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4 Nonlocal Theory of 
Resonance Electron−
Molecule Scattering

Martin Čížek and Karel Houfek

4.1  Introduction

Theoretical description of the dynamics of the molecular motion usually comprises 
two steps. First, quantum–chemical calculations of potential energy surfaces are 
performed nowadays using well-established packages of codes. The second step 
involves calculation of the vibrational dynamics on these potential energy surfaces 
within the Born–Oppenheimer approximation.
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92 Low-Energy Electron Scattering from Molecules, Biomolecules, and Surfaces

Similarly, the calculation of the dynamics of electron–molecule collisions involving 
nuclear* dynamics proceeds in two steps. The appropriate generalization of the Born–
Oppenheimer approximation is called the nonlocal resonance theory. The term is 
historic; the resonances actually do not have to be involved, although they (or virtual 
states) appear in most of the cases, at least for some molecular geometries. The calcula-
tion of the electron dynamics for the fixed molecular geometry has to provide not only 
the potential energy surfaces, but also the electron-scattering quantities. A set of all 
quantities needed to perform the calculation of the nuclear dynamics is called the 
nonlocal resonance model. For a specific molecule, we need the potential energy 
surfaces for both the neutral molecule and the anion and also the transition elements 
for releasing the electron from the molecular anion into the continuum (at fixed molec-
ular geometry). The last quantities complicate the definition of the nonlocal resonance 
model, since the transition elements (called the coupling amplitudes) depend on both 
the molecular geometry and the energy of the released electron. The same amplitude 
also controls the electron capture into the anionic state.

The separation of the electron and the nuclear motion is a very important 
assumption. Each of the two steps is already quite difficult and the problem to treat 
both the electronic and nuclear motion simultaneously would be immense. The success 
of this divide-and-conquer strategy depends on the proper separation of the electronic 
problem to a discrete state and the continuum. If it is successful, the full nonadiabatic 
nature of the exchange of energy between electrons and nuclei is properly captured.

We would also like to stress that once the nonlocal resonance model is set up, the 
number of processes can be treated on the equal theoretical level. The process 

	 e v e v− −+ → +AB ABi f( ) ( ) 	 (4.1)

includes both elastic scattering (but with full account of inelastic interaction) and 
vibrational excitation. It also comprises the collisional detachment

	 e v e− −+ → + +AB A Bi( ) , 	 (4.2)

which is nothing else but the vibrational excitation in the dissociation continuum 
state of the molecule. Here, A and B are two (monatomic or polyatomic) parts of the 
studied molecule. The proper treatment of the vibrational excitation must also include 
the competing process of dissociative electron attachment

	 e v− −+ → +AB A Bi( ) . 	 (4.3)

The same calculation can, of course, provide also the full information about the 
reverse processes of associative detachment or three-particle recombination which 
is the inverse of Equation 4.2.

In this chapter, we will assume that the fixed-nuclei electron-scattering problem 
was solved (see Chapter 2 for a review of methods dealing with the fixed-nuclei electron 
scattering) and we focus on the separation of the electronic Hilbert space into the 

*	We use the term nuclear dynamics when we talk about the dynamics of motion of nuclei in the mole-
cule here. When talking about the electron–molecule collisions, we try to avoid the term “vibrational 
dynamics,” because some processes include the dissociation of the molecule.
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93Nonlocal Theory of Resonance Electron−Molecule Scattering

discrete state and the continuum and on the derivation of the equations describing 
the nuclear (= vibrational or dissociation) dynamics of the resonance electron–molecule 
collisions. We will also discuss numerical methods for solving these equations. An appli-
cation of the theory to particular systems and a discussion of various structures appearing 
in the cross sections due to nuclear dynamics will be presented in Chapter 5.

4.1.1  Brief Overview of the Methods

Treatment of the vibrational excitation or dissociative attachment requires the inclusion 
of both electronic and nuclear dynamics of the system. The straightforward basis 
expansion of the vibrational (and rotational) degrees of freedom together with elec-
tronic wave functions leads to coupled channel expansions (see Morrison and Sun 
1995 and references therein). This approach has been applied to several systems but 
it is not suitable for treatment of the resonant or dissociative dynamics, where the 
nuclear motion gets very far from the vibrations in the initial molecular state and the 
basis would be too large for the calculation to be feasible.

Closely related to the close coupling approach is the R-matrix method for electron 
scattering (discussed in more detail in Chapter 2, including the references) with exten-
sion to include the vibrational dynamics by Schneider et al. (1979). Although the 
introduction of the R-matrix  sphere may lead to smaller basis, the method itself also 
falls in the class of methods using direct expansion in combined electronic and vibra-
tional space and does not remove the necessity to use a very large basis in the case of 
strongly coupled electron and vibrational motions.

The simplest case of the separation of the electronic and vibrational degrees of 
freedom is straightforward application of the Born–Oppenheimer approximation 
(applicability of the adiabatic approximation for scattering processes was discussed, 
for example, by Chase (1956)). This is possible only in the case of elastic scattering 
and vibrational excitation in the absence of resonances. The fixed-nuclei electron-scat-
tering problem is solved and sandwiched between bra-vector describing the final 
vibrational state and ket-vector for the initial vibrational state. The resulting T-matrix 
describes the vibrational excitation process in the adiabatic nuclei approximation. The 
electron–vibrational correlation is completely ignored in this approach and it is there-
fore also not suited for the description of the processes involving resonances.

Fortunately the strong correlation of electronic and vibrational motion can often be 
attributed to one or few electronic states. It is therefore feasible to separate the elec-
tronic Hilbert space in the part containing these states and the rest that can be treated 
within the Born–Oppenheimer approximation. The projection-operator method of 
Feshbach developed in nuclear physics (Feshbach 1958, 1962) is ideally suited to per-
form such separation. The approach is basically equivalent to Fano’s theory of discrete 
states embedded in the continuum (Fano 1961). The projection-operator approach was 
introduced to describe  molecular processes involving the electron continuum by Chen 
(1966), O’Malley (1966), Bardsley (1968), and Nakamura (1971) in the late 1960s and 
early 1970s. As pointed out earlier, the projection-operator approach only divides the 
electronic states into two subspaces for each molecular geometry. This division is use-
ful only if it restores the conditions of validity of the Born–Oppenheimer approxima-
tion as discussed by O’Malley (1971). The new basis in the electronic Hilbert space is 
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94 Low-Energy Electron Scattering from Molecules, Biomolecules, and Surfaces

thus called diabatic basis, in contrast to the conventional adiabatic basis that diagonalizes 
the electronic Hamiltonian for each molecular geometry. Recently, the performance of 
such generalized Born–Oppenheimer approximation was tested on a numerically 
solvable model containing one electronic and one nuclear coordinates (Houfek et al. 
2006). It was shown (Houfek et al. 2008) that the nonlocal resonance theory can give 
correct results contrary to some other approximations.

The equations governing the nuclear motion in the projection-operator-based 
theories include the nonlocal, complex, and energy-dependent effective potential which 
is difficult to deal with. Therefore, the early treatments of collisions employed the local 
complex potential approximation. The nonlocality of the full theory is closely related to 
energy dependence of the effective potential. The local complex potential approximation 
is not able to describe the threshold effects properly as discussed by Bardsley (1968).

The role of the threshold effects in the full nonlocal version of the theory was  stud-
ied in detail by Domcke (1991). He showed that the nonlocal theory is capable of 
describing correctly the various types of singularities in the fixed-nuclei electron–
molecule S-matrix (bound and virtual states, resonances) and to include their influence 
on the vibrational dynamics. Cederbaum and Domcke (1981) furthermore introduced 
an analytic model solvable in terms of continued fractions. The numerical treatment of 
the full nonlocal dynamics was furthermore developed by Horáček (1995) and applied 
to several diatomic molecules (see Chapter 5 for the details).

The projection-operator formulation leads to a parametrization of the Hamiltonian 
which is then used for the calculation of the dynamics. The similar approach was devel-
oped by Fabrikant (1985) based on the single-pole approximation within the R-matrix 
theory. Although the definition of the discrete state is somewhat special in this case 
(and it is not clear that it gives the proper diabatic state), the resulting equations for the 
vibrational dynamics have been shown to be equivalent to the projection-operator 
formulation of the nonlocal resonance model (see Fabrikant 1990 or Hotop et al. 2003 
and references therein). Similar approach is also the zero-range (or effective-range) 
approximation theory (Gauyacq and Herzenberg 1982), which parameterizes the elec-
tron dynamics based on the low-energy expansion formulas, with parameters depending 
on the molecular geometry. By tuning the parameters, the vibrational dynamics can also 
give similar results to full nonlocal calculations, but the zero-range expansions do not 
provide the accurate fixed-nuclei electron–molecule scattering data.

The validity of the projection-operator approach leading to the nonlocal reso-
nance model is not limited to electron–molecule scattering processes. Employing the 
time-reversal symmetry, the description of the dissociative attachment is easily 
extended to reverse processes of associative detachment, that is, to ion–molecule 
collisions. The generalization to positive ions is also possible and the approach has 
also been applied to dissociative recombination and Penning and associative ioniza-
tion (see, e.g., Bieniek 1978).

4.2 N onlocal Resonance Theory

The basic assumption usually made to derive the nonlocal resonance theory of 
electron–molecule collisions is the formation of a metastable molecular anion 
M− during the collision. The wave function of the whole system is then projected on 
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this state and the resulting dynamics in the nonlocal, energy-dependent, and complex 
potential is solved. The intermediate state M− is usually the resonance (or virtual 
state), hence the term the nonlocal resonance theory.

Although this picture is essentially correct, there are some subtleties that 
occasionally led to misunderstanding. The typical situation is depicted in Figure 4.1. 
Here the case of a diatomic molecule is considered for simplicity. The picture is a 
schematic representation of the spectrum of the electronic Hamiltonian as it depends 
on the internuclear distance R in the molecule. The solid red curve is the potential 
energy curve V0(R) for the neutral molecule in the ground electronic state. The area 
above this curve is shaded to indicate that we have one additional electron in the 
electron–molecule collisions that can add arbitrary positive amount of energy to this 
potential energy. (The potential energy curve V0(R) is thus called the continuum 
threshold in this context.) In addition to this curve, we have the resonance state with 
energy marked by dotted blue curve inside the continuum. This is a metastable state 
and the electron can leave the system. The usual complication, present in most of the 
systems, is that this resonance state disappears above some critical internuclear dis-
tance and becomes the (electronically) bound anion state (solid blue line in Figure 
4.1). The power of the nonlocal resonance theory is that it can correctly describe this 
transition. During this transition, as the internuclear distance R is varied, the metasta-
ble state can change its character from the resonance (directly or via a virtual state) to 
a bound state. We therefore prefer to call it the discrete state instead of the resonance.

