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I. A. Bond7, Subo Dong3,8, D. Heyrovský9, J.-B. Marquette5, J. Marshall3, J. Skowron3, R. A. Street10, T. Sumi11,12,

A. Udalski13,
and

L. Abe14, K. Agabi14, M. D. Albrow15, W. Allen16, E. Bertin5, M. Bos17, D. M. Bramich18, J. Chavez19,
G. W. Christie20, A. A. Cole21, N. Crouzet14, S. Dieters21, M. Dominik22,70, J. Drummond23, J. Greenhill21, T. Guillot14,
C. B. Henderson3, F. V. Hessman24, K. Horne22, M. Hundertmark22,24, J. A. Johnson3, U. G. Jørgensen25,26, R. Kandori27,
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J. Surdej63, and J. Wambsganss28

(The MiNDSTEp Consortium)
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ABSTRACT

Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the
frequency of planets beyond the snow line, which is where giant planets are thought to form according to the
core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from
the analysis of the light curve of a high-magnification microlensing event MOA 2010-BLG-477. The measured
planet–star mass ratio is q = (2.181 ± 0.004) × 10−3 and the projected separation is s = 1.1228 ± 0.0006 in
units of the Einstein radius. The angular Einstein radius is unusually large θE = 1.38 ± 0.11 mas. Combining
this measurement with constraints on the “microlens parallax” and the lens flux, we can only limit the host mass
to the range 0.13 < M/M� < 1.0. In this particular case, the strong degeneracy between microlensing parallax
and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find
that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the
upper end of this mass range, yielding star and planet masses of M∗ = 0.67+0.33

−0.13 M� and mp = 1.5+0.8
−0.3 MJUP at a

distance of D = 2.3 ± 0.6 kpc, and with a semi-major axis of a = 2+3
−1 AU. Finally, we show that the lens mass can

be determined from future high-resolution near-IR adaptive optics observations independently from two effects,
photometric and astrometric.

Key words: gravitational lensing: micro – planetary systems

Online-only material: color figures

1. INTRODUCTION

Gravitational microlensing is an important method to detect
extrasolar planets (Mao & Paczyński 1991; Gaudi 2010). The
method is sensitive to planets not easily accessible to other
methods, in particular cool and small planets at or beyond the
snow line (Beaulieu et al. 2006; Bennett et al. 2008), and free-
floating planets (Sumi et al. 2011). The snow line represents

69 Corresponding author.
70 Royal Society University Research Fellow.

the location in the protoplanetary disk beyond which ices can
exist (Lecar et al. 2006; Kennedy et al. 2007; Kennedy &
Kenyon 2008) and thus the surface density of solids is highest
(Lissauer 1987). According to the core accretion theory of
planet formation (Lissauer 1993), the snow line plays a crucial
role because giant planets are thought to form in the region
immediately beyond the snow line. Therefore, microlensing
planets can provide important constraints on planet formation
theories, in particular by measuring the mass function beyond
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the snow line (Gould et al. 2010; Sumi et al. 2010; Cassan et al.
2012).

A major component of current planetary microlensing ex-
periments is being carried out in survey and follow-up mode,
where survey experiments are conducted in order to maximize
the event rate by monitoring a large area of the sky one or sev-
eral times per night, while follow-up experiments are focused on
events alerted by survey observations to densely cover planet-
induced perturbations. In this mode, high-magnification events
are important targets for follow-up observations. This is because
the source trajectories of these events always pass close to the
central perturbation region and thus the sensitivity to planets
is extremely high (Griest & Safizadeh 1998; Rhie et al. 2000;
Rattenbury et al. 2002; Abe et al. 2004; Han 2009). In addi-
tion, the time of the perturbation can be predicted in advance so
that intensive follow-up observation can be prepared. This leads
to an observational strategy of monitoring high-magnification
events as intensively as possible, regardless of whether or not
they show evidence of planets. As a result, the strategy allows
one to construct an unbiased sample to derive the frequency of
planets beyond the snow line (Gould et al. 2010). For the alter-
native low-magnification channel of detection, see, for instance,
Sumi et al. (2010).

In this paper, we report the discovery of a giant planet detected
from the analysis of the light curve of a high-magnification mi-
crolensing event MOA 2010-BLG-477. Due to the high magni-
fication of the event, the perturbation was very densely covered,
enabling us to place constraints on the physical parameters from
the higher-order effects in the lensing light curve induced by fi-
nite source effects as well as the orbital motion of both the lens
and the Earth. We provide the most probable physical param-
eters of the planetary system, corresponding to a Jupiter-mass
planet orbiting a K dwarf at about 2 AU, the system lying at
about 2 kpc from Earth.

2. OBSERVATIONS

The event MOA 2010-BLG-477 at coordinates (R.A.,
decl.) = (18h06m07.s44,−31◦27′16.′′12) (J2000.0), (l, b) =
(0.◦046,−5.◦095) was detected and announced as a microlensing
alert event by the Microlensing Observations in Astrophysics
(MOA: Bond et al. 2001; Sumi et al. 2003) collaboration on
2010 August 2 (HJD′ = HJD − 2450000 = 5410.9) using the
1.8 m telescope of Mt. John Observatory in New Zealand. The
event was also observed by the Optical Gravitational Lensing
Experiment (OGLE; Udalski 2003) using the 1.3 m Warsaw
telescope of Las Campanas Observatory in Chile.

Real-time modeling based on the rising part of the light curve
indicated that the event would reach very high magnification
and enabled us to predict the time of the peak. Followed by this
second alert, the peak of the light curve was densely covered by
follow-up groups of the Probing Lensing Anomalies NETwork
(PLANET; Beaulieu et al. 2006), Microlensing Follow-Up Net-
work (μFUN; Gould et al. 2006), RoboNet (Tsapras et al. 2009),
and Microlensing Network for the Detection of Small Terres-
trial Exoplanets (MiNDSTEp; Dominik et al. 2010). More than
20 telescopes were used for the follow-up observations, includ-
ing PLANET 1.0 m of South African Astronomical Observatory
(SAAO) in South Africa, PLANET 1.0 m of Mt. Canopus Ob-
servatory in Tasmania, Australia, PLANET 0.6 m Perth Obser-
vatory in Australia, PLANET 0.4 m ASTEP telescope at Dome
C, Antarctica, μFUN 1.3 m SMARTS telescope of the Cerro
Tololo Inter-American Observatory (CTIO), Chile, μFUN 0.4 m
of Auckland Observatory, μFUN 0.36 m of Farm Cove Observa-

Figure 1. Reduced spectrum with an overplotted synthetic spectrum for the
adopted source characteristics, namely Teff = 5950 K, log g = 4.0, and solar
metallicity.

(A color version of this figure is available in the online journal.)

tory (FCO), μFUN 0.36 m of Kumeu Observatory, μFUN 0.4 m
of Possum Observatory, μFUN 0.4 m of Vintage Lane Observa-
tory (VLO), μFUN 0.3 m of Molehill Astronomical Observatory
(MAO), all in New Zealand, μFUN 0.46 m of Wise Observa-
tory, Israel, μFUN 0.8 m of Teide Observatory at Canary Is-
lands (IAC), Spain, μFUN 0.6 m of Pico dos Dias Observatory,
Brazil, RoboNet 2.0 m of Faulkes North (FTN) in Hawaii, USA,
RoboNet 2.0 m of Faulkes South (FTS), Australia, RoboNet
2.0 m of Liverpool (LT) at Canary Islands, Spain, MiNDSTEp
1.54 m Danish telescope at La Silla, Chile, and MiNDSTEp
1.2 m Monet North telescope at McDonald Observatory, USA.

Note that this paper reports the first microlensing observa-
tions from Antarctica. Unfortunately, the data quality of these
pioneering observations was not high enough to be included
into the models, but we give a short overview in Appendix A.
In order to better constrain the second-order effects, new obser-
vations were taken at the μFUN 1.3 m SMARTS telescope at
CTIO during the 2011 campaign.

