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Abstract
Starting from the gravitational potential of a Newtonian spheroidal shell we
discuss electrically charged rotating prolate spheroidal shells in the Maxwell
theory. In particular we consider two confocal charged shells which rotate
oppositely in such a way that there is no magnetic field outside the outer shell.
In the Einstein theory we solve the Ernst equations in the region where the
long prolate spheroids are almost cylindrical; in equatorial regions the exact
Lewis ‘rotating cylindrical’ solution is so derived by a limiting procedure from
a spatially bound system. In the second part we analyze two cylindrical shells
rotating in opposite directions in such a way that the static Levi-Civita metric
is produced outside and no angular momentum flux escapes to infinity. The
rotation of the local inertial frames in flat space inside the inner cylinder is
thus exhibited without any approximation or interpretational difficulties within
this model. A test particle within the inner cylinder kept at rest with respect
to axes that do not rotate as seen from infinity experiences a centrifugal force.
Although in suitably chosen axes the spacetime there is exactly Minkowskian
out to the inner cylinder, nevertheless, those inertial frame axes rotate with
respect to infinity, so relative to the inertial frame inside the inner cylinder a
test particle is traversing a circular orbit.

PACS number: 04.20.−q

1. Introduction

We aim to give a neat demonstration of centrifugal force on a static body which is induced by
the rotation of a heavy shell that surrounds it. The shell causes the Minkowski space inside it
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to rotate, so, relative to that space, the static body moves backward on a circle and experiences
centrifugal force.

Pfister and Brown [9] have earlier studied this problem up to second order in � in a
distorted sphere; however, the problem can be more neatly solved to all orders using rotating
cylinders. This was done by Embacher [3] generalizing work by Frehland [4]. Earlier papers
on rotating cylindrical shells were by Papapetrou et al [10] and Jordan and McCrea [7].

The crucial property of cylinders is that centrifugal force-induced tensions retain the
symmetry (unlike those in a sphere).

However the use of infinite rotating cylinders implies that space is not asymptotically flat
and since the spacetime near the axis is Minkowskian there is some ambiguity in deciding which
axes should be considered as non-rotating. We remove these difficulties by showing that the
cylindrical equations are recovered as an approximation to the spaces inside and in between two
tall prolate spheroidal shells which have no net angular momentum as they rotate in opposite
senses about their axis. Outside both shells the space is static and tends asymptotically to
flat Schwarzschild space at infinity. We demonstrate the strong analogy between rotating
cylindrical shells in gravitation theory and solenoids in Maxwell’s electrodynamics. In the
latter the magnetic flux that runs through a solenoid of finite length returns as a magnetic field
outside it. As the solenoid is made longer and longer the flux returns over a wider and wider
area, so an infinite solenoid has an external field strength of infinitesimal magnitude which
nevertheless carries finite flux through the infinite external area of any plane normal to the
axis. This is the reason why there is no gravomagnetic field outside a rotating infinite cylinder.
To ensure that all rotational effects are confined we treat two cylinders rotating in opposite
directions so as to give no net angular momentum and no gravomagnetic flux outside the outer
one.

2. Gravomagnetism and electromagnetism

There is a strong analogy between stationary electromagnetic fields and solutions of stationary
metrics in general relativity. Consider the stationary metric

ds2 = ξ 2( dt + Ai dxi)2 − γij dxi dxj i, j = 1, 2, 3; ξ = e−ψ. (2.1)

In the Newtonian limit ψ is small and A = 0. Even in strong field general relativity Landau
and Lifshitz’s equation may be rewritten, using 3-space metric’s (∇×A)j = ηjkl∂kAl where
ηjkl is the alternating symbol divided by

√
det(γij ), in the form

∇ ×(ξ 3B )= 2κJ , B = (∇ ×A), κ = 8πG

c4
. (2.2)

Here the divergenceless current

J i = ξ
(
T i

0 − 1
2δi

0T
) = 1

κ
ξRi

0. (2.3)

The above equations display the analogy to Maxwell’s with magnetic permeability ξ−3. We
therefore quote results of analogous electromagnetic problems to guide our understanding of
solutions of Einstein’s equations.