To understand the situation a little bit deeper, we have to speak about the deter-
mination of the discrete state |d〉 with the wavefunction φd(r, q; R) where r are the 
coordinates of the incoming electron and q and R denote collectively the coordinates 
of the target electrons and nuclei, respectively. In our case represented by Figure 4.1, 
it is rather straightforward to get φd for larger R, where it represents the bound state 
of one additional electron captured on the neutral molecule. For smaller distances, 
it is more complicated since there is no square integrable function associated with 
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Figure 4.1  (See color insert.) Typical potential–energy curves for the electron collisions 
with diatomic molecules.
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the resonance. The resonances (or virtual states) can still be defined as generalized 
eigenstates of the electronic Hamiltonian, but resulting states are not square integrable 
and they thus do not belong to the electronic Hilbert space. Practically, it is sufficient 
that the function φd is a square integrable function with a significant overlap with the 
true metastable state. This creates a large degree of arbitrariness in the theory, and 
we have infinitely many choices for the discrete state. This does not have to worry us, 
since the possible changes in the choice of the discrete state are compensated by 
the respective changes in the couplings to the continuum. The second criterion for the 
validity of the theory is the smoothness of the dependence of φd on the internuclear 
distances R since the diabatic approximation is used for the description of the nuclear 
dynamics as we will discuss later in this chapter. (See also the results of Houfek et al. 
(2008) on probing the nonlocal resonance model by choosing different discrete states.)

Once the discrete state φd is specified, the nonlocal resonance theory is devel-
oped employing the Feshbach projection-operator formalism (Feshbach 1958, 1962) 
with the operators Q and P chosen to project on the discrete-state and continuum 
parts of the electronic Hilbert space, respectively. The essence of the nonlocal reso-
nance theory is in solving the whole dynamics in the simpler Q-part of the space. In 
the following, we will develop the theory in several steps. First, we define the projec-
tion operators Q and P and an appropriate basis in the electronic Hilbert space to 
expand these operators and the electronic Hamiltonian. The matrix elements of the 
electronic Hamiltonian play a central role in the construction of the nonlocal reso-
nance models. Then, we will decompose the scattering T-matrix into the resonant 
and background (nonresonant) terms and give explicit formulas for them. Next, we 
derive the equations describing the full dynamics of the system within the Q-part of 
the space, which we obtain by the projection of the full wavefunction of the system 
on the discrete state. This quantity contains all information needed for calculation 
of resonance contributions to the vibrational excitation and dissociative attachment 
cross sections within the diabatic approximation.

The dynamics of the collision between the electron and the molecule with the 
fixed molecular geometry is governed by the Hamiltonian operator

	 H T Vel el ,= + int ( ),R r 	 (4.4)

where Tel = −( / )1 2 ∆r  is the kinetic energy of the incoming electron and the second 
term is the effective one-electron interaction with the molecule, which is in general 
an energy-dependent, nonlocal in r, and (above the inelastic threshold) non-Hermitian 
operator (Domcke 1991). By introducing the optical potential Vint, the reference to 
internal electrons in the molecule (through their coordinates q) disappears from the 
description, although they are fully included through the many-body theory. It is 
possible to repeat the whole following derivation with explicit reference to internal 
molecular electrons, but in our case, below the threshold for ionization, we find it 
more convenient to suppress the explicit reference to other electrons. The molecular 
geometry is specified by a set of coordinates of all nuclei denoted here collectively 
by R. The target electrons are projected out and are implicitly included in the optical 
potential Vint. The complete dynamics of the electron–molecule collision, including 
the motion of the nuclei, is then described using the Hamiltonian operator
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	 H T V H H V= + + ≡ +N el0 0( ) ,intR 	 (4.5)

where TN is the kinetic energy of nuclei and V0(R) is the potential energy surface of 
the ground electronic state of the molecule of the interest. The separation of H to

	 H T V T0 0= + +N el( )R 	 (4.6)

and the interaction Vint is a natural choice since H0 is the channel Hamiltonian for 
the  electron–molecule scattering (see, e.g., Taylor (1972) for use of the channel 
Hamiltonian in the multichannel scattering theory).

4.2.1  Projection Operators Q and P

We start by defining the projection operators in the fixed-nuclei approximation.* 

All states and operators are thus understood as operating on the electronic Hilbert 
space Hel.

The operator Q projecting on the resonant part Q of Hel is given by

	 Q = 〉〈| |,d d 	 (4.7)

where |d〉 approximately describes the electron after being captured by the molecule. 
While the vector |d〉 represents the state in the electronic Hilbert space Hel, it can still 
parametrically depend on the molecular geometry, specified by the set of coordinates 
of all nuclei denoted here collectively as R. We will sometimes omit the explicit 
reference to this dependence, but it should be kept in mind that |d〉 can depend on R. 
The vector |d〉 is always given by a normalized, square-integrable, and in general 
complex wave function φd(r, R) = 〈r|d〉 although (as discussed above) the state may 
represent a resonance (for some R). The correct resonance wave function is not 
normalizable, but large overlap of this function with |d〉 is sufficient for good perfor-
mance of the theory.

To simplify our derivation, we assume that there is a single isolated electronic 
resonance state becoming a bound state for large internuclear distances, which is 
true for most of the diatomic molecules. The generalization to more discrete states 
(or more continua) is rather straightforward.

The projector P on the complementary (nonresonant or background) part, P, of 
Hel is simply

	 P Q= −1 . 	 (4.8)

It is now convenient to introduce the energy-normalized electronic states |k(+)〉 (back-
ground scattering states) that diagonalize the electronic Hamiltonian restricted on 
the P space, that is,

	 PH P kel | | ,( ) ( )k k+ +〉 = 〉1
2

2 	 (4.9)

*	This approximation is used for the definition of bases and projection operators but not in the final 
dynamical calculation where motion of nuclei is allowed (see the end of this section).
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where a boundary condition for φk
( ) ( )( , ) |+ +≡ 〈 〉r r kR  is determined by the incoming 

plane wave

	 〈 〉 = − ⋅r k k r| ( ) .2
3
2π ei 	 (4.10)

The projector P can then be expressed in the form

	 P d= 〉〈+ +∫ | | .( ) ( )k k k3 	 (4.11)

The construction of the background scattering states is straightforward once the 
fixed-nuclei electron-scattering problem is solved. The details are discussed in 
Domcke (1991) and references therein. In a similar way, we define electronic states 
|k(−)〉 but with the plane wave (4.10) defining the outgoing boundary condition. The P 
operator expressed in these states has the same form as in Equation 4.11. It should 
be noted here that even though φd (r; R) can be chosen to be independent of R the 
background states  φk r R( ) ( ; )±  are always parametrically dependent on R because 
of explicit R-dependence of the operator Hel.

Once the fixed-nuclei electron-scattering problem is solved, all the information 
about the electronic dynamics can be coded in the matrix elements of Hel. To be more 
specific, we introduce the notation

	 V R V R Hd eld d( ) ( ) | | ,= + 〈 〉0 	 (4.12)

	 V R Hd eldk k( ) ( )( ) | | ,+ += 〈 〉 	 (4.13)

	 V V R k k k V Hkk′
+≡ +








− ′





= 〈 + ′0
2 2 2

0

1
2

1
2

1
2

( ) |{ ( ) } |( )δ k R el kk ( ) ,+ 〉 	 (4.14)

where the last equality follows from Equation 4.9 and the energy-normalization of 
the continuum states. It is important to realize that Vkk′ is diagonal only because of 
the appropriate choice of |k(+)〉. As we will see later, this choice greatly simplifies the 
nuclear dynamics leading to a single equation describing the nuclear motion in the 
discrete state governed by the effective nonlocal potential. In addition to the matrix 
element Vdk R( ) ( ),+  we will need a matrix element

	 V Hd eldk R k( ) ( )( ) | |− −= 〈 〉 	 (4.15)

to define the background and resonant T-matrix for vibrational excitation.
The main reason to perform the decomposition of the electronic space to the 

discrete state and continuum is twofold. First, the separation to the discrete state 
and continuum allows specifying the proper boundary condition for the dissociative 
attachment process. We should mention at this point that although the choice of 
R-dependence of the discrete state |d〉 is to a large degree arbitrary, |d〉 should go 
to the proper electronic bound state describing A + B− fragments (see Equation 
4.3) when R attains the corresponding values (R → ∞ in the case of diatomics). 
The second reason is to restore the Born–Oppenheimer approximation. All the 
electron–molecule-scattering systems, where a large dissociative attachment signal 
is observed, feature the electronic bound states (anions) disappearing in the continuum 
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for some molecular geometries. The Born–Oppenheimer approximation is inherently 
wrong in such situations. But with a proper choice of the discrete state, we can 
still assume

	
∂

∂
∂

∂

+φ φd ( ; )
,

( ; )
,

( )r R
R

r R
R

k� �0 0 	 (4.16)

which allows us to use the relations

	 [ , ] [ , ] ,T P T QN N= = 0 	 (4.17)

	 T PT P QT QN N N= + , 	 (4.18)

	 T TN nucl N nucld d| | | | ,〉 〉 = 〉 〉ψ ψ 	 (4.19)

	 T TN nucl N nucl| | | | .( ) ( )k k+ +〉 〉 = 〉 〉ψ ψ 	 (4.20)

These relations will be used in the subsequent sections. The expansion of the electronic 
Hilbert space and relations (4.16) define the diabatic approximation, which is the 
proper generalization of the Born–Oppenheimer approximation for our case.