To better characterize the lensed source star, spectroscopic
observations were conducted near the peak of the event (HJD′ =
5422.5) by using the B&C spectrograph on the 2.5 m du
Pont telescope at Las Campanas Observatory in Chile. The
resolution was R = 1400, corresponding to Δλ = 4.6 Å. A
comparison between the observed spectrum and synthetic ones
was conducted to derive the effective temperature, gravity, and
metallicity of the source star. The usable part of the spectrum
is only ∼1000 Å due to some scattered light issues with the
instrument, particularly a problem for this faint star. We started
by fitting standard stars using Hα, MgB, and NaD, but found that
fits with Hα alone resulted in the most accurate temperatures,
so this is the diagnostic we used. The derived parameters of the
source star are Teff = 5950 ± 150 K for log g = 4.0 and a solar
metallicity. The corresponding fit to the Hα line is shown in
Figure 1.

The data collected by the individual groups were initially
reduced using various photometry codes developed by the
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Figure 2. Light curve of the microlensing event MOA 2010-BLG-477. Data from different observatories are distinguished by different colors. The upper panel shows
the enlargement of the region of perturbation near the peak of the light curve. Note that the model light curve corresponds to the best-fit solution of the model
considering both parallax and orbital motion and the corresponding parameters are presented in Table 1.

(A color version of this figure is available in the online journal.)

individual groups. For the data sets from SAAO, FTS, Possum,
Canopus, Perth, Danish, and Monet North, we use photometry
from re-reductions obtained with the pySIS package, described
in more details in Appendix B.

Figure 2 shows the light curve of the event. The event is highly
magnified with a peak magnification A ∼ 400. Outside of the
region HJD′ = [5417, 5425], the light curve is consistent with a
standard single-lens curve (Paczyński 1986). The perturbation
is composed of two spikes at HJD′ ∼ 5420.4 and 5420.9 and
two bumps at HJD′ ∼ 5421.0 and 5422.4.

3. STRATEGIC OVERVIEW

As in the great majority of planetary microlensing events,
we are able to measure the “angular Einstein radius” (projected
on the sky) θE, but not the projected Einstein radius (projected
on the observer plane) r̃E. Consequently, it is challenging to
estimate the physical parameters of the lens. The two radius
quantities are related to those (see Gould 2000b) by

θ2
E = κ πrel M, π2

E = πrel

κ M
, r̃E = AU

πE
, (1)

where κ ≡ 4GM/AUc2 ∼ 8.1439 mas M−1
� , M is the lens mass

in M�, and πrel = AU(1/DL −1/DS) is the lens-source relative

parallax (DL and DS are the lens and source distances). Since
θE is well measured, the product πrel M is also well determined,
but in the present case, the ratio πrel/M is poorly constrained,
and so it is difficult to estimate M alone. In this section, we
provide an overview of the various techniques that we use to
place constraints on the individual quantities πrel and M.

We will show that here θE is large enough to enable a
substantial constraint from upper limits on the lens flux. That
is, from Equation (1), large θE implies large M or πrel, both of
which lead to brighter lenses. This will lead to the unambiguous
conclusion that the lens is nearby, DL � 3 kpc, with mass
M � 1 M�.

The light curve of this event enables stronger constraints than
is usually the case because we are able to obtain a measurement
of one of the microlens parallax components. The microlens
parallax is actually a vector, πE, with the magnitude given by
Equation (1) and the direction by the lens-source relative motion
(Gould et al. 1994). One component of the parallax only weakly
constrains the scalar πE, but it constrains the direction of proper
motion, which will be very important for future observations
(see below). Moreover, one parallax component actually does
provide a robust lower limit on the mass M � 0.13 M� and
distance DL � 0.5 kpc.

To proceed further, we must apply a Bayesian analysis,
but here as elsewhere we are more fortunate than is typical.
As always, there are Bayesian priors from a Galactic model,
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and in this case these strongly prefer the upper end of the
mass/distance range permitted by the light curve.

But, in addition, the reason that only one dimension of
πE can be robustly measured is that the other dimension is
degenerate with orbital motion of the planet (Batista et al. 2011).
Thus, it is necessary to fit simultaneously for both parallax
and orbital motion. Bayesian priors on the orbital motion
then independently also prefer the upper end of the allowed
mass/distance parameter space.

Finally, we predict that high-resolution imaging could mea-
sure the mass and distance of the lens through two inde-
pendent effects, photometry and astrometry. The first is ob-
vious: different mass/distance combinations yield different
color/magnitude measurement. The main point here is that the
large value of θE virtually guarantees that the lens will be de-
tectable. The second is less obvious: different mass/distance
combinations also predict different directions of source-lens
relative proper motion, which can be measured as the lens and
source are separated over the next several years.

4. MODELING

4.1. Treatment of Photometric Errors

The photometric error bars of the various data sets from
individual observatories are generally not accurate enough to
be taken at face value. They need a rescaling to reproduce the
dispersion of contiguous data points in a given night. At the
same time, outliers must be identified and removed. These are
important preliminary steps to modeling, because the weight of
a given data set to constrain the model depends on how large
its error bars are, compared to other data sets. We describe our
adopted noise model and rescaling factors for each observatory
data set in Appendix C.

4.2. Static Binary Model

We first test a static binary lens model. The corresponding
parameter set includes the three single lens parameters: the
Einstein timescale, tE, the time of the closest lens-source
approach, t0, and the lens-source separation at that moment, u0,
and it also includes the three binary parameters: the mass ratio
of the companion to its host star, q, the projected separation
between the lens components in units of the Einstein radius,
s, and the angle between the source trajectory and the binary
axis, α. Since the light curve exhibits caustic-crossing features,
we need to consider the modification of magnifications caused
by the finite-source effect (Nemiroff & Wickramasinghe 1994;
Witt & Mao 1994; Gould 1994; Bennett & Rhie 1996; Vermaak
2000). This requires us to include an additional parameter: the
normalized source radius

ρ� ≡ θ�

θE
, (2)

where θ� is the angular source radius. Evaluation of ρ� from
the model together with the measurement of θ� (see Section 5.1)
will then yield θE and thus the product πrel M (see Equation (1)).

4.3. Finite-source Effect

Since the event MOA 2010-BLG-477 involves caustic cross-
ings and approaches, one must compute magnification affected
by the finite-source effect. Computation of finite magnifications
is based on the numerical ray-shooting method. In this method,
a large number of rays are uniformly shot from the image plane,

bent according to the lens equation, and land on the source plane.
The lens equation is represented by (Witt & Mao 1995)

ζ = z −
2∑

k=1

mk/M

z̄ − z̄L,k

, (3)

where ζ = ξ + iη, zL,k = xL,k + iyL,k , and z = x + iy are
the complex notations of the source, lens, and image positions,
respectively, z̄ denotes the complex conjugate of z, and mk are
the masses of the individual lens components, and M is the total
mass of the lens system. Then, the magnification is computed
as the ratio of the number density of rays on the source plane
to the density of the image plane. For the initial search for
solutions in the space of the grid parameters, we accelerate the
computation by using the “map making” method (Dong et al.
2006). In this method, a magnification map is made for a given
set of (s, q) and then it is used to produce numerous light curves
resulting from different source trajectories instead of re-shooting
rays all over again. We further accelerate the computation by
using a semi-analytic hexadecapole approximation for finite-
magnification computation (Pejcha & Heyrovský 2009; Gould
2008) in the region where the source location is not very close to
the caustic. In computing finite magnifications, we consider the
effect of limb darkening of the source star surface by modeling
the specific intensity as (Milne 1921; An et al. 2002)

Iλ = Fλ

πθ2
�

[
1 − Γλ

(
1 − 3

2
cos φ

)]
, (4)

where Γλ is a limb-darkening coefficient (hereafter LDC), Fλ is
the total flux from the source star, and φ is the angle between
the direction toward the observer and the normal to the stellar
surface. From the χ2 improvement we find that the limb-
darkening effect is clearly detected. We compute the LDCs
for Equation (4) as accurately as possible, including a proper
treatment of the effect of extinction. We refer the interested
reader to Appendix D for details.