In Newtonian gravitation a homoeoidal shell of mass M on a prolate spheroid of semi-axes
a > b has the potential

ψ = mln

(√
1 +

a2

r̃2
+

a

r̃

)
= ln

(
r + a

r − a

)m/2

, r̃ � b,

ψ = GM

a
ln

(√
1 +

a2

b2
+

a

b

)
= const, r̃ � b. (2.4)
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The last equation is Newton’s theorem; in (2.4),

m = GM

a
, R2 = r̃2 sin2 θ̃ , r̃2 = r2 − a2, and

dR2 + dz2 + R2 dϕ2 = r2 − a2 cos2 θ̃

r2 − a2
dr2 + R2 dϕ2 + (r2 − a2 cos2 θ̃ ) dθ̃2. (2.5)

Both r̃ and r are constant on prolate spheroids confocal with the shell. θ̃ is constant on
confocal hyperboloids and becomes the spherical polar θ at infinity. In the equatorial region
r̃ = R + O(z2/a2). When b < r̃ � a the potential becomes that of a line of mass per unit
length M/(2a) = m/(2G), but at large r̃ , ψ → GM/r̃ . The surface density of mass on the
prolate spheroid is

σ = M

4πab

√
b2

a2 + sin2 θ̃

. (2.6)

A static charged prolate spheroidal conductor has an electrical potential of the form (2.4) but
with the charge, q, replacing mass. If we now freeze the charge density (2.6) onto the spheroid
by making it an insulator and rotate it about the axis with angular velocity � < c/b, we find
that the magnetic field is uniform inside the shell and outside the magneto-static potential χ

is given by

χ = q�
b

a

2

Q1

(
r

a

)
; (2.7)

Q1 is the Legendre function of the second kind and r/a > 1.
We now consider two confocal prolate spheroids with positive charges q1 and q2. Each lies

on an equipotential of the other so if they are both static conductors their charge distribution
is unaltered by the field of the other spheroid. Those charge densities are frozen onto the
spheroids which are then rotated with angular velocities �1 > 0 and �2 < 0. The magnetic
field is the sum of the fields of each, but as �2 < 0, they tend to cancel, except in the region
between the spheroids. Externally the magnetic field potential is

χ = 1

a2

(
q1�1b

2
1 + q2�2b

2
2

)
Q1

(
r

a

)
cos θ̃ (2.8)

which is zero if we choose

�2 = −q1b
2
1

q2b
2
2

�1. (2.9)

The magnetic field inside both spheroids is of course uniform. We are interested in tall thin
spheroids with b1 < b2 � a and with the above choice the field inside both is

BI = q1�1

a

(
1 − b2

1

b2
2

)
+ O

(
b2

a2

)
. (2.10)

In this thin regime the field between the spheroids is approximately uniform in the equatorial
region and carries equal and opposite flux to the field inside both so

BII = −q1�1b
2
1

ab2
2

. (2.11)

The electrical potential outside both is given by (2.4) with m = (q1 + q2)/a.
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3. Spheroidal shells in general relativity

We take the metrics in Weyl’s form for empty regions

ds2 = e−2ψ( dt + Ai dxi)2 − e2ψ [e2k( dz2 + dR2) + R2 dϕ2], (3.1)

where k = 0 on the axis and A = 0 when we deal with statics. The transformation from z, R

to r, θ̃ coordinates is the same as in flat space considered earlier. Weyl showed that for axially
symmetric statics Einstein’s equations imply ∇2ψ = 0 where ∇2 is the flat space operator.
The simplest spheroidal solution is the same as the classical one (2.4) and the corresponding
metric function ek is

ek =
[

1 +
(a

r̃
sin θ̃

)2
]−m2/2

. (3.2)

This metric can be generated by a single spheroidal shell the metric inside being flat. Babala
[1] gives expressions for the stresses needed to support the shell against its own gravity. For
prolate shells the energy conditions are most restrictive at the equator and the dominant energy
condition is satisfied provided |pθ | < σ there. From this we find that at fixed mass per unit
length m/2, the dominant energy condition is always violated if the spheroidal shell is too tall
so that the cylindrical limit is not attainable. Nevertheless for quite relativistic m, axial ratios
of order 100 are attainable without violating the energy conditions so a cylindrical treatment
is valid as an approximation in the equatorial region. For a spheroid of semi-axes