Let us note that by introducing TN, we started to work in the full Hilbert space 
of the problem and vectors like |d〉 |ψnucl 〉 are a direct product of the electronic and 
nuclear part. The fixed-nuclei projection operators P(R) and Q(R) are diagonal in 
the nuclear Hilbert space, that is, in combined space of electrons and nuclei, they 
become

	 Q Q= 〉 〈∫ dR R R R| ( ) |, 	 (4.21)

	 P P= 〉 〈∫ dR R R R| ( ) | . 	 (4.22)

4.2.2  Background and Resonant T-Matrices for Vibrational Excitation

We begin by writing the full Hamiltonian given by Equation 4.5 in the form

	 H H V V= + +0 1 2 , 	 (4.23)

where H0 is given by Equation 4.6 and

	 V PH P QH Q T

PH P QH Q H V
1 = + −

= + − +
el el el

el el el

 

int ,
	

(4.24)

	 V PH Q QH P2 = +el el . 	 (4.25)

The motivation for the choice of V1 is to express the scattering T-matrix (more 
precisely only its resonant part) in terms of |v〉|k(+)〉 instead of the unperturbed initial 
or final state |v〉|k〉, where |v〉 is the Born–Oppenheimer vibrational wave function 
χv(R) of the molecule (i.e., an eigenstate of TN + V0). We can easily see that the state 
|v〉|k(+)〉 is an eigenfunction of
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	 H H V T V PH P QH Q

Q T V Q P T V H P Q
1 0 1 0

0

≡ + = + + +
= + + + + =

N el el

N d N el[ ( )] [ ( ) ]R R HHQ PHP+
	

(4.26)

within the diabatic approximation defined by Equation 4.16.
By employing the two-potential formula for the scattering T-matrix (see 

Goldberger and Watson (1964), p. 202), we get

	 T v V v v Vv vi f

VE
f f i i f f→

− − += 〈 〈 〉 〉 + 〈 〈 〉| | | | | | | ,( ) ( ) ( )k k k1 2 Ψ 	 (4.27)

where |Ψ(+)〉 is the full (including both electronic and vibrational degrees of freedom) 
scattering wave function of the system

	 | | | | | .( ) ( ) ( )Ψ + + +〉 = 〉 〉 + − + 〉 〉v
E H

V vi i i ii
k k

1
2ε 	 (4.28)

The last equation shows that we can take the product | | ( )vi i〉 〉+k  as the initial state of 
the system to determine the wave function |Ψ(+)〉 which we will use later to derive the 
effective equation for the nuclear dynamics.

The second term of Equation 4.27 corresponds to the resonant part of the 
T-matrix as defined in Domcke (1991) and is fully determined by the resonant part 
Q|Ψ(+)〉 of the full wave function. Using Equations 4.8, 4.13, 4.25, and the orthogonality 
〈k(−)|d〉 = 0, we obtain

	 T v PH Q QH P

v PH Q

v vi f

res
f f el el

f f el

→
− +

−

= 〈 〈 + 〉

= 〈 〈

| | |

| | |

( ) ( )

( ) (

k

k

Ψ

Ψ ++ 〉) .
	

(4.29)

This expression can further be simplified if we define Ψd(R) = 〈d|Ψ(+)〉r where 〈…〉r 
means an integration over the electronic coordinate r only. The resulting function is 
thus a state belonging to the nuclear Hilbert space. In terms of the resonant nuclear 
wavefunction Ψd, for which we will derive the effective Schrödinger equation in the 
following subsection, the resonant part of the T-matrix can be written as

	 T v Vv vi f f

res
f d d→

−= 〈 〉| | .( )*
k Ψ 	 (4.30)

Note that this expression differs slightly from the result of Domcke (1991). Namely, 
in Equation 4.14 of this work the matrix Vdk has no superscript, which corresponds to 
the matrix element V kd

( )+  defined by Equation 4.13. This small difference becomes 
important only when the background terms defined below are added to the resonant 
T-matrix (which was not usually the case in previous studies of resonant electron–
molecule collisions), since the coupling matrix elements V kd

( )±  are in general complex 
even when the discrete state is real. The reason why we cannot use V kd

( )+  instead of 
V kd

( )−
 is that in general, in spite of the fact that φk

( )−
 belongs to P space,

	 〈 〉 ≠ −





− +k kf f
( ) ( )| δ 1

2
1
2

2 2k k 	 (4.31)

(the quantity in fact equals to the background scattering matrix) and therefore

	 〈 〉 ≠ 〈 〉− +k kf el f eld d( ) ( )| | | | .PH Q H 	 (4.32)
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Instead, if we consider a special case of the real discrete state and if we realize that 
for the radial case with a real discrete state

	 φ φk kr r( ) ( ) *( ) ( ( )) ,− += 	 (4.33)

we can simplify the matrix element between electronic wave functions in Equation 
4.29 as

	 〈 〉 = 〈 〉 = 〈 〉 =− − + +k k k kf el f el el f dd d d
f

( ) ( ) ( ) ( )| | | | | |PH Q H H V 	 (4.34)

where we assumed that Hel is a Hermitian operator. Note that in this special case we 
can use the matrix element V kd

( )+  but without complex conjugation. In the three-
dimensional case, Equation 4.33 must be modified to

	 φ φk k
( ) ( ) *( )−

−
+= 	 (4.35)

and thus Vdk
*  in Equation 4.14 of Domcke (1991) should be replaced by Vd, −k under the 

assumption that φd is real, otherwise Vdk
( )*−  must be used.

We now return to Equation 4.27. The first term is generally called the background 
scattering T-matrix and reads

	 T v V v v T vv vi f i f

bg
f f i i f

el
i→

−
→= 〈 〈 〉 〉 = 〈 〉| | | | | ( ) | ,( )k k Rk k1 	 (4.36)

where

	 T V Vk k R k k k k
i f

el
f i f i→
− += 〈 〉 = 〈 〉( ) | | | |( ) ( )

1 1 	 (4.37)

is the fixed-nuclei background scattering T-matrix. The resulting expression is by 
definition the adiabatic nuclei approximation. We obtained this expression as a 
consequence of the fact that we used the diabatic approximation for the projection−
operator partitioned basis. Once we solve the background scattering elastic prob-
lem for each fixed R, it is easy to calculate this quantity. All effects beyond the 
Born–Oppenheimer approximation are contained within the resonant contribution.

The background terms are nonzero even for inelastic vibrational excitation but 
generally small when compared with the resonant part of the T-matrix. For an exam-
ple where these terms are not negligible, see the results for the F2-like model in 
Houfek et al. (2008).

The wave function (4.28) contains also the information about the dissociative 
electron attachment. The T-matrix for this process reads

	 T V

QHP

vi i

DA
f

f

d

d

,
( ) ( )

( ) ( )

| | |

| | | ,

k K

K

= 〈 〈 〉

= 〈 〈 〉

− +

− +

2 Ψ

Ψ
	

(4.38)

where | |( )Kf d− 〉 〉  is the eigenstate of H1 representing the final state for the disso-
ciative attachment, with | ( )Kf

− 〉  standing for the dissociative eigenstate of TN + Vd 
(R) with the outgoing boundary condition and Kf giving the wave-vector of the 
dissociation products. The above expression does not contain the background 
contribution
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T V v

H H v

vi i

bg,DA
f i i

f i i

d

d

,
( )

( )

| | | |

| | { } | |

k K k

K k

= 〈 〈 〉 〉

= 〈 〈 − 〉 〉

−

−

1

1 0

== 〈 〉〈 〉 − −







−K kf i i id
i

( ) | | ,v K E kf v

1
2

1
2

2 2

µ
	

which equals zero due to the energy conservation. This is consistent with the well-
known fact that it is not possible to describe the dissociative attachment process 
within the Born–Oppenheimer approximation.

4.2.3  I ntegral Equation for the Nuclear Wave Function

To get the dynamical equation for the evaluation of the wave function (4.28), we 
write the Lippmann–Schwinger equation corresponding to separation

	
H H V= +1 2 	

which reads

	 | | [ ] ( ) | ,( ) ( ) ( )Ψ Φ Ψ+ + − +〉 = 〉 + − + + + 〉i iE H H H HP Q PQ QPε 1 	 (4.39)

where ε is the usual positive infinitesimal. We also introduced the short hand notation 
HP = PHP, HQ = QHQ, HPQ = PHQ, HQP = QHP. The vector | ( )Φ i

+ 〉  characterizes 
the initial state and must be an eigenstate of HP for electron–molecule scattering and 
an eigenstate of HQ for ion–atom scattering channel. Multiplying this equation with 
Q and P, we obtain the system of equations

	 Q Q G H PQ QP| | | ,( ) ( ) ( )Ψ Φ Ψ+ + +〉 = 〉 + 〉i 	 (4.40)

	 P P G H QP PQ| | | ,( ) ( ) ( )Ψ Φ Ψ+ + +〉 = 〉 + 〉i 	 (4.41)

where we have introduced Green’s functions GQ = Q(E −   HQ + iε)−1Q and GP = P(E −
HP + iε)−1P. Substitution of Equation 4.41 into Equation 4.40 gives

	 Q Q G H P G H G H QQ QP Q QP P PQ| | | | .( ) ( ) ( ) ( )Ψ Φ Φ Ψ+ + + +〉 = 〉 + 〉 + 〉i i 	 (4.42)

We thus reduced the scattering problem in the complete Hilbert space H to a scatter-
ing problem in its small subspace Q. In the next section, we will show that the 
Q-space part of the wave function Q|Ψ(+)〉 obeys the inhomogeneous Schrödinger 
equation with the effective Hamiltonian (O’Malley 1966)

	 H H H G HQ QP P PQeff = + . 	 (4.43)

Employing the explicit expansion of the projectors in terms of the basis |d〉, |k(+)〉, 
we find

	 H T V R F Eeff N d= + +( ) ( ),	 (4.44)
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where F(E) is the operator in the nuclear space which in coordinate representation 
reads

	 〈 ′〉 = − − − +





′
−

∫R R R Rk k| ( ) | ( ) ( ) .*F E V E T V k V k kkd N di d d0
2

1
1
2

ε Ω 	 (4.45)

The integration is performed over the direction Ωk and the length k of the electron wave-
vector k. We do not indicate the type of the coupling amplitude Vdk

( )± , because both signs 
(±) lead to the same result since they represent the same operator HQP GPHPQ in the 
two different bases |k(±)〉. The operator F(E) is obviously nonlocal in the coordinate 
representation and it can be split in the Hermitian and the anti-Hermitian parts

	 F E E T V
i

E T V( , , ) ( , , ) ( , , ),R R R R R R′ = − − ′ − − − ′∆ ΓN N0 02
	 (4.46)

where

	 Γ Ω( , , ) ( ) ( ) ( ),*ε π δ εR R R Rk k′ = − ′∫2
1
2

2d d d dkk kV k V 	 (4.47)

	 ∆ Γ( , , ) ( , , ) ( ).ε π ε ε ε εR R R R′ = ℘ ′ ′ ′ − ′∫1
2

d / 	 (4.48)

We have separated the Hermitian and anti-Hermitian part of F(E) using the relation 

( ) ( ).x
x

x+ =℘ −−i iε πδ1 1
 For R = R′ the functions (4.47) and (4.48) are called the 

width 
Γ(ε, R) and the level shift ∆(ε, R) of the discrete state |d〉 due to interaction with the 
continuum. We would also like to point out the importance to distinguish between the 
functions Γ(ε, R) and ∆(ε, R) and the Hermitian and anti-Hermitian components of 
the nonlocal potential (4.46). Whereas Γ(ε, R) and ∆(ε, R) are just functions of ε and R, 
the components of F(E) are operators acting on the nuclear Hilbert space. The impor-
tant difference is that the operator E−TN−V0 is substituted for ε in Equations 4.47 and 
4.48, which means, for example, that the ordering of terms inside integral (4.47) is 
important.