4.4. Microlensing Parallax and Planet Orbital Motion

We then test if second-order effects are present in the residuals
of the light curve. These effects may have several origins: orbital
motion of the Earth around the Sun (Gould 1992), which induces
a deviation of the lens-source motion from rectilinear, orbital
motion of the planet about the lens star, orbital motion of the
source star if it is a binary, and possible additional objects
(planets or stars) in the lens system.

In fact we will limit our study to the first two effects, namely
microlens parallax and planet orbital motion. A binary source
in which the companion is either not lensed or too faint to
contribute to the light curve can mimic the parallax effect due to
the acceleration of the source, in a so-called xallarap effect. This
effect is described, for instance, in Poindexter et al. (2005) and
tested in Miyake et al. (2012). However, it implies in its simplest
form five additional parameters versus two each for parallax and
planet orbital motion. Given the fact that our detection of second-
order effects, although clear, remains relatively marginal, it
would be difficult to trust five additional parameters constrained
by the light curve residuals from a standard model. Moreover,
binary stars generally have long periods, the effect of which will
remain undetected in the short lapse of time when our events
are observed (months versus years).

Testing for a third body, either from a circumbinary planet
or a second planet orbiting the lens star, is beyond the scope of
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this paper, and again would imply a large number of additional
parameters to fit, without any guarantee to obtain meaningful
results. In the short history of planetary microlensing, it has been
evidenced only once (Gaudi et al. 2008; Bennett et al. 2010),
and in that case only because a feature in the light curve could
not be fitted by a single planet model. There is no such feature in
the present light curve. As the domain of possible configurations
to test if we add a third body is vast, the effort expended would
be incommensurate with the potential scientific return, at least
until we get independent evidence that such a modeling effort
is necessary; see Section 6.

As discussed in Section 3, the microlens parallax is character-
ized by a two-dimensional vector πE whose magnitude is given
by Equation (1) and whose direction is that of the lens-source
relative motion on the plane of the sky. Hence, there are two
parameters πE = (πE,N, πE,E), the components of this vector in
equatorial coordinates.

The planet orbital motion affects the light curve in two
different ways. First, it causes the binary axis to rotate or,
equivalently, makes the source trajectory angle change in time
(Dominik 1998; Ioka et al. 1999; Albrow et al. 2000; Penny et al.
2011). Second, it causes the projected binary separation, and
thus the magnification pattern, to change in time. Considering
that the timescale of the lensing event is of the order of a
month while the orbital period of typical microlensing planets
is of the order of years, the rates of change in α and s can be
approximated as uniform during the event and thus the orbital
effect is parameterized by

α(t) = α(tref) + ω × (t − tref) (5)

and
s(t) = s(tref) + ṡ × (t − tref), (6)

where ω and ṡ are the rates of change in the source trajectory
angle and projected binary separation in units of yr−1, respec-
tively, and tref is a reference time. As explained in Batista et al.
(2011), the effect of planet orbital motion is similar to the mi-
crolensing parallax effect in the sense that the deviations caused
by both effects are smooth and long lasting. Then, if the de-
viation caused by the planet orbital motion is modeled by the
parallax effect alone, the measured parallax would differ from
the correct value. Therefore, the orbital motion effect is impor-
tant not only to constrain the orbital properties of the lens, but
also to precisely constrain the lens parallax and thus the physical
parameters of the lens system.

For each tested model, we search for the solution of the best-
fit parameters by minimizing χ2 in the parameter space. In the
initial search for solutions, we divide the parameters into two
categories. Parameters in the first category are held fixed during
the fitting, and parameter space is searched with a grid. For the
parameters in the second category, solutions are searched by
using a downhill approach. We choose s, q, and α as the grid
parameters because they are related to the light curve features in
a complex way, where a small change in the parameter can result
in dramatic changes in the light curve. On the other hand, the
remaining parameters are more directly related to the features
of the light curve and can thus be searched by using a downhill
approach. For the downhill χ2 minimization, we use a Markov
Chain Monte Carlo method. Brute-force search throughout the
grid-parameter space is also needed to test the possibility of the
existence of local minima that result in degenerate solutions. For
the light curve of MOA 2010-BLG-477, we find that the other
local χ2 minima have χ2 values much larger than the best fit by

Δχ2 � 6000 and are therefore not viable solutions. Once the
space of the grid parameters around the solution is sufficiently
narrowed down, we allow the grid parameters to vary in order
to pin down the exact location of the solution and to estimate
the uncertainties of the parameters.

Modeling was also done independently using the method of
Bennett (2010), and this analysis reached the same conclusions.
This independent analysis also uses a slightly different imple-
mentation of the planetary orbital motion parameters (Bennett
et al. 2010). Equations (5) and (6) describe the orbital velocities,
which are the first-order contribution of orbital motion. To sec-
ond order, we have only one component of acceleration because
this must be directed toward the host star. But, one additional
parameter is also all that is needed to describe a circular orbit,
so we can add the planetary orbital period, Torb, as a parame-
ter and replace the constant velocities (in polar coordinates) of
Equations (5) and (6) with the projection into the plane of the
sky of the circular orbit described by s, α, ṡ, ω, and Torb. Unlike
the case of OGLE 2006-BLG-109Lb,c (Bennett et al. 2010), the
value of Torb does not have an influence on the light curve model
χ2 values.

However, Torb is still useful because it can be used to help
constrain the other orbital parameters to values consistent with
a physical orbit. (This is an issue because it is quite possible to
have ṡ and ω values that are not consistent with a bound orbit,
and this is a simple way to ensure that this is not the case). If we
assume that θ∗ is known, then we can calculate the lens system
mass, M = θE/(κπE), which follows from Equation (1). This
also allows us to determine πrel, but we cannot determine the
lens and source distances, DL and DS, separately. However, we
can use the Torb value to determine the orbital semi-major axis,
under the assumption that the orbit is circular. This allows us to
determine the Einstein radius, RE = DLθE in physical units, and
since R2

E = 4GMD2
LDSπrel/(c2AU), we have a second relation

between DS and DL. But, since the source star is very likely to
be in the Galactic Bulge, we also have approximate knowledge
of DS. Therefore, we can apply a constraint on the value of DS
implied by the light curve parameters, DS = 8.0 ± 1.2 kpc.

For this event, Torb is not really constrained by the light
curve measurements, so this constraint serves to force Torb
toward a value consistent with a circular orbit for a Bulge
source. This constraint on the source distance also serves to
enforce a constraint on the orbital velocity parameters, ṡ and
ω. They must also be consistent with a circular orbit for a
Bulge source. Parameters that satisfy this constraint are also
consistent with most orbits with moderate eccentricity, ε � 0.5.
But, these parameters are not consistent with orbits with the
highest possible transverse velocities. In fact, the light curve
measurements marginally favor implausibly large ṡ and ω values
corresponding to orbits that are either unbound or just barely
bound. These barely bound orbits with large ṡ and ω values
have high eccentricities that just happen to have been observed
with motion in the plane of the sky during the brief time near
periapsis. The best-fit model that is consistent with a bound
orbit is such a model, which has an orbit with an extremely
low a priori probability. This low a priori probability makes
such a model much more unlikely than the best-fit model with
the circular orbit constraint, so we report the best-fit model
with the circular orbit constraint as the “best-fit model” in
Table 1.

However, the unlikely models with values of ṡ and ω do tend
to have better light curve χ2 values, and they also cover a large
volume of parameter space. So, they should not be ignored in
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Figure 3. Geometry of the lens system responsible for the microlensing event MOA 2010-BLG-477. In the lower panel, the filled dots represent the locations of the
host star and planet. The closed figure composed of concave curves represents the caustic. The curve with an arrow represents the source trajectory with respect to the
caustic. The big dashed circle centered at the host star represents the Einstein ring. The upper panel shows the enlargement of the region enclosed by a small box in
the lower panel. The small filled circle represents the source star where its size is scaled by the caustic size.

