to measure the relative acceleration in the longitudinal direction
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e(1) and compare it with the acceleration in any transverse direction e(2), say, obtaining
(Z̈(1)/Z(1))/(−Z̈(2)/Z(2)) = D − 2.

For geodesics with ẋp �= 0, the additional terms �3T i and �4i j given by (57), (58), (83)
have to be included.

5.9. Subtype D(ab)

Any Kundt spacetime that is both of the algebraic subtype D(a) and subtype D(b) must
necessarily satisfy �nat

2S = 0 = �nat
2T (i j) , see (86) and (89). Equations of geodesic deviation (57),

(58) then reduce to

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1) − 1√

2
�3T j Z( j), (92)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) − 1√

2
�3T i Z(1) − 1

2
�4i j Z( j), (93)

where (83) becomes

�3T i = 3
2

√
2 mp

i Fpq ẋq, �4i j = 2 mm
i mn

j (
SCmpnq − 3Fp(m gn)q)ẋ

pẋq. (94)

Interestingly, for static observers (ẋq = 0), we have �3T i = 0 = �4i j and the equations contain
only the cosmological constant �-term. The relative motion of such test particles is the same
as in the type O spacetimes (61)—it is fully isotropic as in the background Minkowski, de
Sitter or anti-de Sitter spaces.

Recall also that in the classic D = 4 case, the subtypes D(ab) and D(a) are identical
because the condition for the subtype D(b) is always satisfied [9].

5.10. Subtype D(c)

The algebraic subtype D(c) is defined by the condition �̃nat
2ik jl = 0 which, using (27), is

equivalent to SCmpnq = 0, cf the third row in table 3. Since �nat
2S and �nat

2T (i j) are generally
non-vanishing, this subtype of the Kundt geometries cannot be distinguished by measuring
the deviation (84), (85) of static geodesic observers. In principle, it can be detected in the
relative motion of non-static particles with ẋp �= 0 as the �̃nat

2ik jl component in the amplitude
�4i j determined by (83) is absent.

Moreover, as discussed in [9], the condition for subtype D(c) is identically satisfied in the
cases D = 4 and D = 5.

5.11. Subtype D(d)

The subtype D(d) occurs if, and only if, �nat
2i j = 0. In view of (28), this is equivalent to Fpq = 0

(see table 3). As in the subcase D(c), this is not directly observable in the geodesic deviation
(84), (85) of static observers, but it is implied by the absence of the �nat

2i j component entering
the scalars �3T i , �4i j via (83). It is detectable by observers with ẋp �= 0 for which the equations
of geodesic deviation take the form (57), (58).

5.12. Type II Kundt spacetimes

The general form of the geodesic deviation equations for any Kundt spacetime (22) of algebraic
type II (or more special) with (at least) a double WAND k = knat = ∂r is
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Z̈(1) = 2�

(D − 2)(D − 1)
Z(1) + �nat

2S Z(1)

−
[

u̇�nat
3T j + ẋpgpq

(
3

2
�nat

2 ji miq − �̃nat
2T (i j)miq − D − 1

D − 2
�nat

2S mq
j

)]
Z( j), (95)

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) −

(
�̃nat

2T (i j) + δi j

D − 2
�nat

2S

)
Z( j) − u̇2�nat

4i j Z( j)

−
[

u̇�nat
3T i + ẋpgpq

(
3

2
�nat

2i j m jq − �̃nat
2T (i j)mjq − D − 1

D − 2
�nat

2S mq
i

)]
Z(1)

−2u̇ẋpgpq

(
D − 2

D − 3
�nat

3T (i m
q
j) − δi j

D − 3
�nat

3T k mkq − �̃nat
3(i j)k mkq

)
Z( j)

−ẋmẋn

[
gmpgnqmkp

(
�̃nat

2ik jl mlq − 3�nat
2k(i m

q
j)

) + D − 2

D − 4
gmn�̃

nat
2T (i j)

+gmpgnq

D − 4
mkp

(
2δi j�̃

nat
2T (kl)mlq − (D − 2)

(
�̃nat

2T (ik)m
q
j + �̃nat

2T ( jk)m
q
i

))

−D − 1

D − 3
�nat

2S

(
gmpgnqmp

i mq
j − δi j

D − 2
gmn

)]
Z( j). (96)

The behavior of test particles in the subtypes II(a), II(b), II(c) and II(d) is easily obtained by
setting �nat

2S = 0, �̃nat
2T (i j) = 0, �̃nat

2ik jl = 0 and �nat
2i j = 0, respectively.