√
a2 + b2, b,

Babala’s condition (under his equation (12)) yields

m2 + (X2 − 1)(1 − Y ) + 1
2X2(1 − Y−1) < mX, (3.3)

where X2 = 1 + b2/a2 and Y = [X2/(X2 − 1)]m
2/2. For large axial ratios, X must be close to

1 and the above restriction on the axial ratio becomes

Y <
1

1 − 2m(1 − m)
, (3.4)

corresponding to the restriction on the axial ratio

α =
√

a2 + b2

b
<

1

[1 − 2m(1 − m)]1/m2 , (3.5)

where α is the axial ratio as measured in Weyl’s coordinates which exaggerate elongation. In
the internal flat space its axial ratio is less by a factor Y which is about 2 for the three cases
given below: for m = 1/3, Y < 9/5, α < 198, for m = 2/5, Y < 25/13, α < 60 and
for m = 1/2, Y < 2, α < 16. Since parallel matter currents repel, these conditions will be
slightly alleviated for a rotating spheroid.

When we have two oppositely rotating spheroidal shells we may choose the rotation of
the outer shell to annul the angular momentum of the inner one. This ensures that there is no
gravomagnetic moment of the whole system. As in electricity it is possible to choose rates
within the outer shell so that there is no gravomagnetic field outside. The external field will
then be static and predominantly of the form governed by equations (2.4), (2.8), (2.9) with
A = 0. However there may be some higher even-moment terms with

ψ = ψ0 +
∞∑
l=1

a2lP2l (μ̃)Q2l

(
r

a

)
(3.6)

as given by Quevedo [11]. We are at liberty to choose the space within the inner shell to be
flat space in rotating axes, i.e. with a uniform gravomagnetic field. For any chosen form of
the inner shell Bn and ψ are continuous while discontinuities in B|| and n ·∇ψ give the matter
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currents and mass density on the shell. Between the shells the gravomagnetic field is in the z

direction on the equator by symmetry and will be close to that direction in the whole of the
long straight region of tall spheroids. The Ernst equations in the empty region can be written
in terms of flat space operators:

∇ · [eψ∇(e−4ψ + χ2)] = 0 and ∇·(e4ψ∇χ) = 0, (3.7)

and those imply

∇2ψ = 1
2 e4ψ |∇χ |2. (3.8)

In regions where the field is along the z direction with χ = Hz, the second of (3.7) is
automatically satisfied if ψ is a function of R and (3.8) may be written as

RdR(RdRψ) = 1
2H

2R2e4ψ (3.9)

which is readily solved by writing W = ψ + 1
2 ln R and using ln R as the independent variable.

We then recover the usual solution for rotating cylinders (see [7, 8, 14]):

e−2ψ = 1
2 HRC−1

[(
R

R0

)−C

−
(

R

R0

)C
]
, (3.10)

where C and R0 are the constants of integration: for the region containing the axis C = 1.
This derivation of the solution for rotating cylinders as a limiting case of thin prolate

ellipsoids does not seem to be given before.

4. Metrics with oppositely rotating cylinders in general relativity

Consider two massive cylindrical shells rotating at constant angular velocity in opposite
directions around a common axis of symmetry and surrounded on each side by empty
space. The empty spacetime within the interior shell which we call shell one or simply
one is flat. It is dragged around by the rotations of the shells. We therefore write its
metric in cylindrical Minkowski coordinates rotating with constant angular velocity ω, say,
{xμ} = {x0 = t, x1 = R, x2 = z, x3 = ϕ}; then

ds2 = gμν dxμ dxν

= (1 − v̄2) dt
2 + 2Rv dt dϕ − dR

2 − dz2 − R
2

dϕ2 with v = Rω for R � R1.