(A color version of this figure is available in the online journal.)

Table 1
Best-fit Model Parameters

Parameter Model

Standard Parallax Orbit+Parallax (u0 < 0) Orbit+Parallax (u0 > 0)

χ2 6420.051 6411.450 6369.345 6365.664
t0 (HJD′) 5420.93685 5420.93702 5420.93773 5420.93915
u0 −0.003562 −0.003540 −0.003372 +0.003404
tE (days) 42.55 42.94 46.57 46.92
s 1.12282 1.12338 1.12385 1.12279
q 0.0023808 0.0023694 0.0022075 0.0021809
α (rad) 3.67605 3.67528 3.68023 2.60087
ρ� 0.0006429 0.0006403 0.0005861 0.0005764
fs 0.4111 0.4082 0.3757 0.3731√

fs/ρ� 997.3 997.9 1045.8 1059.8
πE,N · · · +0.37 +0.27 +0.77
πE,E · · · +0.012 +0.02 −0.11
ṡ (yr−1) · · · · · · +0.64 +0.86
ω (yr−1) · · · · · · +0.06 −1.28
Torb (yr) · · · · · · 14.25 4.59
tref (HJD′) · · · 5421 5421 5421

Notes. HJD′ = HJD − 2450000. tref is the reference time of the model, when the model reference frame moves
at the same speed as the Earth and α(t) = α and s(t) = s.

our consideration in the range of possible physical parameters
for the MOA 2010-BLG-477L planetary system. Therefore, we
do not enforce this source distance constraint in the MCMC
runs that we use to estimate the distribution of likely physical
parameters for this system. Instead, we apply a more general
constraint on the orbital and Galactic parameters of the lens
system as discussed in Appendix E.

5. RESULTS

In Table 1, we present the results of modeling along with the
best-fit parameters for the three tested models. The best-fit light
curve is presented in Figure 2. In Figure 3, we also present the
geometry of the lens system. It is found that the perturbation
near the peak of the light curve was caused by the source
crossings and approaches of the caustic produced by the binary
system with a low-mass companion. The measured mass ratio

between the lens components is q = (2.181 ± 0.004) × 10−3

and thus the companion is very likely to be a planet. The
measured projected separation between the lens components
is s = 1.1228 ± 0.0006, which is close to the Einstein radius.
As a result, the caustic is resonant, implying that the caustic
forms a single closed curve composed of six cusps. The
perturbations at HJD′ ∼ 5420.4 and 5420.9 are produced by
the source crossings of one of the star-side tips of the caustic.
The bumps at HJD′ ∼ 5421.0 and 5422.4 are caused by the
source’s approach close to the weak and strong cusps on the
side of the host star, respectively.

5.1. Constraints from Measurement of θE

The most important constraints on the lens mass and distance
come from the measurement of θE, which can be rewritten from
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Figure 4. OGLE-III 8 × 8 arcmin calibrated color–magnitude diagram (CMD)
in I and V band. The red, yellow, and green solid circles mark the centroid of
the red giant clump, the blend, and the source position, respectively.

(A color version of this figure is available in the online journal.)

Equation (2) as

θE = θ�

ρ�

=
√

FI/(πSI )

ρ�

, (7)

where FI is the intrinsic (dereddened) flux of the source and SI
is its intrinsic I-band surface brightness. A key point is that the
surface brightness does not depend at all on the microlens model
(just on the source color and/or spectrum). Hence, θE depends
on the model only through the parameter combination

√
fs/ρ�,

where fs is the instrumental source flux (fs = 1 corresponds
to magnitude 18). It is clear from Table 1 that this parameter
combination varies very little. The biggest uncertainties are
therefore in measuring the surface brightness and measuring the
offset between the instrumental flux fs and the dereddened source
flux FI . Traditionally, these are measured simultaneously by
determining the offsets of the color and magnitude, respectively,
of the source from the clump on an instrumental CMD (Yoo et al.
2004). An instrumental CMD from CTIO is shown in Figure 4.
From it, we can read instrumental magnitude in I of 19.07. The
instrumental V−I color is measured more accurately from a
regression of V flux versus I flux and gives −0.35.

Comparing to the instrumental clump position, we find
(V − I )0 = 0.55 ± 0.05 and I0 = 17.61 ± 0.15, assuming
[(V −I ), I ]0,clump = (1.06, 14.42). The color error is determined
empirically from a sample of microlensed dwarfs with spectra
(Bensby et al. 2011), while the magnitude error comes primarily
from the error in fitting the clump centroid and the assumed
Galactocentric distance of 8 kpc (both about 0.1 mag). These
lead to an estimate θ� = 0.79 ± 0.06.

We can compare the dereddened color estimate to the
color deduced from the high-resolution spectrum reported in
Section 2, from which we measured an effective temperature
of T = 5950 ± 150 K, which corresponds to (V − I )0 =
0.65 ± 0.04. These determinations are marginally consistent.
We adopt the first to maintain the general practice of microlens-
ing papers, but note that if we adopted the mean of the two
estimates, the inferred value of θ� (and so θE) would rise by 2%.

Finally, we evaluate

θE = 1.38 ± 0.11 mas. (8)

This value is unusually large and implies that the lens must be
very massive or very close. Specifically

M

M�

πrel

mas
= θ2

E

κ M� mas
= 0.233 ± 0.036. (9)

5.2. Constraints from Lens Flux Limits

The model gives a measurement of the light coming not only
from the source, but also from any other stars in the same point-
spread function (PSF), generally called blended light. This light
may come from the lens itself, a companion to the lens, a
companion to the source, or any unrelated star on the same
line of sight, but not participating to the amplification process.

The OGLE-III image of this field, displayed in Figure 5,
shows two stars at the target position. Their I-band magnitudes
in the OGLE-III photometric catalog are I = 17.446 ± 0.052
for the brighter star, numbered 119416, and I = 17.807±0.059
for the fainter one with number 119534. They are separated by
1.′′26, enough to be separated by PSF photometry at good sites
such as CTIO or Las Campanas (OGLE) in Chile. A difference
image analysis (DIA) made on CTIO images shows that the
microlensed star does not correspond to the position of either
star (red circle in Figure 5), but is displaced by 1 CTIO pixel
(0.′′37) from the brighter star.

Now, the blended light in I band as measured from DoPhot
CTIO photometry by the model is Ib = 17.443±0.031, and this
corresponds precisely to the flux from the brighter star among
the two OGLE stars, which is not separated from the microlensed
target at the scale of the CTIO seeing (typically 1′′). Knowing
that the blended flux comes from an unrelated blended star, the
light from the lens must be smaller. We can rigorously conclude
that the lens has less than half the light in the observed blend.
Otherwise, the lens and blend would be separated by at least
2 × 0.′′37 = 0.′′74 in the OGLE image, and so would have been
at least marginally resolved.

An additional argument showing that the lens is faint enough
to remain undetected comes from its large relative proper motion
(10.3 ± 0.8 mas yr−1). DIA analysis of OGLE-III good seeing
images separated by 3.3 years shows no residual at the target
position, which proves that no detected star has moved during
this period.