As we saw in Equation 4.29, the resonant part of the T-matrix for the process of 
vibrational excitation can be written in terms of Q|ψ(+)〉, that is, in terms of |ψ(+)〉 = 
〈d|ψ(+)〉r, where the integration is performed only over electronic degrees of freedom 
as indicated by a subscript r, that is, the result is still a state in the nuclear part of the 
full Hilbert space. Equation 4.42 together with the definition of the nonlocal potential 
F(E) implies

	 | | ( ) ( ) | ,( ) ( ) ( ) ( )ψ φ ψ+ + + +〉 = 〉 + 〉G E F EQ 	 (4.49)

where G E E V TQ
( ) ( ) ( )+ −= − − +d N iε 1  and the function

	 | | | |( ) ( ) ( )φ + + +〉 = 〈 〉 + 〈 〉d di iΦ Φr Q QP rG H P 	 (4.50)

is determined by boundary conditions for the processes of interest. Formula (4.49) is 
the integral version of the fundamental equation describing uniquely dynamics of 
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the nuclear degrees of freedom. All electronic degrees of freedom are projected out 
and the formula contains only operators and states in the nuclear Hilbert space of the 
molecule. The state |ψ(+)〉 is the unique solution of this equation, but the vector |ψ(+)〉 
depends on the channel of interest. There are two important channels for low energies. 
The electron–molecule collisions e− + AB (channel I) and the ion–atom* collisions 
A + B− (channel II). For these two channels, we have

	 | | | | ( ) | ,( ) ( ) ( ) ( ) ( )ΦI i i I d ii

+ + + + +〉 = 〉 〉 ⇒ 〉 = 〉ν φ νk kG E VQ 	 (4.51)

	 | | | | | ,( ) ( ) ( ) ( )ΦII i II id+ + + +〉 = 〉 〉 ⇒ 〉 = 〉K Kφ 	 (4.52)

where |vi 〉 is the wave function of the initial vibrational state χvi
 (R) of the molecule 

AB, ki  is the momentum of the incoming electron and Ki  is the center of mass relative 
momentum for the ion–atom collision. Solutions | , |( ) ( )ψ ψI II

+ +〉 〉 of the fundamental 
Equation 4.49 with incoming boundary conditions | ( )φI

+ 〉 and | ( )φII
+ 〉, respectively, 

give the full nuclear dynamics of our problem for the electron–molecule and ion–atom 
collisions. Similarly, we can define the solutions | , |( ) ( )ψ ψI II

− −〉 〉, which have e− + AB 
and A + B− channels as outgoing asymptotes.

Finally, we write explicit formulas for the T-matrix for each of the processes (4.1) 
and (4.3) in terms of |ψ(±)〉. The resonant contribution to the T-matrices for VE, DA, 
and AD are

	 T PH Q VPQVE I f d If
≡ 〈 〉 = 〈 〉− + − +Φ Ψ( ) ( ) ( )* ( )| | | | ,ν ψk 	 (4.53)

	 T QH P VQPDA I II d ii
≡ 〈 〉 = 〈 〉− + − +Ψ Φ( ) ( ) ( ) ( )| | | | ,ψ νk 	 (4.54)

	 T PH Q VPQAD I f d IIf
≡ 〈 〉 = 〈 〉− + − +Φ Ψ( ) ( ) ( )* ( )| | | | ,ν ψk 	 (4.55)

where 〈 −ψ II
( ) | is the unique solution of

	 〈 = 〈 + 〈− − − +ψ ψII II
( ) ( ) ( ) ( )| | | ( ) ( ).K f QF E G E 	 (4.56)

The expression for TDA apparently differs from  Equation 4.38. In fact, here we used the 
principle of microreversibility and calculated the dissociative attachment from 
the final state wave function. The expression (4.38) can also be written in terms of 
Q-projection as follows:

	 T QH P V F EQPDA I d i IIi
= 〈 〉 = 〈 〉 + 〈− + − + − +Φ Ψ( ) ( ) ( ) ( ) ( ) ( )| | | | | ( ) |K Kk ν ψ 〉〉,	 (4.57)

where we used formula (4.41) to express P|Ψ(+)〉. Both expressions for TDA should 
give identical results which can be used for cross-checking of numerical results. All 
the expressions for T-matrices are valid on energy shell, that is, for example, for 
dissociative attachment the total energy E is identical to initial and final energies

	 E K E kf v= = +1
2

1
2

2 2

µ i i .	 (4.58)

*	 This general formulation also applies for A being polyatomic molecular fragment.
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4.2.4 D ifferential Equation for the Nuclear Wave Function

In this section, we briefly show the derivation of the differential form of the basic 
equation for the nonlocal dynamics. We start with Equation 4.28 written in the form 
applicable for both electron–molecule and ion–atom collisions

	 | | | ,( ) ( ) ( )Ψ Φ Φ+ + +〉 = 〉 + − + 〉1
2E H
V

iε 	 (4.59)

where | |( ) ( )Φ Φ+ +〉 = 〉I  or | |( ) ( )Φ Φ+ +〉 = 〉II  is the appropriate solution of H1 = HP + HQ, 
see Equations 4.51 and 4.52. The boundary conditions for function (4.59) are a little 
bit complicated. It is easier to work with

	 | | | ,( ) ( ) ( )Ψ Ψ Φsc
+ + +〉 = 〉 − 〉 	 (4.60)

which is purely the outgoing wave in infinity. This type of boundary conditions can 
then be enforced using some variant of complex absorption potential or complex 
scaling methods. Equation 4.59 implies

	 ( ) | | [ ] | .( ) ( ) ( )E H V H HPQ QP− 〉 = 〉 = + 〉+ + +Ψ Φ Φsc 2 	 (4.61)

We then project this equation using both projection operators P and Q

	 ( ) | | | ,( ) ( ) ( )E H Q H P H PQ QP QP− 〉 − 〉 = 〉+ + +Ψ Ψ Φsc sc 	 (4.62)

	 ( ) | | | .( ) ( ) ( )E H P H Q H QP PQ PQ− 〉 − 〉 = 〉+ + +Ψ Ψ Φsc sc 	 (4.63)

Finally, we express the P-part of | ( )Ψsc
+ 〉  as

	 P G E H Q QP PQ| ( ) [ | | ]( ) ( ) ( )Ψ Ψ Φsc sc
+ + +〉 = 〉 + 〉 	 (4.64)

and substitute this in the first of the two-projected equations

	 [ ] | | | .( ) ( ) ( )E H F Q H P FQQ QP− − 〉 = 〉 + 〉+ + +Ψ Φ Φsc 	 (4.65)

To be more specific, we write this final equation in the coordinate representation for 
Ψ Ψd scd( ) ( )( ) |+ += 〈 〉R r  and for electron–molecule collisions, that is, for | |( ) ( )Φ Φ+ +〉 = 〉I ,

	 ( ( )) ( ) ( , , ) ( ) ( ) (( ) ( ) ( )E T V F E VR v− − − ′ ′ ′ =+ + +
d d d dd

i i
R R R R R R R RkΨ Ψ χ ))∫ 	 (4.66)

with the nonlocal, complex, and energy-dependent potential F(E) = HQPGP(E)HPQ 
given by formula (4.45).

Once the solution Ψd
( )+  of Equation 4.66 is obtained, it can be used to evaluate the 

resonant part of the T-matrix with Equation 4.30 and the corresponding resonant 
contribution to the vibrational excitation cross section. The dissociative attachment 
can also be calculated using Equation 4.57 or from the asymptotic behavior of Ψd

( ).+  
(Note that normalization of the wave function is fixed by the right-hand side of the 
Schrödinger Equation 4.66.) For example, the s-wave contribution reads

	 σ π
µv

R
E

k
K

R
i

DA

i

DA
d( ) lim | ( ) | .=

→∞
+2 2

2
2Ψ 	 (4.67)
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4.3 �D etailed Treatment of Angular Momentum for 
Diatomic Molecules

The treatment up to now was completely general regarding the molecular vibrational 
degrees of freedom. The variable R could represent coordinates for any number of 
atomic nuclei in the studied molecule. The nuclear motion is then taking place in the 
many-dimensional space. However, for more than 1–2 degrees of freedom, the numer-
ical effort needed to solve the corresponding integral equations would be enormous. 
Up to now, there are only few attempts to go beyond one degree of freedom. In this 
chapter, we will solve completely the dynamics for the case of diatomic molecules in 
terms of partial wave expansions for both the electronic and nuclear parts of the 
wave function. As a result, the dynamics reduces to solution of a set of coupled one-
dimensional equations. The numerical methods suitable to treat such problems are 
then discussed in the following sections.

The partial wave expansion follows to some extent the work of Bieniek (1978), 
originally designed for Penning ionization. We briefly give the equivalent derivation 
for AD and also the formulas for DA and VE.

We start with the partial wave expansion of the discrete–continuum coupling 
Vdk(R) in the coordinate system fixed in the molecule and with the z-axis along the 
molecular symmetry axis. We will assume that the electronic state of the molecule AB 
has the Σ symmetry and the same symmetry is also assumed for the discrete state |d〉. 
This assumption considerably simplifies our derivation and  most of the systems 
discussed in the next chapter are of this form. Generalization for different symmetry 
would be straightforward only with little longer expressions. When the Σ symmetry 
is assumed, the scattering problem exhibits the symmetry with respect to rotations 
along the internuclear axis so that the partial expansion of |k(+)〉 is of the form

	 〈 〉 =+
′ ′

′
∑r k| ( , ) ( ) ( ).( ) *φl lm l m lm

l lm

k r Y r Y k� � 	 (4.68)

With k̂ , we denote the unit vector in the direction of k. Insertion of this expansion 
into the definition (4.13) of Vdk(R) yields

	 V Y k V
l

P Vl kl l kl

ll

d d dk = = +∑∑ 0

2 1
4

* ( ) (cos ) ,�
π θ 	 (4.69)

where

	 V r r H k r Y rkl ll m l m

l m

d d eld d= ′ ′ ′
′ =
∫∑ φ φ* ( ) ( , ) ( ) .r �

0

	 (4.70)

The terms with m ≠ 0 vanish due to Σ symmetry. Expansion (4.69) was derived in the 
coordinate system fixed in the molecule and θ is the angle between k̂ and R̂. To rewrite 
the expansion into the center off mass system fixed in space, we employ the relation

	
2 1
4
l

P a b Y a Y bl lm lm

m l

l+ ⋅ =
=−
∑π ( ) ( ) ( )*� � � � 	 (4.71)
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to obtain

	 V
l

Y R Y k V Rlm lm kl

lm

d dk R( ) ( ) ( ) ( ).*= +∑ 4
2 1

π � � 	 (4.72)

This formula, unlike the previous ones, employs the spherical harmonics Y nlm ( )^  in 
arbitrary coordinate system, that is, spherical coordinates are no longer measured 
from the internuclear axis R̂.