(4.1)

R1 denotes the position of one .
While within the inner cylinder spacetime is flat, seen from there the spacetime at infinity

rotates at an angular speed −ω. Taking a global view we say that the flat spacetime within
the inner cylinder rotates at a rate ω. A particle of rest mass m0 which is forced to move in a
circle at a rate −ω with respect to the inner flat space has momentum

p = m0v√
1 − v2

= − m0v√
1 − v2

nϕ. (4.2)

Its proper rate of change is

dp√
1 − v2 dt

= − m0v

1 − v2

dnϕ

dt
= − m0v

2

1 − v2

nR

R
. (4.3)

Thus the centrifugal force Fc induced on a globally static particle is

Fc = m0v
2

1 − v2

1

R
. (4.4)
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Between one and two the metric is that of Lewis [8]. The metric in the form (3.1) offers
some difficulties in finding physical values for the parameters of the second outer shell, i.e.
one that satisfies the dominant energy conditions and does not rotate faster than the velocity of
light. The following coordinates are more convenient. They resemble those of da Silva et al
[12]. In coordinates {xμ} = {x0 = t, x1 = R, x2 = z, x3 = ϕ}, the metric, which contains
four parameters, reads

ds2 = gμν dxμ dxν

= f dt2 + 2
h

β
dt dϕ − R2(s2−s)( dR2 + dz2) − l

β2
dϕ2 for R1 � R � R2. (4.5)

In this,

f = εR

(
W − (� + 1)2

4W

)
, h= εR

(
W − (� 2 − 1)

4W

)
, l= εR

(
(� − 1)2

4W
− W

)
,

W =αR2s−1 > 0 and ε = ±1. (4.6)

The metric is invariant under linear transformations of t, ϕ and can be transformed locally to
the static Levi-Civita metric [13]. The parameter β is introduced to normalize the angle ϕ

to vary from 0 to 2π in the whole of spacetime. Vacuum cylindrical spacetimes with matter
sources have in general conicities5 [2]. Without loss of generality we may assume β > 0.

Outside shell two spacetime is empty and static; the metric is that of Levi-Civita. In
coordinates {Xμ} = {X0 = T , X1 = R̃, X2 = Z, X3 = ϕ} the metric has the form (see, e.g.,
[14])

ds̃2 = g̃μν dXμ dXν = R̃2m dT 2 − R̃2(m2−m)( dR̃2 + dZ2) − 1

β̃2
R̃2(1−m) dϕ2 for R̃ � R̃2.

(4.7)

The constant β̃ > 0 has a role similar to β > 0 and m is analogous to the parameter m defined
in (2.4).

Altogether there are six parameters involved in these metrics: α > 0, β > 0,�, s,m and
β̃ > 0 in addition to the ‘radii’ of the shells R1, R1, R2 and R̃2. α is a scale factor typical of
spacetimes without an intrinsically defined scale. β characterizes the conicity of spacetime
between the two shells and β̃ the conicity of spacetime outside the outer shell. s is associated
with the mass of the inner shell. � is the parameter associated with the Coriolis force and the
centrifugal force induced by the rotation of the cylinders. We refer to � as the parameter of
induced centrifugal forces.

The metric on shell one is obtained from (4.1) in which we set R = R1 or from (4.5) by
setting R = R1:

ds2
1 = (

1 − v2
1

)
dt

2 + 2R1v1 dt dϕ − dz2 − R
2
1 dϕ2

= f1 dt2 + 2
h1

β
dt dϕ − R

2(s2−s)
1 dz2 − l1

β2
dϕ2. (4.8)

In this f1, h1 and l1 are the metric components (4.6) with

W → W1 = αR2s−1
1 . (4.9)

5 Conicity can be geometrically defined far away from the axis which may be regular. For instance consider a
truncated normal cone without a peak. One starts from a particular circle with circumference 2πr1. One then moves
to another circumference 2πr2. One then compares r2 − r1 with the proper distance between the two circles. This is
a measure of the conicity. It is shown in [2] that conicity arises generally outside cylinders of perfect fluids.