Combining this limit with Equation (9) yields strong con-
straints on the lens. The lens must be closer than the source,
and so be at or closer than the Galactocentric distance, and
suffer the same or less extinction. These imply IL,0 = Ib −
2.5 log(0.5) − AI > 17.0, and so MI > 2.5, which corre-
sponds to M < 1.4 M� (Straižys & Kuriliene 1981; Bessell
& Brett 1988). Then, even the 2 σ limit from Equation (9) im-
plies πrel > 0.10 mas and so DL < 4.4 kpc. But IL,0 > 17.0
then implies MI > 3.8, which corresponds to M < 1.0 M�. Cy-
cling through this argument one more time yields DL < 3.7 kpc,
MI < 4.2, and M < 1 M�. If the lens were in front of some of
the dust, this argument would become still stronger. However,
at the relatively high latitude of this field (b = −5◦), most of
the dust probably lies in front of 3 kpc, and in any case, there
is no basis for adopting a more optimistic assumption about the
dust.
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Figure 5. OGLE-III reference image of the BLG 176.8 field, in the region of our microlensed target. North is up and east to the left side. One pixel is 0.′′26. The red
circle marks the position of the source (and the lens) from DIA analysis of CTIO images, in between two OGLE stars: the brighter of them (pointed at by a black
arrow), at 0.′′37 from the source, corresponds in magnitude to the blended light measured by the model. The source is too faint to be detected in this crowded image.

(A color version of this figure is available in the online journal.)

5.3. Constraints from the Microlens Parallax πE

Table 1 shows that parallax alone improves the fit by Δχ2 =
8.6, while including both parallax and lens orbital motion
improves it by Δχ2 = 54.4. However, while detection of these
effects is therefore unambiguous, we cannot fully disentangle
one from the other. For each effect, one of its two parameters is
well determined while the other is highly degenerate with one
parameter from the other effect. As first discovered by Batista
et al. (2011) and further analyzed by Skowron et al. (2011),
weak detections of parallax and orbital motion lead to a strong
degeneracy between πE,⊥ (the component of πE perpendicular
to the projected position of the Sun) and ω (the component of
orbital motion perpendicular to the planet–star axis), while πE,‖
and ṡ are well constrained. The impact of this is illustrated in
panel (a) of Figure 6, which shows χ2 values by color as a
function of (πE,N, πE,E).

First, it is clear that the parallax vector is almost completely
degenerate along a line that is 8.◦4 west of north, within 1◦ of
the predicted orientation of πE,⊥ (7.◦7). Second, the light curve
excludes πE > 1.3 at 3 σ . As we have

M

M�
× πE = θE

κ M� mas
= 0.169 ± 0.013 (10)

this corresponds to M > 0.13 M�. Thus, combining constraints
from this section and from Section 5.2, and using Equation (9),
we have

0.13 M� < M < 1.0 M�; 0.5 kpc < DL < 2.8 kpc. (11)

Note that because the parallax contours pass through the origin,
parallax provides no additional constraint at low πE, i.e., at high
mass.

A similar diagram is given for the slightly disfavored u0 < 0
solution in Figure 7.

5.4. Post-Bayesian Analysis

Equation (11) defines the limits of what can be said rigorously
about the lens mass and distance based on current data. As we
discuss in Section 6, the lens could almost certainly be detected
by high-resolution imaging, which would probably completely
resolve the uncertainty in Equation (11). In the meantime, we
can perform a Bayesian analysis based on a Galactic model
and constraints from a Keplerian orbit. Figure 6 shows that
each of these constraints separately favors small values of πE
and hence, relatively large masses and distances (within the
limits set by Equation (11)), and so tend to reinforce each other.
Panel (a) shows the raw results of the MCMC. Panel (b) shows
the same chain, post-weighted by the Bayesian prior due to the
Galactic model and the flux constraint. The latter, which implies
M < 1.0 M� (Section 5.2), is responsible for the circular
“holes” at the centers of panels (b) and (d). As discussed in detail
by Batista et al. (2011) this includes terms not only reflecting the
density of lenses along the sight and the expected distribution
of proper motions, but also a Jacobian transforming from the
“natural microlensing variables” to the physical system of the
Galaxy. It is this last term that actually dominates, particularly
in the “near field” (DL < 2.8 kpc) permitted by the constraints,
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Figure 6. Parallax vector (πE,N, πE,E) for the u0 > 0 solution, from Markov Chain Monte Carlo fit to MOA-2010-BLG-477. Left panel (a) displays individual chain
points, color-coded by Δχ2 (1, 4, 9, 16, 25, 36) for black, red, yellow, green, cyan, and blue. Second panel (b) shows effect of weighting by the Galactic model,
geometric Jacobian, and flux constraint. Lower parallaxes (and so higher masses) are heavily favored, except that too low parallaxes (corresponding to M > 1.0 M�)
are ruled out by the flux constraint. Third panel shows the effect of weighting using the Jacobian due to orbital motion parameters, which by itself disfavors the heaviest
masses because these tend to imply unphysical orbits, but favors moderately high masses (see the text). The final panel shows the effect of combining Galactic and
Kepler priors.

(A color version of this figure is available in the online journal.)

and is roughly ∼D5
L (Batista et al. 2011, Equation (18)). This

weighting is so severe that one must ask whether the result of
the weighting is plausibly compatible with the raw χ2 from the
light curve. In this case, the solutions favored by the Bayesian
post-weighting are compatible with the raw χ2 minimum at
better than 2 σ , so there is no major conflict.

Panel (c) shows the results of post-weighting the chain only by
the orbital Jacobian. This is described in detail by Skowron et al.
(2011) for the case of chains with complete orbital solutions.
These contain two orbital parameters (called γz and sz) in
addition to the two first-order orbital parameters considered here
(ṡ and ω). These higher-order parameters would be completely
unconstrained in the present problem, so we simply resample
the chain with a uniform integration over these two parameters.
Panel (c) clearly also favors more massive, more distant lenses
(although not the most massive), but it is not immediately
obvious why. Appendix E details the reasons behind this result.
Finally, we note that, as expected, the combined effect of these
two priors shown in panel (d) is stronger than either separately.

Why do the Galactic model and Kepler constraints each favor
more distant (and more massive lenses) than the light curve
alone (see Figure 6)? The Galactic model constraint is virtually

guaranteed to favor more distant lenses because, as mentioned
above, most of the weighting is simply due to a coordinate
transformation from microlensing to physical coordinates, and
there is more phase space at larger distances. Since the distance
errors are fairly large, this effect will be relatively strong. By
contrast, the Kepler constraint could have just as easily favored
more-distant as less-distant lenses. The most likely explanation
is then, simply, that the light curve prediction of the distance is
too close by 1.7σ , and the constrained value (panel (d)) is a better
estimate. This conjecture is testable by future observations, as
described in the next section.

6. FUTURE HIGH-RESOLUTION OBSERVATIONS

Follow-up observations are important to check the predictions
of our models. In the microlensing field, the idea of doing
follow-up observations preceded the detection of planets, going
back at least to 1998 in the case of MACHO-LMC-5, with
the corresponding Hubble Space Telescope (HST) observations
published in Alcock et al. (2001). Then, it was successfully
applied to derive more accurate parameters of the planetary
systems, using HST or adaptive optics systems at Keck or VLT,
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Figure 7. Parallax vector (πE,N, πE,E) for the u0 < 0 solution, from Markov Chain Monte Carlo fit to MOA-2010-BLG-477. See description of Figure 6 for details.

(A color version of this figure is available in the online journal.)

for instance, in Bennett et al. (2006), Dong et al. (2009), Janczak
et al. (2010), Batista et al. (2011), and Kubas et al. (2012). In the
future, it could be used to study planets in the habitable zones
of nearby dwarf stars, as suggested by di Stefano (2012).

While the Bayesian analysis strongly favors a lens close to
1 M�, i.e, the upper limit permitted by the measurements, there
is no airtight evidence against lower-mass lenses. Fortunately,
this question can almost certainly be resolved by high-resolution
imaging. The V IH source magnitudes are Vs = 19.98 ± 0.03,
Is = 18.71 ± 0.03, and Hs = 17.35 ± 0.03. These come from
CTIO H-band measurements, taken simultaneously with I- and
V-band observations. A linear regression between both fluxes
gives a very accurate instrumental color of (I − H )CTIO =
1.707 ± 0.002. After converting H to the 2MASS photometric
system and I to the OGLE-III system by use of common stars
in the CTIO field, the color becomes I − H = 1.36 ± 0.03.
Subtracting this color from the I magnitude of the source in the
OGLE-III system (18.71) returns the above value for H.