In the second step, we expand the nonlocal part F of the effective Hamiltonian 
Heff. This has been done in detail elsewhere (Bieniek 1978) and we will only outline 
the derivation briefly. The potential V0(R) is spherically symmetric, which means 
that the Green’s function in the definition (4.45) is diagonal in the angular momen-
tum representation

	 R R( ) ( ) ( , , ) ( ).*E T V Y R
R
G E R R

R
Y RJM J JM

JM

− − + ′ = ′ ′ ′− ∑N i0
1

0

1 1ε � � 	  (4.73)

Employing this formula and expansion (4.72) in the definition (4.45) yields

	 d d d d d dˆ ˆ ( ˆ ) ( , , ) ( ˆ ) ˆ ˆ ˆ* *R R Y R F E Y R k k R RJM J M

l m J M

′ ′ ′ = ′′ ′ ∑ ∑R R
1 1 0 0 ll m2 2

∑∫∫ 	

	

Y R
l

Y R Y k V R

Y R
R
G

JM l m l m kl

J M J

* *( ) ( ) ( ) ( )

( )

� � �

�

4
2 1

1
1

0

1 1 1 1 1

0 0 0

π
+

×

d

(( , , ) ( )

( ) ( ) (

*

*

E R R
R
Y R

l
V R Y k Y R

J M

kl l m l m

′ ′ ′

× + ′ ′

1

4
2 1

0 0

2 2 2 2 2
2

�

�π
d

�� �) ( ).Y RJ M′ ′ ′

	

(4.74)

Since the spherical harmonics are orthogonal, we can perform integration over dk̂  
and then by employing the relation for complex conjugation of spherical harmonics

	 Y n Y nlm
m

l m
* ( ) ( ) ( ),� �= − −1 	 (4.75)

and

	
dˆ ( ˆ) ( ˆ) ( ˆ)

( )( )( )

nY n Y n Y n

l l l l l

l m l m l m1 1 2 2 3 3

2 1 2 1 2 1
4

1 2 3 1

∫
= + + +

π
22 3 1 2 3

1 2 30 0 0

l l l l

m m m













	
(4.76)

for integrals of products of three harmonics the integrations over dR̂ and d ˆ ′R  can be 
performed as well. Finally, using orthogonality of Wigner 3j symbols

	
l l J

m m M

l l J

m m M J
l

m m

JJ MM
1 2

1 2

1 2

1 2
1

1 2

1
2 1







′
′







= +∑ ′ ′δ δ δ( ,ll J2 , ), 	 (4.77)
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we obtain

	 d d ( )ˆ ˆ ˆ ) ( , , ( ˆ ) ( , , )* *R R Y R F E Y R
RR

f E R RJM J M JJ MM J′ ′ ′ = ′ ′′ ′ ′ ′R R
1 δ δ ,,∫ 	 (4.78)

where

	
f E R R J

l J J

kV R G E k R

J

lJ

kl J

( , , ) ( )

( ) ( / ,

′ = ′ +
′





−

′

′

∑ 2 1
0 0 0

2

2

0
2d d ,, ) ( )*′ ′∫ R V Rkld

	

(4.79)

or

	 F E Y R
R
f E R R

R
Y RJM J JM

JM

( , , ) ( ) ( , , ) ( ).*R R′ = ′ ′ ′∑ � �1 1
	 (4.80)

This form of expansion of the nonlocal operator F is a consequence of its spherical 
symmetry. It is an important property since equations for partial waves with differ-
ent J are not coupled through the nonlocal potential although they are coupled with 
several partial waves of the molecular channel (sum over J′ in Equation 4.79) 
accounting thus for angular momentum of the electron released in the detachment or 
captured in the attachment process.

A next step is to define the partial wave expansion of the wave functions. It is 
simpler to start with the ion–atom wave function |ψII〉. We define partial waves ψJ and 
φJ with

	 〈 〉 =+ ∑R K| ( ) ( ) ( )( ) *N i
KR

R Y E Y RJ
J JM JM

JM

1 ϕII � � 	 (4.81)

	 〈 〉 =+ ∑R| IIψ ψII
J

J JM JM

JM

N i
KR

R Y E Y R( ) *( ) ( ) ( )
1 � � 	 (4.82)

and expand the Green’s function

	 〈 ′〉 = ′ ′ ′+ ∑R R R| ( ) | ( ) ( , , ) ( ).( ) *G E Y R
R
G E R R

R
YQ JM QJ JM

JM

� 1 1
	 (4.83)

The Lippmann–Schwinger equation 4.49 yields

	 ψ ϕ ψJ J QJ J JR R R R G E R R f E R R RII II IId d( ) ( ) ( , , ) ( , , ) ( ).= + ′ ′′ ′ ′ ′′ ′′∫ 	 (4.84)

We introduced the wave number K E= 2µ  in Equations 4.81 and 4.82 and the nor-
malization coefficient N K= −4 2 3 2π µ π( ) /  ensures the energy normalization

	 〈 ′ 〉 = − ′





+ +K K( ) ( )| .δ µ µ
K K2 2

2 2
	 (4.85)
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By employing the partial wave expansions in formula (4.55) for the associative 
detachment T-matrix and writing the wave functions |ν〉 for bound states of AB in the 
usual separated form

	 〈 〉 =R | ( ) ( )ν χ1
R

R Y Rn J J Mf f f f

� ,	 (4.86)

we obtain

	

T V

R R R
R

R Y
lm

n J J M

AD f f d II|

d d

f

f f f f

( , ) |

( ) (

( )* ( )

*

k E k= 〈 〉

=

− +

∑
ν ψ

χ2 1� RR

l
Y R Y k V R

Ni
KR

R Y

JM

lm lm k l

J
J J

�

� �

)

( ) ( ) ( )

( )

* ( )*

∑∫
× +

×

−4
2 1

1

π

ψ

d

II

f

MM JM

Jl
AD

lm JM

lmJM

J

E Y R

N
K

t J E Y k Y E

i J

*

*

( ) ( )

( , , ) ( ) ( )

(

� �

� �=

×

∑ νf f

f2 ++ +












1 2 1
0 0 0

)( ) ,J
J l J

M m M

J l Jf

f

f

	

(4.87)

where

	 t J E R R V R RJl n J k l J
AD

f f d
IId

f f f
( , , ) ( ) ( ) ( ).( )*ν χ ψ= −∫ 	 (4.88)

The integration formula (4.76) has been used again. The differential cross section for 
the associative detachment reads

	
d
d

AD
f

i
AD f

σ πΩ ( , ) ( ) | ( , ) | ,k E k E= 2 4
2

2g
K

T 	 (4.89)

where gi is the statistical factor for the discrete state potential. This factor applies 
only in the case that more potentials are connected to the same asymptote. The num-
ber gi then gives the statistical probability for particles to move along the potential 
curve Vd. This is, for example, the case of H + H−, where there are two potentials 
connected to the asymptote. The attractive 2Σu state and the repulsive 2Σg state which 
contributes only little to the AD cross section. The statistical factor in this example 
is thus gi = 1/2. Some caution is also needed in the case of the homonuclear systems 
like that described in Bieniek and Dalgarno  (1979) for H2, where J-dependent g-factor 
is present as a result of different nuclear spin. Formula (4.89) can further be simpli-
fied using the orthogonality relations (4.77) if we want to know only the integral 
cross section (integrated over k̂ f  and averaged over Ê)

	 σ π νAD f
i f AD

f f( , ) ( ) | ( , , ) | .k E
g

KE
J

J l J
t J EJl

lJ

= +




∑2

2 1
0 0 0

2

2 	 (4.90)
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The total AD cross section is obtained via summation over all accessible final states 
(EvfJf < E) or using the formula

	 σ µ

ψ

tot
i

IId d

( ) ( )

( ) [ ( , , ) ( , ,* *

E
g

KE
J

R R R f E R R f E R R

J

J J J

= +

+ ′ ′ − ′

∑2
2 1

))] ( ),ψ J RII ′∫ 	
(4.91)

which can be derived from the total flux lost from the discrete state channel due to 
the non-Hermitian part of the nonlocal potential F. Comparison of the two expres-
sions for σtot was used as a test for numerical solution of the resonant scattering 
problem by Bieniek (1980) and proved failure of the local complex potential approxi-
mation for associative detachment in H− + H collisions. Using the expansion of 
G0J(E) in the sum over the bound states χvJ(R) in the definition (4.79), it is possible to 
show that the two expressions for σtot are equivalent if no further approximation is 
imposed on F(E).

The T-matrix and the cross section for dissociative attachment can be obtained 
from the principle of detailed balance since the processes AD and DA are mutually 
reverse. It is

	 T E k T k EDA AD( , ) ( , )*� � � �= 	 (4.92)

and the integral cross section is

	 σ πDA i
i

i
DA i( , ) ( ) | ( , ) |E k

g
k

T E k= 2
2

4 2� � .	 (4.93)

Let us now investigate the vibrational excitation process. Employing the relation

	 G E G E G E F E G EQ Q
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )+ + + += + 	 (4.94)

for the complete Green’s function G(+) (E) ≡ (E−Heff + iε)−1, Equations 4.49 and 4.51 
yield

	 | ( ) |( ) ( ) ( )ψ νI d ii

+ + +〉 = 〉G E V k 	 (4.95)

and (4.53) implies

	 T V G E VVE f d d i|
f i

= 〈 〉− + +ν νk k
( )* ( ) ( )( ) | .	 (4.96)

Since F is spherically symmetric, it is

	 〈 ′〉 = ′ ′ ′+ ∑R R R| ( ) | ( ) ( , , ) ( )( ) *G E Y R
R
G E R R

R
YJM J JM

JM

� 1 1
.	 (4.97)

We can thus use a similar procedure as for TAD to obtain (for the resonance 
contribution)
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T R R R V R G E R R V Rn J k l J k l n JVE d dd d
f f f i i

= ′ ′ ′∫ − +χ χ( ) ( ) ( , , ) ( )( )* ( )
1 2 ii

f 1
f i

( )

( ) ( ) ( )(* *

′

× − +

∑∑∑
+ +

R

Y k Y k J

JMl ml m

M m M
l m l m

2 21 1

1 1 2 2
1 2 1

^ ^
)) ( )( )2 1 2 1

0 0 0
1 1

1

2

2

J J

J l J J l J

M m M

J l J

M m

f i

f f

f

i

+ +

×




 − −





 − MM

J l J

i

i











2

0 0 0
.