When all these Weyl scalars of the boost weight 0 vanish, we obtain the type III Kundt
geometries with a triple WAND k and recover the results of sections 5.3–5.5. If, in addition,
�nat

3T j = 0 = �̃nat
3i jk , the spacetimes are of type N with a quadruple WAND k as discussed in 5.2,

and with �nat
4i j = 0 they become type O, see 5.1. Alternatively, if only �nat

4i j = 0, given by (32),
(35), (36), the spacetime is of algebraic type IIi with respect to a double WAND knat = ∂r and
WAND lnat = 1

2 guu ∂r + ∂u. When only the scalars �nat
3T j , �̃

nat
3i jk are non-trivial, the geometry is

of algebraic type IIIi with respect to a triple WAND knat and WAND lnat.
Type D Kundt geometries of section 5.6 arise by setting �nat

3T j = 0 = �̃nat
3i jk and �nat

4i j = 0,
in which case the expressions (95), (96) correspond to (83). The subtypes D(a), D(b), D(c) and
D(d) are obtained when �nat

2S = 0, �̃nat
2T (i j) = 0, �̃nat

2ik jl = 0 and �nat
2i j = 0, respectively, reducing

the results to those discussed in sections 5.7–5.11.

6. Example: type II and N gravitational waves on D and O backgrounds

As an interesting illustration, we can consider a line element of the form

ds2 = gpq dxpdxq − 2 du dr + (a r2 + c) du2, (97)

where gpq = gpq(x), a = const. and c = c(u, x).
The possible algebraic structure of such Kundt geometries is summarized in table 4.
The relative motion of free test particles in these spacetimes is described by equations (57),

(58) where the scalars (59) take the form

�2S = D − 3

D − 1

(
a +

SR

(D − 2)(D − 3)

)
,

�2T (i j) = mp
i mq

j

D − 2

(
SRpq − gpq

D − 2
SR

)
+ δi j

D − 2

D − 3

D − 1

(
a +

SR

(D − 2)(D − 3)

)
,

�3T j = −
√

2

D − 2
ẋpmq

j

(S
Rpq + (D − 3) a gpq

)
,

20



Class. Quantum Grav. 30 (2013) 205016 J Podolský and R Švarc

Table 4. The structure of all Kundt geometries (97) with respect to a multiple WAND knat = ∂r

and (possibly double) WAND lnat = 1
2 (a r2 + c)∂r + ∂u.

Type Necessary and sufficient conditions

II(a) a = − 1
(D−2)(D−3)

SR
II(b) SRpq = 1

D−2 gpq
SR

II(c) SCmpnq = 0
II(d) Always

N II(abcd)

O N with c||p||q = 1
D−2 gpq �c

D c||p||q = 1
D−2 gpq �c

D(a) D with II(a)
D(b) D with II(b)
D(c) D with II(c)
D(d) D with II(d)

�4i j = −u̇2 mp
i mq

j

(
c||p||q − gpq

D − 2
�c

)

+2 ẋpẋqmm
i mn

j

{
SCmpnq +

(
a +

SR

(D − 2)(D − 3)

)(
gpq gmn

D − 2
− gpmgqn

)

+ 1

D − 4

[
gpq

(
SRmn − gmn

D − 2
SR

)
+ 2gmn

D − 2

(
SRpq − gpq

D − 2
SR

)

−gpm

(
SRqn − gqn

D − 2
SR

)
− gqn

(
SRpm − gpm

D − 2
SR

)]}
. (98)

Notice that for the subtype II(ab)≡II(abd), this simplifies considerably to

Z̈(1) = 2�

(D − 2)(D − 1)
Z(1),

Z̈(i) = 2�

(D − 2)(D − 1)
Z(i) + 1

2
u̇2 mp

i mq
j

(
c||p||q − gpq

D − 2
�c

)
Z( j) − ẋpẋq mm

i mn
j

SCmpnq Z( j).