As we now show, the lens brightness must be similar to the
source brightness. As can be judged from Figure 5, the field is
relatively sparse, at a Galactic latitude of b = −5.◦095, so these
two stars (for the moment superposed) will very likely be the
only two stars in their immediate high-resolution neighborhood.

Let us consider three examples consistent with Equation (9),
(M/M�,DL/kpc) = (0.1, 0.4), (0.5, 1.7), (1.0, 2.8). These
would have lens absolute magnitudes MH = (9.6, 6.0, 3.4)

according to Kroupa & Tout (1997) and so HL,0 =
(17.6, 17.1, 15.6). Of course, the extinction would be differ-
ent at these different distances, but the entire column to the
source is only AH ∼ 0.3. Therefore, a 0.5 M� lens star will be
as bright as the source, and even a lens star at the bottom of the
main sequence will produce an easily detectable amount of light
(0.5 mag) over the expected source magnitude.

Since all M/DL combinations produce similar H magnitudes,
such a measurement would, by itself, have little predictive
power. But these various scenarios would yield substantially
different J−H colors, which would add discriminatory power.
Time has been allocated on various large telescopes to observe
the field of this event, detect and measure the light coming from
the source and lens stars.

In addition, because of the relatively large proper motion,
μ = 10.3±0.8 mas yr−1 the lens and source could be separately
resolved within about five years. This would then yield the angle
of proper motion (= tan−1(πE,E/πE,N)) and so (from Figure 6)
the amplitude of πE (Ghosh et al. 2004).

We can also consider follow-up observations with the HST,
which will be able to detect the lens-source relative proper
motion as early as 2012 (Bennett et al. 2007). The implied
absolute magnitudes for the three examples given above (M =
0.1, 0.5, and 1.0 M�) are MI = (12.3, 7.9, 4.1), and the implied
extinction free magnitudes are IL,0 = (20.3, 19.1, 16.3). Since
the extinction in the foreground of the lens is AI < 1.0, this
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Figure 8. Variation of the orbital motion effect vs. the parallax effect for the orbital motion and parallax solutions. The left side corresponds to the u0 > 0 solution,
while the right side is for the u0 < 0 solution.

(A color version of this figure is available in the online journal.)

implies that the host star should be detectable with at least 9%
of the I-band flux of the source star over the full range of main-
sequence host star masses.

Finally, the ESA satellite Gaia to be launched in 2013 will
image the Galactic bulge down to V ∼ 20 mag, so it may detect
the lensing object and will certainly measure its proper motion
if it does.

In conclusion, these additional observations should reveal
whether our choice of second-order effects (microlensing par-
allax and planet orbital motion) correspond to the reality. If we
find contradictory results to our predictions, then it will be a
strong argument to conduct the modeling of additional effects
mentioned in Section 4.4, such as xallarap effect from a binary
source, or involvement of a third body.

7. FINAL RESULTS, CONCLUSIONS,
AND PERSPECTIVES

In order to select the best among the three competing models
(standard, parallax only, orbital motion and parallax), a simple
comparison of χ2 values is not enough, because more refined
models use more parameters. Taking into account these addi-
tional parameters by normalizing the χ2 estimate by the number
of degree of freedom is not the proper way to select the best
model. A vast literature exists about model selection, and an
application of different criteria to astrophysics is described in
Liddle (2007). A simple way to take care of the larger num-
ber of parameters is to use the Akaike Information Criterion
(AIC; Akaike 1974), which introduces a penalty to the χ2 by
adding twice the number of additional parameters. Different cri-
teria, such as the Bayesian Information Criterion (BIC; Schwarz
1978) or the Deviation Information Criterion, introduced by
Spiegelhalter et al. (2002), can also be used. Formulae are given
below, where Δk is the number of additional parameters, N is
the number of data points, and χ2(θ) is the χ2 of the average
parameter set θ .

ΔAIC = Δχ2 + 2 Δk

ΔBIC = Δχ2 + Δk log N

ΔDIC = Δ(2 χ2 − χ2(θ)). (12)

As there are 7 parameters in the standard model, 9 in the
parallax only model, and 11 in the orbital motion and parallax

model, we see that our observed difference in χ2 of 8.6 in the
parallax only model is only marginally significant according
to the AIC (the expected difference is 4), while the observed
difference of 54.4 (for the u0 > 0) or 50.7 (for the u0 < 0) is
clearly an improvement of the orbital motion and parallax model
over the standard one (the expected difference is 8). Similar
results are obtained using DIC, while the difference between
models returned by BIC is less significant.

However, it is important to note that Δk strictly corresponds to
the number of additional parameters only in the case of a linear
regression problem. Here, we clearly have nonlinear fits, so we
should compute an “effective” number of parameters, which is
difficult to estimate. The above conclusion should therefore not
be taken as a quantitative one.

A confirmation of the detection of second-order effects comes
from the fact that in the orbital motion and parallax model, the
degeneracy between u0 < 0 and u0 > 0 models is clearly
broken. It is instructive to plot both second-order effects versus
each other, separately for the u0 < 0 and u0 > 0 solutions. This
is done in Figure 8, where the orbital motion γ is plotted versus
the parallax effect πE.

If we remember that the ratio of the projected kinetic to
potential energy must be smaller than 1 to get bound orbits, and
that this ratio is proportional to γ 2, where the proportionality
constant depends on πE as given by Equation (E3), it is easy to
interpret these diagrams. When πE increases, the proportionality
factor decreases, so that if γ remains small enough, the bound
orbit condition is respected. In the u0 > 0 diagram (left side),
small values of πE (say below 0.17) have a proportionality factor
larger than 1. As γ is nearly 1 for these solutions, they are ruled
out, and the light curve confirms it, as few small χ2 solutions
(black and red points) lie there. Larger πE are also excluded,
as they correspond to large γ values, although the light curve
would favor such solutions. The only surviving region in this
diagram is around πE ∼ 0.35, corresponding to lens masses of
half a solar mass, where the proportionality factor is about 0.4
and γ slightly exceeds 1.

In the u0 < 0 diagram (right side), although this is slightly
disfavored by the light curve (Δχ2 = 6.7 for the best chain
without the circular orbit constraint), there is a region where
γ is about constant at 0.7 for πE varying from 0 to 0.4. The
bound solutions correspond to the larger values of the πE domain

12



The Astrophysical Journal, 754:73 (17pp), 2012 July 20 Bachelet et al.

Figure 9. Distribution of lens mass and lens flux in H band (from left to right) computed from the post-Bayesian analysis. In the left diagram, the black curves show
the full mass function, while the red curves show the mass function truncated at 1 M�. The solid curves represent the u0 > 0 solution, while the dashed curves
correspond to the u0 < 0 one. The bold solid curves are the sum of the two other curves. In the right diagram, the curve corresponds to the red bold solid curve of the
mass distribution.

(A color version of this figure is available in the online journal.)

(smaller proportionality factor), and they therefore agree with
the range found in the u0 > 0 diagram.

We therefore conclude that both solutions agree, and give
bound orbits when the lens mass is about half solar, correspond-
ing to a lens distance of about 1.6 kpc.

If we now move to the post-Bayesian analysis, we see that
this solution favored by the light curve has some tension with
the Galactic model constraint, because nearby lenses are rarer
than more distant ones. But if we move to more distant lenses,
we get many chains with unbound orbits or high eccentricities.
By the way, the u0 > 0 solution, which has a lower χ2 than
the alternate u0 < 0 solution, is also the one where more chains
correspond to unbound orbits.

There is therefore tension between Galactic and Keplerian
priors, and the issue will only be solved photometrically, by
measuring the light coming from the source and the lens. This
will be the subject of a forthcoming article about this event.