	

(4.98)

The formula for the vibrational excitation process is more complicated than Equation 
4.87 for associative detachment since the angular momentum is transferred twice 
between the electron and the molecule—once during the resonant capture of an 
electron into the discrete state and for the second time in the autoionization. Even if 
we start with the molecule AB in a state vi with a defined angular momentum, sev-
eral partial waves are populated in | ( )ψ I

+ 〉 if Γl ≠ 0 for l > 0. The state | ( )ψ I
+ 〉 can 

subsequently decay in many states vf (with many different Jf). This complication 
does not apply if we introduce the following approximation.

4.3.1 L ow-Energy s-Wave Approximation

Since the electron is a light particle, it feels strongly the repulsive barrier { ( )}/l l r+1 2 2 
(me = 1 in atomic units). For large r, we can neglect the other forces and assume that 
the potential is spherically symmetric,* that is, expansion (4.68) reduces to

	 〈 〉 =+ ∑r k| ( , ) ( ) ( ).( ) *φlm lm lm

lm

k r Y r Y k� � 	 (4.99)

If the electron energy ( / )1 2 2k  is small (near threshold energies), it is reasonable to 
assume that the electron cannot penetrate the repulsive barrier and ϕlm(k, r) = 0 for r 
small and l > 0, that is,

	 V lkld for= >0 0 	 (4.100)

and

	 V Y R Y k V Rkd dk = 4 00 00π ( ) ( ) ( ),� � 	 (4.101)

where with Vdk(R) we denoted Vdkl=0(R). As a consequence, the sums over l can be 
dropped out in all previous formulas for near threshold processes, which simplifies 
the problem significantly. Thus, using relation

	
0

0 0 0
1 2 1

′





= − +′
J J

JJ
JJ( ) / ,δ 	 (4.102)

formula (4.79) yields

	 f E R R kV R G E k R R V RJ k J k( , , ) ( ) ( / , , ) ( ).*′ = − ′ ′∫ d d d0
2 2 	 (4.103)

*	 This is not true in the case the molecule AB possesses an electric dipole. Influence of approximation 
(4.100) to the cross sections then needs further investigation.
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Similarly employing (4.102) and

	
J J

M M
JJ M

JJ MM

′
− ′







= − +−
′ ′

0

0
1 2 1( ) /δ δ 	 (4.104)

the associative detachment T-matrix is found to be

	 T
N
K

i
Y E R R V R R

J

J M n J k JAD f d
II

f

f f f f f f
d( , ) ( ) ( ) ( ) ( )* ( )*k E = −∫4π

χ ψ� 	 (4.105)

and the cross section

	 σ π χ ψAD f
i

d
IId

f f f f
( , ) ( ) ( ) ( ) .( )*k E

g
KE

R R V R Rn J k J= −∫2 2

	 (4.106)

The description of vibrational excitation also considerably simplifies if we neglect 
the angular momentum of the electron. The TVE thus reduces to

	 T t n k n kJ J M M JVE f i
VE

f f i if i f i
( , ) ( , , , ),k k = 1

4π δ δ 	 (4.107)

where

      T n k n k R R R V R J E R R VJ n J k k
VE

f f i i d dd d
f f f i

( , , , ) ( ) ( ) ( , , )( )* ( )= ′ ′− +χ (( ) ( ).′ ′∫ R Rn Jχ
i i

	 (4.108)

The presence of Kronecker delta δJ Jf i
 and δM Mf i

 is the consequence of the angular 
momentum conservation for the molecule AB, when angular momentum of the elec-
tron has been neglected. We thus do not have the possibility to describe rotational 
excitation unless the assumption (4.100) is rejected. The formula for the partial con-
tribution to TVE can easily be transformed into the form

	 t n k n k R R V R RJ n J k J
IVE

f f i i dd
f f

( , , , ) ( ) ( ) ( ),( )*= −∫ χ ψ 	 (4.109)

where ψ J
I R( )  is the unique solution of

	 ψ ϕ ψJ
I

J
I

QJ J J
IR R R R G E R R f E R R R( ) ( ) ( , , ) ( , , ) ( )= + ′ ′′ ′ ′ ′′ ′′∫ d d 	 (4.110)

and we have introduced the following abbreviation

	 ϕ χJ
I

QJ k n JR R G E R R V R R( ) ( , , ) ( ) ( ).( )= ′ ′ ′ ′+∫ d d i i
	 (4.111)

Equation 4.110 is the partial wave expansion of Equation 4.49 under the assumption 
(4.100). Finally, the angle-integrated VE cross section reads

	 σ π
VE f f i i

i

VE
f f i i( , , , )

( )
| ( , , , ) | ,n k n k

k
t n k n kJ= 2

4

3
2 	 (4.112)

with J being the angular momentum of the initial state |vi〉.
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4.3.2  Parametrization of the Nonlocal Resonance Model

It is clear on the basis of the previous discussion of the theory of resonant collisions 
that the nuclear dynamics and the cross sections are fully determined if the 
functions

	 V R V R V Rkl0 ( ), ( ) ( )d dand 	

are known. As was shown in the last section Vdkl(R) with l > 0 does not contribute 
significantly for small energies ε and only the function Vdk(R) is important for the 
dynamics.* Further simplification can be achieved thanks to the extraction of all fast 
dependencies on ε and R from the background scattering due to the extraction of the 
resonance part of the wave function. It follows that the discrete-state-continuum cou-
pling Vdk(R) is a slowly varying function of ε and R. The coupling Vdk(R) is a complex 
quantity, but the overall phase is not important, since Vdk(R) is present together with 
V Rkd

* ( )′  in the nonlocal potential and only the absolute value of its matrix elements is 
needed for the cross sections. What is important is the relative phase between Vdk(R) 
and Vdk(R′) in two different points R and R′ but since the nonlocal resonant dynamics 
is restricted to a small region near the equilibrium distance R0 of the molecule AB and 
since the coupling is slowly varying with R it is reasonable to assume that this relative 
phase can be neglected and Vdk(R) can be regarded as being a real number.† This 
assumption is unnecessary simplification if the quantities Vdk(R) are constructed 
directly from electron–molecule scattering calculation, but it is very helpful, when 
Vdk(R) is constructed from incomplete information about the electron dynamics.

Expansion of the discrete-state-continuum coupling into a sum of separable 
terms in energy ε and internuclear distance R is often performed

	 V R f g Rk i i

i

d ( ) ( ) ( ).= ∑ ε 	 (4.113)

As will be discussed later, the separation of energy and distance is crucial for time 
demands of actual numerical calculation. It has been shown that even one term in the 
expansion often gives qualitatively correct results for the description of the resonant 
dynamics.

The nonlocal resonant dynamics described by the four functions V0(R), Vd(R), 
fi(ε), and gi(R) will be further referred to as the nonlocal resonance model of the 
dynamics in this work. The calculation of the function V0(R) for the particular mol-
ecule AB is a routine task of quantum chemistry and a large variety of the methods 
have been developed in the last few decades to treat this problem. The direct deter-
mination of Vd(R) and Vdk(R) is still far from routine. The calculations for the range 
of both ε and R are available only for the most fundamental systems like H2 + e− 
(Berman et al. 1985) and HeH+ + e− (Movre and Meyer 1997). It is therefore useful 
to use some analytic knowledge about the behavior of the model functions like 
asymptotic expansions at low energy.

*	 �There are some exceptional cases like H2, where s-wave is forbidden by symmetry and l = 1 is the 
dominant contribution.

†	 The phase factor in Vdk(R) equals to the square root of the background scattering S-matrix eiδbg.
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The threshold behavior of the discrete-state-continuum coupling Vdk(R) for the 
small energies ε is determined by the long-range electron–molecule forces in accor-
dance with the threshold law of Wigner (1948). If the molecule AB does not possess 
an electric dipole, the long-range electron–molecule interaction vanishes faster than 
r−2 and the threshold behavior of the coupling is (Domcke 1991)

	 Γ l kl
lV R( ) | ( ) | .( ) /ε π ε≡ ∼ +2 2 2 1 2

d 	 (4.114)

As discussed before, only the lowest l allowed by symmetry is really important, which 
usually is l = 0. In the case of polar molecules, the threshold behavior depends on the 
dipole moment D of the molecule. For D < Dcrit = 1.625 Debye, it is (Domcke 1991)

	 Γ( ) ~ ,ε αE 	 (4.115)

where

	 α = +d
1
4

	 (4.116)

and d is a dimensionless-reduced dipole moment given by the lowest eigenvalue of 
an infinite-dimensional tridiagonal matrix (Crawford 1967). If the molecule pos-
sesses a supercritical dipole D > Dcrit bound states exist in electron–molecule chan-
nel and the threshold behavior is more complicated. Similar situation is faced in the 
case of Penning ionization or dissociative recombination, where the electron is sub-
jected to Coulomb force in the e− + AB+ channel. Nonlocal dynamics for these cases 
will not be investigated in this work.

The threshold law (4.114) or (4.115) fixes the form of fi(ε) near the origin ε = 0 and 
both fi(ε) and gi(R) must vanish at infinity. The value of Vd(R) at infinity is fixed since 
Ed = Vd − V0 evaluated in R = ∞ equals to the electron affinity of the atom A (or B).

Methods for construction of Vd(R), Vdε (R) from ab initio fixed-R electron–molecule 
scattering data and other ab initio information will be given in the following chapter.

4.4 �N umerical Treatment of the Nuclear  
Dynamics Equations

The problem of resonant electron–molecule or ion–atom scattering has been trans-
formed into solution of the one-dimensional Lippmann–Schwinger equation in the 
previous sections. The equation contains a rather complicated quantity—the nonlocal 
potential, resulting from a coupling of the discrete resonant state with the continuum, 
which has to be calculated first. As soon as the solution of the equation is known, the 
cross sections are easily found by evaluating the matrix elements of the discrete-
state-continuum coupling Vdk. The general scheme for the solution of the problem can 
be summarized as follows:

1.	 To find the scattering solution φJ(R) and the Green’s function GQJ(E) for 
the local potential Vd.

2.	 To calculate the nonlocal potential fJ(E). As shown later, this is closely 
related to calculation of bound states |ν〉 in the potential V0.
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3.	 To solve the Lippmann–Schwinger equation for the wave functions 
ψ J

I R( ) or ψ J
II R( ), respectively.

4.	 To calculate the T-matrix elements and cross sections (or other quantities 
of interest) from ψIJ(R) or ψ J RII ( ).

Step 4 is a trivial application of the formulas derived earlier. Computational proce-
dures to perform the other three steps are outlined below.