6



Class. Quantum Grav. 28 (2011) 065004 J Katz et al

W 1 is thus a measure of the distance of one to the axis. The two metrics in (4.8) describe the
same hypersurface. Thus, we must have√

1 − v2
1t =

√
f1t and z = Rs2−s

1 z, (4.10)

up to constants of integration. We also need equality of the two remaining terms in metric
(4.8). This implies

R1 = 1

β

√
l1 and v1 = ε

(
W1 − � 2 − 1

4W1

)
, (4.11)

where v1 is the fastest ‘dragging velocity’ of the flat interior.
The metric of two is obtained from (4.5) in which we set R̃ = R̃2 or from (4.7) in which

we set R = R2:

ds2
2 = R̃2m

2 dT 2 − R̃
2(m2−m)
2 dZ2 − 1

β̃2
R̃

2(1−m)
2 dϕ2

= f2 dt2 + 2
h2

β
dt dϕ − R

2(s2−s)
2 dz2 − l2

β2
dϕ2. (4.12)

The equality implies, among other things, that the term in dt dϕ is absent from ds2
2 , i.e.

h2 = 0 or W 2
2 = 1

4
(� 2 − 1); so f2 = −ε

R2

2W2
(� + 1), l2 = −ε

R2

2W2
(� − 1).

(4.13)

Other junction conditions will be dealt with below. Since W 2
2 > 0 we see that

� 2 > 1 and v1 = ε

(
W1 − W 2

2

W1

)
. (4.14)

The greatest dragging velocity v1 of the flat interior near one depends essentially on the
positions of the shells, for given α and s. The three other junction conditions, not yet
mentioned, are similar to (4.10) and the first of (4.11):√

f2t = R̃m
2 T , Rs2−s

2 z = R̃m2−m
2 Z and

1

β

√
l2 = 1

β̃
R̃1−m

2 . (4.15)

Remarks about the conditions that spacetime between one and two be locally Minkowski.
These conditions are necessary and amount to ask that g00 > 0 and g33 < 0. If we add
the condition that two be outside of one , we have altogether three inequalities that must be
satisfied6:

f > 0, l > 0, and
R2

R1
> 1. (4.16)

This translates into the following conditions on the parameters. If

s > 1
2 , � > 1, ε = −1 and 1

4 (� − 1)2 < W 2
1 < W 2

2 < 1
4 (� + 1)2, (4.17)

or � < −1, ε = +1 and 1
4 (� + 1)2 < W 2

1 < W 2
2 < 1

4 (� − 1)2, (4.18)

but if

s < 1
2 , � > 1, ε = −1 and 1

4 (� − 1)2 < W 2
2 < W 2

1 < 1
4 (� + 1)2, (4.19)

or � < −1, ε = +1 and 1
4 (� + 1)2 < W 2

2 < W 2
1 < 1

4 (� − 1)2. (4.20)

In either of these cases ε� < 0 and one can easily check that the greatest dragging velocity
never exceeds the speed of light:

− 1 < v1 < 1. (4.21)

We now turn our attention to the structure of the shells.
6 We do not consider the possibility of g00 < 0, g33 > 0 when the role of t and ϕ would be interchanged.
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5. Energy densities and pressures in the shells

The two shells have similar metrics (4.8) and (4.12). We write them collectively in the same
form without indices 1 or 2:

dσ 2 = γab dxa dxb = f dt2 + 2
h

β
dt dϕ − R2(s2−s) dz2 − l

β2
dϕ2 with

{xa} = {x0 = t, x2 = z, x3 = ϕ}. (5.1)

This is the metric of a hypersurface R=const in a spacetime whose metric gμν is given by
(4.5). We assume the shells to be in the form of two-dimensional fluids rotating with angular
velocity �. The three velocity components ua are thus u0, u2 = 0, u3 = u0�, with u0 defined
by the usual normalization γabu

aub = uau
a = 1. Let σ be the mass-energy density, pϕ the

pressure or tension in the loops and pz the vertical pressure or tension. The energy–momentum
tensor of such a flow τ b

a is necessarily of the following form in which all the components are
constants:

τ 0
0 = (σ + pϕ)u0u0 − pϕ, τ 0

3 = (σ + pϕ)u0u3, τ 3
3 = (σ + pϕ)u3u3 − pϕ and τ 2

2 = − pz.