(99)

When, in addition, SCmpnq = 0, this becomes type II(abcd)≡N.
If, and only if, c||p||q = 1

D−2 gpq �c, the spacetimes are of type D or type O. When c = 0,
these belong to the important family of direct-product spacetimes, see section 11 of [9], for
which the first term of the metric (97) is a (D − 2)-dimensional Riemannian space with metric
gpq(x), while the second part is a two-dimensional Lorentzian spacetime of constant Gaussian
curvature a. In general, gpq(x) need not be of constant curvature, but for the subtype D(a),
a is uniquely related to the constant Ricci scalar SR of the transverse (D − 2)-dimensional
space. Such metrics represent natural higher-dimensional generalizations of the (anti-)Nariai,
Plebański–Hacyan, Bertotti–Robinson and Minkowski spacetimes of types D or O, see [4].

For a non-trivial c, the spacetimes (97) are of type II or of type N. These can be naturally
interpreted as the class of exact Kundt gravitational waves with the profile c(u, x) propagating
in various direct-product background universes of algebraic types D or O mentioned above
(and listed in table 6 of [9]; see also [23, 24, 43]).

The class of metrics (97) clearly contains pp-waves (without gyratonic sources)
propagating in flat space when a = 0. These are of type N if, and only if, gpq = δpq (in
which case they belong to the class of VSI spacetimes, see [9]).
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Finally, let us observe that in the classic D = 4 case, the scalars (99) read

�2S = 1

3

(
a + 1

2
SR

)
, �2T (i j) = 1

6
δi j

(
a + 1

2
SR

)
,

�3T j = −
√

2

2
ẋpmq

j (
SRpq + a gpq),

�4i j = − u̇2 mp
i mq

j

(
c||p||q − 1

2
gpq�c

)

+ ẋpẋqmm
i mn

j

(
a + 1

2
SR

)
(gpq gmn − 2gpmgqn). (100)

The corresponding Kundt geometries (97) are thus generally of type II≡II(bcd). They are
of type N≡II(abcd) if, and only if, a = − 1

2
SR with the only non-vanishing Weyl scalar

�4i j = −u̇2 mp
i mq

j (c||p||q − 1
2 gpq�c). In fact, this is the subfamily α = β, ε = 1,C = 0 of

spacetimes discussed in [43] and in sections 18.6–18.7 of [4] (with the identification
α = β = 1

4
SR, D = a and H = −c) which was interpreted as exact Kundt gravitational waves

of type II propagating on type D backgrounds, and type N waves propagating on conformally
flat type O backgrounds, respectively. These background universes with the geometry of a
direct product of two constant curvature 2-spaces involve the standard Minkowski, Bertotti–
Robinson, (anti-)Nariai and Plebański–Hacyan spacetimes, cf [23, 56, 57].

7. Conclusions

We have systematically analyzed the general class of Kundt geometries in an arbitrary
dimension D � 4 using the geodesic deviation in Einstein’s theory. We have explicitly
determined the specific motion of free test particles for all possible algebraically special
spacetimes, including the corresponding subtypes, and demonstrated that the invariant
quantities determining these (sub)types are measurable by detectors via characteristic relative
accelerations. For example, the dimension of the spacetime can be measured directly by
Newtonian-type tidal deformations of the algebraic subtype D(b). The purely transverse type
N effects represent exact gravitational waves with D(D − 3)/2 polarizations, which exhibit
new and peculiar observable effects in higher dimensions D > 4. We have given an example
of such geometric and physical interpretation of the Kundt family by analyzing the class of
type N or II gravitational waves propagating on backgrounds of type O or D.
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References

[1] Kundt W 1961 The plane-fronted gravitational waves Z. Phys. 163 77–86
[2] Kundt W 1962 Exact solutions of the field equations: twist-free pure radiation fields Proc. R. Soc. A 270 328–34
[3] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein’s Field

Equations (Cambridge: Cambridge University Press)
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