We conclude by giving the one-dimensional distributions of
lens mass, lens distance, and planet orbit semi-major axis. The
mass function for the lenses involved in these plots include main-
sequence stars, brown dwarfs, but also white dwarfs, neutron
stars, and black holes, which may have large masses without
violating the lens flux limit constraint. For the MS and BD stars,
we adopt the following slopes of the present-day mass function
dN/d ln(M): −0.3 between 0.03 and 0.7 M�, −1.0 between
0.7 and 1.0 M�, and −4.0 above. For the remnants, we adopt
Gaussian distributions, whose mean value, standard deviation,
and fraction of total mass with respect to MS and BD stars below
1.0 M� are given in Table 2.

For details about the choice of these numbers, please refer to
Gould (2000a).

In each diagram (see Figure 9 for mass and flux, and Figure 10
for distance and semi-major axis), the black curves show the
full mass function, while the red curves show the mass function
truncated at 1 M�. For MS stars, this limit is imposed by the lens
flux constraint and will be refined once we obtain the adaptive
optics photometry of the individual stars in the field. WD at
this mass are extremely rare; Jovian planets around pulsars (NS)

Table 2
Mass Distribution of Remnant Stars (White Dwarfs, Neutron Stars,

and Black Holes), with Respect to Main-sequence Stars and
Brown Dwarfs Below 1.0 M�

Remnant 〈M〉 σ Ratio

WD 0.6 0.07 22/69
NS 1.35 0.04 6/69
BH 5.0 1.0 3/69

have not been found, despite very extensive searches; and super-
Jupiter planets orbiting BH are a priori unlikely.

Let us first consider the lens mass distribution: the no-
flux-limit (black) curve shows a huge spike at expected NS
position and a smaller bump corresponding to BH. Note that
for these bumps, the u0 < 0 solution dominates, despite its
χ2 handicap. This is because the Galactic model very strongly
favors distant lenses, primarily because of the volume factor,
and this overwhelms the modest preference of the light curve
for nearby lenses. Because θE is roughly fixed, these distant
lenses are massive. This preference is much stronger in the
u0 < 0 solution, which can be seen in its rapid rise beginning at
log M = −0.3. Note that the WD peak (at log M = −0.22) is
clearly visible, especially in the u0 > 0 solution.

The lens distance distribution essentially looks at this same
situation from the standpoint of distance. The new notable
feature is that both MS and NS peaks are in the disk, while the
BH bump is in the bulge. And the semi-major axis distribution
peaks at about 2–3 AU.

From these diagrams, we can estimate a most probable value
of lens mass, distance, and semi-major axis, and an asymmetric
standard deviation read at 50% of the distribution corresponding
to the red bold curves. We get a star and planet mass of
M∗ = 0.67+0.33

−0.13 M� and mp = 1.5+0.8
−0.3 MJUP, respectively,

at a distance of D = 2.3 ± 0.6 kpc, and with a semi-major axis
of a = 2+3

−1 AU.
As a final note, it could be said that more complex models are

worth exploring: the geometry of the caustic crossing, where
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Figure 10. From left to right: distribution of lens distance (in kpc) and semi-major axis of the planet orbit (in AU), computed from the post-Bayesian analysis. For
details, see the description of Figure 9.

(A color version of this figure is available in the online journal.)

the source passes close to the three-cusp tail of the caustic, is
extremely sensitive to a third body (second planet or binary
companion to the lens star). A similar geometry where two
planets were detected is described in Gaudi et al. (2008) and
Bennett et al. (2010). These models could be investigated in a
forthcoming paper, once we get the lens flux measurement from
adaptive optics.
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APPENDIX A

OBSERVATIONS AT DOME C

ASTEP 400 is a 40 cm Newtonian telescope installed at the
Concordia base, located on the Dome C plateau in Antarctica
(Daban et al. 2011). Although the aim of the project concerns

transiting planets, the ability to observe near-continuously
during the Antarctic winter and the excellent weather on site
(Crouzet et al. 2010) imply that the telescope can usefully
complement microlensing observations from other sites, even
though the declination of the fields and their crowding make the
analysis difficult.

The observations with ASTEP 400 started on 2010 August
12, 15:27 UT after the first alert was sent by email and phone
to Concordia. On August 14, 23:59 UT, the observations were
stopped because the magnification had become too small for
useful observations. The weather conditions were excellent.
However, the seeing conditions were poor (3–4′′), mostly
due to the low declination of the field and location of the
telescope on the ground. The 229MB of data corresponding
to 500 × 500 cropped images were transmitted to Nice through
satellite connexion around August 17 and 18 for an in-depth
analysis.

Although the data of this run were not good enough for being
used in this study, this pioneering test will serve for improving
the thermics of the acquisition system and get higher quality
future observations of microlensing targets.

APPENDIX B

DIFFERENCE IMAGE ANALYSIS USING pySIS

The pySIS3.0 DIA package is fully described in Albrow
et al. (2009). It is based on the original ISIS package (Alard &
Lupton 1998; Alard 2000), but the kernel used to transform the
reference image to the current image before subtraction is no
longer analytic, but numerical. This allows for dealing with im-
ages whose PSF cannot be assimilated to a sum of Gaussian
profiles. The numerical kernel has been introduced in image
subtraction by Bramich (2008). One of the regular problems
encountered in DIA is the choice of the best possible reference
image. For astrometry, the best seeing image is generally a good
choice, if the sky background is not too high. For photometry,
it is our experience that stacking good images improves the
result, but only if these images have been acquired during a
short time slot, to avoid light variations of the target and slow
variations due, for instance, to small changes in the flat field.
In order to choose good reference images, we use a suite of
Astromatic software (Bertin 2011), namely SExtractor and
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Figure 11. Cumulative χ2/dof distribution for rescaled error bars in the case of OGLE photometry (left) and MOA photometry (right).

(A color version of this figure is available in the online journal.)

Table 3
Data Description for Each Telescope

Observatory Band uλ uλ Binning N f emin Photometry
(uncor.) (ext. cor.)

OGLE I 0.4399 0.4363 157 2.4 0.010 OGLE DIA
CTIO I 0.4395 0.4375 133 1.5 0.010 DoPhot
CTIO V 0.5931 0.5908 21 2.0 0.015 DoPhot
Aucklanda W12 0.5016 0.4843 Y 5 1 0.003 DoPhot
FCO Unfiltered 0.5550 0.5150 Y 4 1.7 0.003 DoPhot
FTS i′ 0.4547 0.4524 68 3.0 0.002 pySIS
Kumeu W12 0.5016 0.4852 Y 17 3.5 0.003 DoPhot
Pertha I 0.4325 0.4297 26 3.0 0.003 pySIS
FTN i′ 0.4547 0.4524 72 3.8 0.006 DanDIA
Possum W12 0.5204 0.5031 77 5.4 0.003 pySIS
SAAO I 0.4261 0.4217 2364 2.2 0.003 pySIS
SAAO V 0.6114 0.6086 3 1.2 0.003 pySIS
VLOa Unfiltered 0.5442 0.5022 Y 3 1 0.003 DoPhot
Wise Unfiltered 0.5522 0.5131 Y 9 0.8 0.003 DoPhot
Canopus I 0.4355 0.4335 50 1.5 0.010 pySIS
Danish I 0.4394 0.4370 167 2.2 0.003 pySIS
MOA Red 0.4754 0.4694 3985 1.05 0 MOA DIA
LT i′ 0.4543 0.4513 41 4.7 0 DanDIA
Monet N I 0.4414 0.4392 130 4.3 0.004 pySIS

Note. a This data set was not used in the final models.

PSFex. SExtractor builds catalogs of sources from all images of
a given telescope, with their characteristics, and PSFex derives a
model of the PSF of these images, from which we extract a few
numbers to estimate the image quality (seeing, ellipticity, num-
ber of stars). This allows an almost automatic selection of the
templates, with a final verification by eye to check the selected
images.

Once the images have been subtracted using these templates,
the photometry of the target is done by iteratively centering the
PSF on the light maximum close to the center of the image. This
method enables the photometering of faint stars in the glare of
nearby much brighter stars.