(5.2)

There is also a τ 3
0 component similar to τ 0

3 ; other components are equal to zero. From these
expressions and with uau

a = 1 we may calculate the relevant physical quantities σ, pϕ, pz

and �. Set

�2 = (
τ 0

0 − τ 3
3

)2
+ 4τ 0

3 τ 3
0 . (5.3)

Then,

σ = 1
2

[(
τ 0

0 + τ 3
3

)
+ �

]
, pϕ = 1

2

[ − (
τ 0

0 + τ 3
3

)
+ �

]
, pz = −τ 2

2 , (5.4)

and

� = dϕ

dt
= 1

2τ 0
3

[ − (
τ 0

0 − τ 3
3

)
+ �

] ⇒ v =
√

l

β
√

f
�, (5.5)

where v is the proper velocity of the shell.
Next we can easily calculate the external curvature tensor components from both sides of

the shell, say Kab and Kab. The surface energy–momentum tensor7 τ b
a is given by

τ b
a = 1

κ

(
δb
aL

c
c − Lb

a

)
where Lb

a = Kb
a + K

b

a with κ = 8πG

c4
. (5.6)

If nμ = gμνn
ν is the normal to the shell the expression of the external curvature components

say Kab (and a similar expression for Kab) is as follows:

Kab = −∂xμ

∂xa

∂xν

∂xb
Dμnν, (5.7)

where Dμ is a four-covariant derivative in terms of the spacetime metric gμν (or ¯gμν or g̃μν).
For cylindrical shells and in the coordinates adopted, Kab is particularly simple to calculate:

Kab = − 1
2n1∂1gab. (5.8)

With the tensors Kb
a and K

b

a we construct the tensors Lb
a and L

b

a and with them the
energy–momentum tensor of the shell given in (6.5).

So much about generalities.

7 In Israel formalism [6] unit normal vectors to the shell have the same orientation and ±Lab = Kab − Kab; the
sign depends on the orientation of the normals. In [5] the unit normal vectors are oriented in their own spacetime
and Lab = Kab + Kab . This convention which is adopted here is less ambiguous when, for instance, the spacetime is
closed on both sides of the shell; it is also more symmetrical.
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6. Example of two shells of dust

In such shells there is no pressure in either direction z or ϕ. If

pz|1 = pz|2 = 0, (6.1)

it follows from (5.2) and the evaluation of τ 2
2 = 0 that

β√
l1

= 1

R�
1

and
1

R̃M
2

= 1

R�
2

. (6.2)

The first equality determines β and the second equality β̃ through 1
β

√
l2 = 1

β̃
R̃1−m

2 , see (4.15).
If in addition

pϕ|1 = pϕ|2 = 0, (6.3)

it follows from (5.4) and evaluating τ 0
0 , τ 3

3 , τ 3
0 and τ 0

3 that

pϕ|1 = 0 ⇒ �|1 = 1

κR�
1

2s(1 − s) and

pϕ|2 = 0 ⇒ �|2 = 1

κR�
2

[2m(1 − m) − 2s(1 − s)]. (6.4)

The energy per unit length and the velocities of the shells thus reduce to

σ |1 = 1

κR�
1

2s(1 − s), v1 = ε�

|� − 1|

{
[(� − 1)/2W1]2 − 1

1 − [(� + 1)/2W1]2

}1/2

× [(2s − 1)� − 1 + 2s(1 − s)], (6.5)

and

σ |2 = 1

κR�
2

[2m(1 − m) − 2s(1 − s)], (6.6)

v2 = − ε�√
� 2 − 1

[(1 − 2s)� + 1 − 2m + 2m(1 − m) − 2s(1 − s)]. (6.7)

The energy condition

σ |1 > 0 amounts to 0 < s < 1, (6.8)

but if we add the condition that σ |2 > 0,

then either 1
2 < s < 1, 1 − s < m < s or 0 < s < 1

2 , s < m < 1 − s. (6.9)

The parameters in these metrics and the associated physical quantities are intertwined in
complicated ways. We can however see in (6.5) that s characterizes the energy per unit length
of the inner cylinder. W 1 for a given energy per unit length is a measure of the radius of the
inner shell as we noted before. We also noted that m represents the mass per unit length of
spacetime far from the cylinders in the R direction.