4.4.1 S olution to the Local Problem

There have been developed large variety of methods to solve the Lippmann–
Schwinger equation for a local potential in the past few decades and it is nowadays a 
routine task. First of all the Lippmann–Schwinger equation

	 ϕ µ ϕJ J J J JR u R
K

Ru R v R V R R( ) ( ) ( ) ( ) ( ) ( ),= − ′ ′< >∫2
d d 	 (4.117)

where R R R> = ′max( , ), R R R< = ′min( , ) and the functions uJ and vJ are given in 
terms of the spherical Bessel functions jJ and hJ

	 u R KRj KRJ J( ) ( ),= 	 (4.118)

	 v R KRh KRJ J( ) ( )= i 	 (4.119)

are equivalent to the Schrödinger equation

	 − + + +





=1
2

1
2

2

2 2µ µ
ϕ ϕd

d dR
J J

R
V R R E RJ J

( )
( ) ( ) ( ) 	 (4.120)

with corresponding boundary conditions. Standard finite-difference methods like 
algorithms of Numerov or Runge–Kutta can be used to solve this equation. Special 
methods for the case when φJ(R) is a fast oscillating function have also been developed 
(Gordon 1969, Gordon 1970). We prefer to solve the integral Equation 4.117 directly. 
The solution of Equation 4.117 gives the correct normalization automatically, 
whereas the normalization has to be found afterwards when solving the differential 
Schrödinger equation. As we will see later, by solving the Lippmann–Schwinger 
equation, we obtain also the T-matrix for the local problem as a byproduct. Another 
advantage of the integral equation formulation is the possibility of increasing the 
numerical precision by means of the Romberg quadrature (Horáček 1989). The long-
range rotational energy term J(J + 1)/2µR2 is treated exactly in the Lippmann–
Schwinger equation method. The price for this is the occurrence of the Bessel functions 
in the equation, which must be calculated at many points. Nevertheless, this does not 
slow the calculation considerably if the solution is required for a large number of J 
since a very efficient method for calculation of large number of the Bessel functions by 
means of stable recurrence relations has been developed (Gillman and Fiebig 1988).

The method presented here for solving Equation 4.117 is described in detail in 
the article of Horáček (1989). Here, we only outline the principles and generalize the 
method for finding the irregular solution and the Green’s function.
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4.4.2 R egular Solution

We will omit the subscripts J and d in this and the following section. The Equation 
4.117 can easily be rewritten in the form

	 ϕ µ ϕ( ) ( ) [ ( ) ( ) ( ) ( )] ( ) ( ),R Au R
K

R v R u R u R v R V R R
R

= − ′ ′ − ′ ′ ′∫2

0

d 	 (4.121)

where

	 A
K

v R V R R R= − ′ ′ ′ ′
∞

∫1
2

0

µ ϕ( ) ( ) ( ) .d 	 (4.122)

In other words, if we introduce the function f(R) = ϕ(R)/A, we obtain

	 f R R u R R v R( ) [ ( )] ( ) ( ) ( ),= − +1 β α 	 (4.123)

where

	 α µ
( ) ( ) ( ) ( ),R

K
R u R V R f R

R

= − ′ ′ ′ ′∫2

0

d 	 (4.124)

	 β µ
( ) ( ) ( ) ( ).R

K
R v R V R f R

R

= − ′ ′ ′ ′∫2
0

d 	 (4.125)

The constant A can be found from

	 A = − ∞ −( ( ))1 1β 	 (4.126)

and the T-matrix for elastic scattering is given by the formula

	 t
K

Ru R V R R≡ − = ∞ − ∞ −

∞

∫2
1 1

0

µ ϕ α βd ( ) ( ) ( ) ( )[ ( )] . 	 (4.127)

Numerical solution of the integral Equation 4.117 on a grid R = x1,…,xn is then 
based on Equation 4.123. The trapezoidal rule is used for the integrals (4.124) and 
(4.125). We can observe that the terms with f(R′ = R) vanish in Equation 4.123 
which can be used to calculate f(xi+1) if f(x1),…,f(xi) are known. The use of the trap-
ezoidal rule also facilitates the possibility to speed the convergence using the 
Romberg scheme.

4.4.3 I rregular Solution and Green’s Function

The regular solution of the Schrödinger Equation 4.120 is the solution obeying the 
boundary condition φ(r)(R = 0) = 0. Since u(R = 0) = 0, we can see from (4.121) that 
the solution of (4.117) is indeed the regular solution. The irregular solution on the 
other hand is the solution obeying the condition φ(i)(R → ∞)∼v(R). The Green’s func-
tion GQJ(E, R, R′) can be written in terms of these two solutions as
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G E R R R E

R
J J

R
V R RQJ ( , , ) |

( )
( ) |′ ≡ 〈 + − + − +





′〉

= −

−
1

2
1

2

2

2 2

1

µ µ
εd

d
i

22µ ϕ ϕ
K

R R( ) ( )( ) ( ).r i< >

	 (4.128)

It is easy to show that φ(i)(R) is the solution of

	 ϕ µ ϕ( ) ( )( ) ( ) ( ) ( ) ( ) ( ),i idR v R
K

Ru R v R V R R= − ′ ′< >

∞

∫2

0

	 (4.129)

which can be rearranged into the form

	 ϕ µ ϕ( ) ( )( ) ( ) [ ( ) ( ) ( ) ( )] ( ) ( ),i idR Av R
K

R v R u R u R v R V R R
R

= − ′ ′ − ′ ′ ′
∞

∫2
	 (4.130)

which is analogous to Equation 4.121 and it yields for f(R) = φ(i)(R)/A

	 f R R v R R u R( ) [ ( )] ( ) ( ) ( )= − +1 α β 	 (4.131)

with

	 α µ
( ) ( ) ( ) ( ),R

K
R u R V R f R

R

= − ′ ′ ′ ′
∞

∫2
d 	 (4.132)

	 β µ
( ) ( ) ( ) ( ).R

K
R v R V R f R

R

= − ′ ′ ′ ′
∞

∫2
d 	 (4.133)

The constant A can be written in terms of α

	 A
K

Ru R V R R A= − = +
∞

∫1
2

1 0
0

µ ϕ αd i( ) ( ) ( ) ( ),( ) 	 (4.134)

that is, A = (1 − α(0))−1. Equation 4.131 can be used for the numerical calculation of f(R) 
on a grid in the same way as Equation 4.123 in the case of the regular solution. The only 
difference is that now the function f(R) has to be calculated in the decreasing sequence 
of grid points starting from sufficiently large xn, so that f(xn) = v(xn) can be assumed. 
The irregular solution φ(i)(R) is then obtained by multiplication of f(R) with A.

The procedure for the calculation of the regular and irregular solutions and the 
Green’s function outlined earlier can be generalized for the coupled channel problem.

4.4.4 E valuation of the Nonlocal Potential

The key element of evaluation of the nonlocal potential

	 F E k kV G E V( ) ( ) *= −∫ kd d d d
�

k k0 ε 	
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is the knowledge of the Green’s function G0(E) ≡ (E − TN − V0 + iε)−1 for the neutral 
molecule AB. The formula similar to Equation 4.128 is of little use here, because the 
regular and irregular solutions depend on energy and the integration over ε cannot eas-
ily be performed. A better idea is to expand the G0(E) in terms of bound states of 
molecule AB

	 〈 〉 =R | ( ) ( )ν χν
1
R

R Y RJ JM
� 	 (4.135)

to obtain
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(4.136)

Comparison of this expansion with (4.73) yields

	
G E R R E

R
J J

R
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J
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1
1

2
1

2
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(4.137)

This expression is convenient for the evaluation of F(E) since the integration over dε 
can be performed analytically (see (4.47) and (4.48))

	 F E v E E
i

E E vv

v

v( , , ) | [ ( , , ) ( , , )] |R R R R R R R R′ = 〈 〉 ∆ − ′ − − ′ 〈 ′〉∑ 2
Γ 	 (4.138)

or after the partial wave expansion (see formula 4.79)

	
f E R R J

l J J

R E E R
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′

′
′

∑ 2 1
0 0 0

2

χ RR
i

E E R R Rl v
J

vJ

v

) ( , , )] ( ),− − ′′
′∑ 2

Γ χ

	

(4.139)

where

	 Γl l lR R V R V R( , , ) ( ) ( ),*ε π ε ε′ = ′2 d d 	 (4.140)

	 ∆ Γl lR R R R( , , ) ( , , ) /( ).ε π ε ε ε ε′ = ℘ ′ ′ ′ − ′∫1
2

d 	 (4.141)

If we neglect the angular momentum of the released/captured electron (see Section 
4.3.1), we get

	 f E R R R E E R R
i

E E R R RJ vJ v
J

v
J

vJ

v

( , , ) ( )[ ( , , ) ( , , )] ( )′ = ∆ − ′ − − ′ ′χ χ0 02
Γ∑∑ .	 (4.142)
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Minor difficulty for application of this expansion to actual numerical calculation is 
the presence of continuum functions in the sum over ν, which becomes important 
near the dissociation limit for the neutral molecule AB. This problem has been over-
come by an appropriate discretization of the continuum spectrum by Horáček et al. 
(1996) who suggested to use the Fourier DVR method for the discretization, which is 
equivalent to putting the molecule AB into a box, that is, imposing the boundary 
condition χvJ(Rc) = 0 at a certain cutoff radius Rc. The sum over ν is then cut at a 
certain ν = νmax. One may wonder about the role of the box boundary condition on 
the calculation, since the correct boundary condition should be given by prescribing 
the outgoing wave at some large Rc. The correct behavior is however ensured by the 
presence of the infinitesimal part iε in the expansion (4.137).

4.4.5 L ocal Approximations

A local approximation of the nonlocal dynamics is based on the replacement of the 
nonlocal potential fJ(E, R, R′) with a certain local quantity. The possibility of such a 
replacement is based on different timescales for electronic and nuclear dynamics. 
The nuclei are moving in the presence of an electron captured in the discrete resonant 
state |d〉. The resonant state |d〉 can decay at any point R and the electron can again 
be captured into |d〉 at a different point R′. If the electron released in the decay is fast, 
the difference between R and R′ cannot be large, because otherwise the electron 
would be gone before nuclei succeed to travel the distance |R−R′| and could not be 
captured again. The nonlocality of the interaction is therefore pronounced only if 
resonance energy Ed = Vd−V0 is small, that is, if the potential curves Vd(R) and V0(R) 
come close together or even cross each other. If they are well separated (as is often 
the case for the Penning ionization), it is possible to replace Vd + fJ with the local 
approximation (Bieniek 1978, Domcke 1991, Morgner 1990)

	 V R
i

Rloc loc( ) ( ),−
2

Γ 	 (4.143)

where

	 V R V R E Rloc res( ) ( ) ( ),= +0 	 (4.144)

	 Γ Γloc res( ) ( ( ), , ),R E R R R= 	 (4.145)

and

	 E R V R V R E R R RJres d res( ) ( ) ( ) ( ( ), , ).= − +0 ∆ 	 (4.146)

A transparent derivation of this approximation including the possibility of first-order 
corrections* has been done in the time-dependent formalism (Domcke 1991). It is 
also possible to show that if Eres (R) < 0 then Vloc(R) is the bound state of Hel (see 
Equation 4.4).