APPENDIX C

NOISE MODEL AND ERROR RESCALING

The standard procedure of rescaling error bars so that the
χ2/dof of each telescope data set is of order unity is acceptable
if the resulting error bars roughly correspond to the dispersion of

the data points at a given time for this data set. There is therefore
an interplay between finding the correct model and rescaling the
error bars, because a too large rescaling factor reduces the con-
straint from a given data set and allows the model to shift from
the correct one. Our procedure has been to use rescaling factors
which look plausible given the telescope size and site quality,
trying to get a χ2/dof of order unity only if the dispersion
in successive data points is well reproduced by this rescaling
scheme. This generally involves two parameters to modify the
original photometric error bars eori. One is a minimal error emin
to reproduce the dispersion of very bright (or in this case, highly
magnified) sources due to fundamental limitations of the pho-
tometry, such as flat-fielding errors. The other is the classical
multiplicative rescaling factor, f. The adopted formula is

e = f

√
e2

ori + e2
min. (C1)

The balance between both rescaling factors is given by
comparing the cumulative distribution of χ2/dof, ordered from
magnification given by the model, to a standard cumulative
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distribution for Gaussian errors. An example for OGLE and
MOA distributions is given in Figure 11. Table 3 gives the
adopted values of both parameters for each telescope. It must
also be noted that for some amateur telescopes, data were binned
before this rescaling process. Finally, after the initial modeling
was conducted, it was realized that three data sets could not
accommodate the condition χ2/dof ∼ 1 (Auckland and VLO)
or a positive source flux (Perth). They were therefore removed
and the final models are based on 16 data sets.

APPENDIX D

DETAILED TREATMENT OF LIMB-DARKENING
CORRECTIONS

It is generally difficult to treat the limb-darkening effect
accurately, because it varies from one telescope data set to the
other, primarily due to the different photometric bands involved.
Second-order effects include hardware-specific variations of the
spectral response (filters, CCDs), and for very broad bands, the
atmospheric and interstellar extinctions. We adopt the linear
limb-darkening approximation using the formalism given by
Equation (4), introduced by Albrow et al. (1999) and An
et al. (2002). This is a common formalism in the microlensing
community, but the more widely used formalism is based on the
following equation:

Iλ(cos φ) = Iλ(1) × [1 − uλ(1 − cos φ)] , (D1)

where Iλ(1) is the specific intensity at disk center and uλ is
the linear LDC. We compute the values of uλ from a stellar
atmosphere model from the Kurucz ATLAS9 grid (Kurucz
1993) using the method described by Heyrovský (2007). As
we converted the uλ values to our LDC parameter Γλ, we give
the uλ values in Table 3, and recall the conversion relation

Γλ = 2 uλ

3 − uλ

. (D2)

For the source characteristics, we adopt the spectroscopic
result (Teff = 6000 K, log g = 4.0, [Fe/H] = 0.0). We thus get
an estimate of the limb-darkening effect for each data set. Table 3
shows the adopted values of uλ for each individual telescope and
band combination, both with and without interstellar extinction
correction, together with the final number of data points after
rejection of possible outliers, and details about the image
reduction process. As can be seen, these coefficients vary even if
the photometric band is supposedly the same. See, for instance,
the Cousins I band and SDSS i ′ band, or the Wratten #12
filter (W12) used at some amateur telescopes to mimic an R
band. More details about the derivation of these values for
each telescope can be found in Heyrovský (2007), Fouqué et al.
(2010), and Muraki et al. (2011).

We have also computed the effect of interstellar extinction
on the LDCs, as it is not a priori negligible: we typically find
differences of a few 10−3 for a data set with a filter and a few
10−2 for unfiltered ones. The magnitude of the effect could
then be neglected for filtered data sets, but not for unfiltered
ones or very broadband filters. To give an idea, we compare its
effect to the uncertainty of our spectroscopic determination of
the effective temperature of the source, about 150 K. For the
OGLE I band, the difference between LDCs with and without
interstellar extinction correction for an adopted extinction of
1.2 mag corresponds to a shift in effective temperature of 40 K,
while for the Possum broad W12 filter, it corresponds to about

Figure 12. Binned lens characteristics as a function of MCMC variable πE,N.
Bottom panel shows that πE,N is highly correlated with γ⊥, the component of
orbital motion perpendicular to the projected planet–star axis, as found earlier
by Batista et al. (2011). This is responsible for the poor determination of πE,N
in Figure 6(a). Top panel: highest masses are associated with low πE,N. Third
panel: these are disfavored because γ⊥/γ0 tends to saturate its physical limit
(unity). Second panel: relatively high masses (with πE,N < 0) are favored
because γ‖/γ0 (as well as γ⊥/γ0) hover near 0.5, a value favored by the virial
theorem.

200 K, and for an unfiltered data set, it gives a shift of about
500 K.

APPENDIX E

DETAILED ANALYSIS OF THE KEPLER CONSTRAINT

Figure 12 shows several quantities plotted against πE,N. In
each case, the mean and standard deviation of all chain links
within a given πE,N bin are calculated. The bottom panel shows
the behavior of ω (= γ⊥). Since πE,N is very similar to πE,⊥,
this reflects the degeneracy between the perpendicular compo-
nents of Earth orbital motion (parallax) and lens orbital motion,
which is analyzed in some detail by Batista et al. (2011) and
Skowron et al. (2011). In the present case, the correlation is
quite tight. The top panel shows the lens mass M = θE/κπE.
Since θE is nearly constant for different links in the chain, the
mass scales M ∼ π−1

E and so is peaked near πE,N = 0 where
πE is near its minimum (see Figure 6).

It is the two middle panels that enable one to understand why
the orbital Jacobian favors relatively high masses. These show,
respectively, γ‖/γ0 and γ⊥/γ0, where

γ‖ = s−1 ṡ, (E1)

γ⊥ = ω, (E2)
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γ 2
0 = 8π2

κ s3πE
θE

(
πE +

πs

θE

)3

. (E3)

Note that (γ 2
⊥ + γ 2

‖ )/γ 2
0 is the ratio of the so-called projected

kinetic to projected potential energy, which has a strict upper
limit of unity for bound orbits. We do enforce this limit, but the
main impact of the orbital motion is more subtle. First look at
γ⊥/γ0. In the region away from πE,N ∼ 0, we have both γ0 ∝ πE
(Equation (E3)) and (very roughly) γ⊥ ∝ πE (bottom panel).
Hence, γ⊥/γ0 is approximately constant in these two regimes.
Much of the πE,N > 0 region is at or above the physical limit
γ⊥ = γ0, which is why these values are disfavored in Figure 6(c).

Now examine γ‖/γ0. By itself, γ‖ does not vary much with
πE,N, so the form of the structure is basically just γ −1

0 , which
scales ∝ π−1

E,N away from zero. The point is, however, that the
overall scale (which is set by the measurement of γ‖) is small,
so that except near πE,N ∼ 0, γ‖/γ0 is extremely close to zero.
Naively, this would seem to be disfavored by the virial theorem,
but how does the Jacobian “know” about this? For simplicity of
exposition let us consider circular orbits. For these, γ‖/γ0 = 0
implies that the planet is exactly in the plane of the sky: either
the orbit is exactly face-on (so this is always true), or the orbit
just happens to be passing through the plane of the sky at the
time of the event peak. The Jacobian is “unhappy” about either
alternative because there is very little Kepler-parameter space
relative to chain-variable space at such orbital configurations.

Finally, note that in the immediate neighborhood of πE,N ∼ 0
(where M reaches its highest values), γ⊥ is frequently at or above
its physical limit (γ0), which is exacerbated by the relatively high
values of γ‖. This is responsible for the modest suppression of
extremely low parallaxes (high masses) in Figure 6. Thus, both
Kepler and Galactic+flux priors separately predict a relatively
high lens mass, near the limit of what is permitted by the flux
constraint.
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