Equations (6.1) and (6.3) are two polynomials of order 2 in �(s) and �(s,m), see (6.4)
and (6.6). Each polynomial has 2 roots, say �±(s) and �±(s,m), which must be equal.
This gives four possible solutions for m(s) or s(m). Mathematica solves such equations with
great facility. It shows that among the four possible solutions only one satisfies the energy
conditions in which

0 < s < 1
2 with s < m < 1 − s. (6.10)
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Figure 1. The function m(s), implied by conditions (6.4) and (6.7), relates the total mass per unit
length, m, to the parameter characterizing the mass per unit length of the inner shell, s. The straight
lines are the limits m = s and m = 1 − s imposed by the energy condition on two. Above the
triangle, the energy density of the outer shell is negative.

In 1937 van Stockum [15] constructed a rotating cylindrical shell of dust and showed that this
is only possible if s < 1

2.
Figure 1 represents m(s). From this figure we can see that the range of values which

satisfy the energy conditions are in fact

0 � s � 0.4 and 0 � m(s) � 0.6. (6.11)

We also find that � < −1, which implies, see (4.20), ε = 1 and, within the limits of s,
as seen in figure 1,

0 � s � 0.4 ⇒ −1.5 � � � −1. (6.12)

Quantities analyzed so far depend on one parameter s associated with the mass of the
inner shell. However, the inner shell ‘radius’, or better W1 = α/R1−2s

1 , is not fixed. According
to (4.20),

W1min = W2 =
√

� 2 − 1

4
< W1 < W1max = 1 − �

2
. (6.13)

It is useful to remember expression (4.3) from which it follows that there is a smallest
‘radius’ R1min:

W1max = α

R1−2s
1min

. (6.14)

When W1 → W1max the following happens. Since � < −1, ε = 1 and the proper radius of
the inner shell tends to zero, see (4.11),

R1 = 1

β

√
l = 1

β

[
R1

(
W 2

1max

W1
− W1

)]1/2

→ 0. (6.15)

As W 1 approaches its (unattainable) maximal value W1max, the metric component g33 =
−l/β2 → 0, the coordinate system becomes unphysical and the proper velocity of the inner
shell, see (6.13), tends to zero:

v1 ∝
[

(W1max/W1)
2 − 1

1 − [(� + 1)/2W1]2

]1/2

→ 0. (6.16)
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Figure 2. The dragging velocities v1 as functions of the parameter of the inner shell energy per
unit length s with R1/R2 = 0.1. At smaller ratios the maximum would still be higher.

The velocity of the inner shell as seen from the flat space inside approaches that of light and
the angular velocity increases without bound as the radius R1 → 0. Calculating the dragging
velocity from (4.11), we indeed find that it tends to the velocity of light:

v1 = W1max − W 2
1min

W1max
= 1. (6.17)

When, in contrast, W1 = W1min = W2, we are dealing with two counter-rotating shells
of dust with different energies per unit length and different velocities whose total angular
momentum is equal to zero and there is no dragging inside.

For small mass energies per unit length of the shells, i.e. in the Newtonian limit, s � 1,
and for

m 	 1.618s, � 	 −1 − 4s3, W2 	
√

2s3/2, v2 	 −1.14s1/2, (6.18)

and

W2

W1
=

(
R1

R2

)1−2s

	 R1

R2
, (6.19)

we see from (6.5),

v1 	 s2

[
1

2s3

(
R1

R2

)2

− 2s3

(
R2

R1

)2
]1/2

, (6.20)

and,

|v2|
v1

	 1.618

[(
R1

R2

)2

− 4s6

(
R2

R1

)2
]−1/2

with
√

2s3/2 � R1

R2
� 1. (6.21)

We thus see that to have strong dragging, in the classical limit, |v2|/v1 	 1.618, we need
R1/R2 ≈ 1. Otherwise, to have strong dragging we need R1/R2 ≈ s3/2. R1/R2 = 0.1 is
already very relativistic.