*	 In the time-dependent picture, the effective potential (after projecting out the continuum) is not only 
nonlocal, but contains also the memory effects. The first-order corrections depend only on the first 
derivative of the wave function with respect to time and R.
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The local approximation (4.144) cannot give good results for the systems where 
the curves V0(R) and Vd(R) come close together. Nevertheless, local approximations 
are still useful to accelerate the convergence of iteration methods for solving the 
nonlocal Lippmann–Schwinger equation

	 | | | ,ψ ϕ ϕ〉 = 〉 + 〉G fQJ J 	 (4.147)

which corresponds to the partitioning of the potential Veff = Vd + fJ. We can use the 
different partitioning Veff = Vloc + fJ� instead, with fJ

� = fJ + Vd − Vloc being a “smaller” 
operator than the original fJ and having a chance for faster convergence of methods 
for solving the corresponding Lippmann–Schwinger equation (see the next section). 
This subtraction of the local approximation from the full nonlocal problem is a special 
case of the method of preconditioning known in the matrix iteration methods.

Use of the approximation (4.144) is limited also by the fact that the Equation 4.146 
often does not have a unique solution. A different local approximation has been pro-
posed by Horáček et al. (1996) to accelerate the convergence (in the way suggested 
above). This approximation is convenient in the cases where the wave function ψJ(R) 
is not strongly oscillating. The first term in the Taylor expansion

	 f E R R R R f E R R R R R R RJ J J J J( , , ) ( ) ( , , )[ ( ) ( ) ( ) ]′ ′ ′ = ′ + ′ − ′ + ′∫ ∫ψ ψ ψd d� 	 (4.148)

yields the energy-dependent local approximation

	 f E R f E R R RJloc d( , ) ( , , ) .= ′ ′∫ 	 (4.149)

4.4.6 �S olution of Lippmann–Schwinger Equation with  
Nonlocal Potential

A very efficient method for computing the T-matrix elements in the presence of 
nonlocal interactions, the Schwinger–Lanczos algorithm, was proposed by Meyer 
et al. (1991). This method has been successfully used in several realistic applications 
(Horáček and Domcke 1996, Horáček et al. 1996, Gemperle and Horáček 1997) to 
calculate the cross sections for vibrational excitation, associative detachment, and dis-
sociative attachment based on the use of the nonlocal resonance model. The essence 
of the method has been outlined already in Chapter 2 in connection with the solution 
of the fixed-nuclei electronic scattering problem. Originally, the method was 
designed for calculation of the diagonal T-matrix elements. In principle, it can also 
be used for calculation of the nondiagonal T-matrix elements resulting from multi-
channel collisions, but the calculation is rather cumbersome and the incoming and 
outgoing states are not treated symmetrically. It is the purpose of this section to pres-
ent a generalization of the Schwinger–Lanczos algorithm for the multichannel case 
and to establish its relation to other methods.

4.4.6.1 S hort Review of the Schwinger–Lanczos Approach
According to the Schwinger variational principle (Lippmann and Schwinger 1950), 
the T-matrix element
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	 T T V V VG V Vfi f i f i≡ 〈 〉 = 〈 − 〉−φ φ φ φ| | | ( ) |0
1 	 (4.150)

is given by the stationary value of the functional

	 T V V V VG V[ , ] | | | | | | ,ψ ψ φ ψ ψ φ ψ ψ− + + − − += 〈 〉 + 〈 〉 − 〈 − 〉f i 0 	 (4.151)

where V is an interaction potential and G0 the free particle Green’s function. This 
stationary value is achieved for |ψ±〉 being solutions of the corresponding Lippmann–
Schwinger equations. Considering |ψ±〉 in the form

	 | | ,( )ψ±
±

=

〉 = 〉∑ c gk k

k

N

1

	 (4.152)

with variational parameters ck
( )±  we obtain an approximation to the T-matrix

	 T V g M g VN
k kl l

k l

N

fi f i= 〈 〉 〈 〉−

=
∑ φ φ| | ( ) | | ,

,

1

1

	 (4.153)

where the matrix M is given by Mkl = 〈gk|V−VG0V|gl〉. The set of vectors {| }gk k
N〉 =1 can 

be chosen arbitrarily (not necessarily orthogonal) provided that Mkl is a regular 
matrix. The Schwinger–Lanczos method (SLM) was proposed for calculation of the 
diagonal T-matrix elements (Meyer et al. 1991), that is, |φf〉 = |φi〉 = |φ〉, needed for 
evaluation of elastic cross sections. In this method, T N

fi  is calculated according to 
Equation 4.153, with |g1〉 = |φ〉〈φ|V|φ〉−1/2 and the set {| }gk k

N〉 =1 is taken as V-orthogonal

	 〈 〉 =g V gk l kl| | δ 	 (4.154)

and such that the matrix VG0V is tridiagonal

	 〈 〉 = 〈 〉 =− − −g VG V g g VG V gk k k k k1 0 0 1 1| | | | ,β 	 (4.155)

	 〈 〉 =g VG V gk k k| | ,0 α 	 (4.156)

	 〈 〉 = − ≥g VG V g kk l| | | | .0 0 2for / 	 (4.157)

Let us note that the complex-symmetric scalar product (i.e., without complex conju-
gation) is used throughout this section and not the usual (Hermitian) one, since G0 is 
a symmetric but non-Hermitian operator. Only the matrix element (M−1)11 is needed 
in Equation 4.153 and this element is for a tridiagonal matrix M easily expressible in 
the form of a continued fraction. The T-matrix then reads

	 T V g M g V
VN N= 〈 〉 〈 〉 = 〈 〉

− − − − − −
−φ φ φ φ

α
β
α

β
α

β
| | ( ) | |

| |
1

1
11 1

1

1
2

2

2
2

31 1 1
� −−

−
1

2

1 αN

. 	 (4.158)

The numbers αk, βk and the vectors |gk〉 with properties (4.154)  through (4.157) are 
constructed according to the recurrence (see Meyer et al. 1991 and references therein 
for more details about the Lanczos algorithm)

	 | | | ,r G V g gk k k k〉 = 〉 − 〉− −0 1 1β 	 (4.159)
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	 αk k kg V r= 〈 〉| | , 	 (4.160)

	 | | | ,s r gk k k k〉 = 〉 − 〉α 	 (4.161)

	 βk k kg V g= 〈 〉| | 1 2/ , 	 (4.162)

	 | | ,g sk k k+
−〉 = 〉1

1β 	 (4.163)

with |g1〉 = |φ〉 〈φ|V|φ〉−1/2 and β0 = 0.
The off-diagonal matrix elements of the T-matrix are needed for the calculation 

of resonant electron–molecule and ion–atom collisions. The same Lanczos basis 
with the properties (4.154) through (4.157) generated by the algorithm (4.159) through 
(4.163) and with the starting vector |g1〉 = |φi〉〈φi|V|φi〉−1/2 can be used in such a case. 
The formula for the T-matrix element resulting from Equation 4.153 will be slightly 
more complicated than in the previous case

	 T V g M g VN
k k

k

N

fi f i= 〈 〉 〈 〉−

=
∑ φ φ| | ( ) | | .1

1 1

1

	 (4.164)

Note that now the first column of M−1 is needed instead of the single element M11
1− . 

Using elementary algebra, it turns out that

	 ( ) ,M
f f f fk

k

k k

−
⋅

−

−
=1

1
1

1

2

2

1

1

1β β β
� 	 (4.165)

where the quantities

	 f f fk k k k N N= − − = −+1 12
1α β α/ , 	 (4.166)

are involved also in the calculation of the continued fraction (4.158). As pointed out 
in Meyer et al. (1991), this approach does not treat in and out states in a symmetrical 
manner. For this reason, the so-called band Lanczos algorithm (Meyer and Pal 1989) 
was proposed by Meyer et al. (1991) which leads to a banded instead of a tridiagonal 
matrix. Another approach preserving tridiagonality of the matrix, but using different 
basis sets for in- and outgoing states was proposed by Čížek et al. (2000).

It is also shown by Meyer et al. (1991) that SLM is equivalent to the method of 
continuous fractions of Horáček and Sasakawa (1983), see also Horáček and 
Sasakawa (1984, 1985).

4.4.7 A nother Method of Solution of Nonlocal Dynamics

We tried to present the details of all the steps needed to solve the nonlocal nuclear 
dynamics in the preceding sections. Before discussing the results of the calculations for 
several systems in the following chapter, we would also like to mention briefly some 
alternative methods of solution of the equations of the nonlocal resonance theory.

The first step of the abovementioned procedure was solution of the local prob-
lem. The alternative to the direct solution of the Lippmann–Schwinger Equation 
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4.117 in the coordinate representation is to use the R-matrix basis. The advantage of 
this approach is that the R-matrix is found in one step and it can be then used for all 
energies (Kolorenč et al. 2002), whereas the numerical solution on the grid must be 
repeated for each energy.

The solution of the Lippmann–Schwinger equation for the nonlocal problem 
with the potential written in terms of the separable expansion (4.142) can be found 
directly by expansion in the vibrational basis (extended with the discretized contin-
uum). This approach converges slower than Schwinger–Lanczos method, but it was 
used, for example, by Hickman (1991) for vibrational excitation of H2. Alternative 
separable approximation to the nonlocal resonance potential (the Bateman approxi-
mation) was also discussed by Houfek et al. (2002).

To complete the list of the methods, we must also briefly mention the time-
dependent formulation of the nonlocal resonance theory (see Domcke 1991 and 
references therein), the semiclassical method of Kazansky and Kalin (1990), Kalin and 
Kazansky (1990), the discretization of the full dynamics in the P-space (Kazansky 
1996) or direct solution of the Schrödinger Equation 4.66 using the exterior complex 
scaling methods (Houfek et al. 2008).
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Horáček, J. and T. Sasakawa. 1985. Method of continued fractions for on- and off-shell T 
matrix of local and nonlocal potentials. Phys. Rev. C 32(1), 70–75.

Hotop, H., M. W. Ruf, M. Allan, and I. I. Fabrikant. 2003. Resonance and threshold phe-
nomena in low-energy electron collisions with molecules and clusters. Adv. At. Mol. 
Phys. 49, 85–216.
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