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The method of analytic continuation in the coupling constant (ACCC) in combination with use of the sta-
tistical Padé approximation is applied to the determination of resonance energy and width of some amino
acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used
for analytic continuation in the coupling constant to obtain the resonance energy and width of organic
molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The description of the resonant electron capture by molecules
connected with the formation of negative ions represents still the
challenge for the theory [1]. The reason is that the metastable res-
onance state is embedded in the continuum of scattering states,
plain application of bound state techniques will inevitably lead
to a neutral molecule plus a free electron. This is the reason why
many theoretical papers based on standard methods failed in the
calculation of vertical electron affinities of halogenated molecules.
This problem has been clearly formulated by Simons and Jordan
[2], stating ‘‘Because temporary anion states lie in the continuum
of the neutral species plus free electron, they cannot be treated
in general by means of a straightforward variational calculation’’.
Hence there were developed different theoretical methods dealing
with the temporary negative ions. A rigorous treatment of anion
resonances needs, of course, quantum mechanical scattering meth-
ods such as R-matrix theory or the Kohn variation technique. Be-
cause of complicated calculations in these approaches there are
applied stabilization methods to describe the negative ions. There
are many variants of them; the product of all these approaches is
the determination of a series of eigenvalues of the molecular Ham-
iltonian as a function of some scaling parameter. The drawback of
these methods consists in the determination of the important
physical quantity, resonance width, which is in many cases not
possible to obtain. One can conclude that the calculation of reso-
nance energies as well as resonance widths is not a routine matter;
each new methodological contribution is very valuable.

To describe inelastic resonance electron-molecule processes,
the knowledge of resonance energies and widths of molecular an-
ions is required. The calculation of the parameters is not a simple
task because of the nature of the resonance wave function. Several
methods have been developed in the last four decades to calculate
resonance energies. Let us mention just a few of them: stabilization
methods [3–5], complex rotation [6] and complex absorbing po-
tential [7,8]. In 1985, Nestmann and Peyerimhoff (NP) proposed a
method [9,10] which has found widespread utilization (see, for
example, Refs. [11–14]) because of its easy application and close
connection to standard quantum chemistry codes. The idea is to
use standard quantum chemistry codes designed to calculate
bound states with variable nuclear charges. If the nuclear charges
are increased by a factor k the electron-molecule interactions be-
come more attractive and at increasing k over a certain limit the
resonance state converts into a bound state. The calculation is re-
peated for several values of k in the region where the electron is
bound and a polynomial approximation is formed for the depen-
dence of the bound-state energy EðkÞ on k. This expression is even-
tually used to extrapolate to k ¼ 0, and this way the resonance
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energy is obtained. This approach possesses one important advan-
tage: any quantum chemistry code can be easily modified to
change the nuclear charges, and it is easy to repeat the calculation
for a series of charges. This feature makes this approach very
appealing but the calculation of the resonance width remains
ambiguous. The ACCC method [15,16] is able to yield not only
the resonance energy but also the resonance width with a very
good accuracy. The method has been successfully applied to the
calculation of the resonant energy and width for the molecular
nitrogen negative ion [17] where also the basic ideas of the method
have been introduced. In this paper we show that the application
of the method to larger molecules can also provide accurate values
of the resonance energies and the resonance widths. The molecules
of our interest were negative ions of the simplest aliphatic amino
acids (glycine, alanine and valine) and the monomer and the dimer
of formic acid. In case of amino acids there are studies combining
experiment and theory of the fragmentation reactions of collision
products of these molecules with electron [18–20]. The center of
the interest of these contributions lies in the description of the
fragmentation reactions following the anion decay but the detailed
characterization of ions is missing. Formic acid molecules are also
interesting from the point of view of the results for vertical attach-
ment energies with the data assigned to the monomers or dimers.
There is a spectrum of the vertical attachment energy (VAE) values
obtained experimentally or on the theoretical level [21–24]. It
gives the reason for us to apply the method for larger molecules
to find the differences between two structures and to assign the
value of the vertical attachment energy to the true structure.
2. Computational details and data production