It is interesting to have some idea of what the ratio of the velocities is in this relativistic
case. Figure 2 shows the value of the maximum dragging velocity as a function of the
parameter s.

11
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We note that the dragging v1 never exceeds 0.6 and is only slightly greater than (−v2) in
the extreme relativistic case when s → 0.4. In the Newtonian limit for small velocities,

v1

(−v2)
	 9.35v2

2 . (6.22)

The velocity of the inner shell never exceeds 0.25 and the ratio of velocities of the shells
v1/(−v2) never exceeds 0.5; in the Newtonian limit

v1

v2
	 0.124 + 0.256v2

2 . (6.23)
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[2] Bičák J, Ledvinka T, Schmidt B G and Žofka M 2004 Static fluid cylinders and their fields: global solutions

Class. Quantum Grav. 21 1583 (arXiv:gr-qc/0403012)
[3] Embacher F 1983 Rotating hollow cylinders: General solution and Machian effects J. Math. Phys. 24 1182
[4] Frehland E 1972 Exact gravitational field of the infinitely long rotating hollow cylinder Commun. Math.

Phys. 26 307
[5] Goldwirth D S and Katz J 1995 A comment on junction and energy conditions in thin shells Class. Quantum

Grav. 12 769 (arXiv:gr-qc/9408034)
[6] Israel W 1966 Singular hypersurfaces and thin shells Nuovo Cimento B 44 1

corrections in Israel W 1967 Nuovo Cimento B 48 463
[7] Jordan S R and McCrea J D 1982 The gravitational field of a rotating infinite cylindrical shell J. Phys. A: Math.

Gen 15 1807
[8] Lewis T 1932 Some special solutions of the equations of axially symmetric gravitational fields Proc. R. Soc.

A 136 176
[9] Pfister H and Braun K H 1985 Induction of correct centrifugal force in a rotating mass shell Class. Quantum

Grav. 2 909
[10] Papapetrou A, Macedo A and Som M M 1978 Thin cylinder shell of dust under rigid rotation in general relativity

Int. J. Theor. Phys. 17 975
[11] Quevedo 1989 General static axisymmetric solution of Einstein’s vacuum field equations in prolate spherical

coordinates Phys. Rev. D 39 2094
[12] da Silva M F A, Herrera L, Santos L O and Wang A Z 2002 Rotating cylindrical shell source for Lewis spacetime

Class. Quantum Grav. 19 3809 (arXiv:gr-qc/0206019)
[13] Stachel J 1982 Globally stationary but locally static space-times: a gravitational analog of the Aharonov–Bohm

effect Phys. Rev. D 26 1281
[14] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2003 Exact Solutions to Einstein’s Field

Equations 2nd edn (Cambridge: Cambridge University Press) p 342
[15] van Stockum W J 1937 The gravitational field of a distribution of particles rotating around an axis of symmetry

Proc. R. Soc. Edinburgh A 57 135

12

http://dx.doi.org/10.1088/0264-9381/21/6/019
http://www.arxiv.org/abs/gr-qc/0403012
http://dx.doi.org/10.1063/1.525794
http://dx.doi.org/10.1007/BF01645526
http://dx.doi.org/10.1088/0264-9381/12/3/014
http://www.arxiv.org/abs/gr-qc/9408034
http://dx.doi.org/10.1007/BF02710419
http://dx.doi.org/10.1007/BF02712210
http://dx.doi.org/10.1088/0305-4470/15/6/019
http://dx.doi.org/10.1098/rspa.1932.0073
http://dx.doi.org/10.1088/0264-9381/2/6/015
http://dx.doi.org/10.1007/BF00678424
http://dx.doi.org/10.1103/PhysRevD.39.2904
http://dx.doi.org/10.1088/0264-9381/19/14/319
http://www.arxiv.org/abs/gr-qc/0206019
http://dx.doi.org/10.1103/PhysRevD.26.1281

	1. Introduction
	2. Gravomagnetism and electromagnetism
	3. Spheroidal shells in general relativity
	4. Metrics with oppositely rotating cylinders in general relativity
	5. Energy densities and pressures in the shells
	6. Example of two shells of dust