The evaluation of the energies of the smallest aliphatic amino
acids anions for glycine, alanine and valine as well as the treatment
of monomer and dimer anions of the formic acid have been per-
formed using of Gaussian 03 program package [25]. Geometries
of the molecules were optimized with MP2/6-311+G(2d,2p) [26–
30]. The optimized geometries were then used for single point cal-
culations at the MP2, spin-component scaled MP2 (SCS-MP2) [31],
MP4 [32], QCISD(T,E4T) [33–35] and OVGF (Outer Valence Green
Function) [36–43] levels of the theory for the formic acid monomer
and dimer as well as at the MP2 and OVGF levels of the theory for
the three studied amino acids. These methods were combined with
6-311+G(2d,2p) and 6-311++G(2df,2pd) basis sets [44–47]. For the
monomer structure of the formic acid the OVGF method with full
6-311+G(2d,2p) basis set, frozen core aug-cc-pVTZ and again full
aug-cc-pVQZ basis sets [48–53] has been used to determine the en-
ergy of the resonant orbital. Moreover more accurate ab initio
methods MP4 and QCISD(T,E4T) has been used with aug-cc-pVTZ
basis set also. For the last two methods as well as for the MP2
method the set of calculations has to be doubled for the neutral
and anionic states from which the resonant energy was evaluated
as the difference of the total energies of these two states. For the
dimer structure we have performed calculations with the previous
methods and basis sets as for the monomer except the MP4 with
aug-cc-pVTZ calculations and OVGF with full aug-cc-pVQZ calcula-
tions. Amino acids of glycine, alanine and valine have been treated
with MP2 and OVGF methods together with the 6-311++G(2df,2pd)
basis set. To describe the anions we stabilized with the modified
nuclear charges the resonant orbital where the extra electron is at-
tached. We performed a modification of all nuclear charges of the
molecules. To decrease the computational costs we have divided
the computational procedure into two parts. With a defined step
0.001 the k parameter was varied from 0.006 up to 0.05. In the sec-
ond part we increased the step to 0.002 and varied the k parameter
from 0.05 up to 0.1. This approach resulted in 70 values for k
parameter where for each k the total energies of neutral and anio-
nic state have been calculated.

2.1. ACCC method

The method of the analytical continuation in the coupling con-
stant (ACCC) as applied to molecular resonances has been de-
scribed in detail in Ref. [17]. For its original version we refer the
readers to Ref. [15]. The essence of the method is to transform
the problem of resonance calculation to much easier problem of
bound state energy calculation by introducing a perturbation.
The perturbation is eventually eliminated and the resonance en-
ergy and width obtained by means of the analytical continuation
in the parameter describing the strengths of the perturbation. This
is done by means of Padé approximation. In this work we will fol-
low the work of Nestmann and Peyerimhoff [9,10] and use the
Coulomb potential for the analytical continuation. This is not the
best choice from the point of the scattering theory but it is very
convenient for the use of commercial quantum chemistry codes.

The ACCC method is based on the following observation
[16,15,54]: It is well known that if we make the Hamiltonian H
describing our system more attractive by adding an attractive
perturbation kV ,

H! H þ kV ; ð1Þ

the bound states get more bound and resonances move closer to the
origin. At some value of k=k0 both resonance poles merge and trans-
form into a pair of bound and virtual states. If we calculate bound
state energy EðkÞ for several values of k we can construct a fre-
quently used polynomial approximation to EðkÞ, e.g.,

EðkÞ ¼ E0 þ E1kþ E2k
2 þ � � � ð2Þ

and extrapolate this function to k! 0. But since EðkÞ attains only
real values – the bound state energies are of course real – the result
of the extrapolation is a real quantity which in some sense repre-
sents the resonance energy but gives no information on the imagi-
nary part of the resonance energy. As shown in Ref. [54] and
references therein the function kðkÞ; EðkÞ ¼ k2ðkÞ, has for nonzero
angular momentum l a singularity at a point k0 where kðk0Þ ¼ 0.
The singularity is of the square root type

kðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k� k0

p
at k � k0: ð3Þ

This indicates that the expansion Eq. (2) cannot represent the reso-
nance energy for k below k0. In accordance with [54] we represent
kðk0Þ in the form of Padé approximation in a new variable y

kðyÞ � k½N=M�ðyÞ ¼ PNðyÞ
Q MðyÞ

; y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k� k0

p
; ð4Þ

where PNðyÞ and QMðyÞ are polynomials

PNðyÞ ¼
XN

i¼0

piy
i; Q MðyÞ ¼ 1þ

XM

i¼0

qiy
i: ð5Þ

This representation takes into account the singularity at k ¼ k0 ex-
actly and the Padé approximation carries out the analytical contin-
uation [54]. At values k < k0; kðkÞ gets complex and the resonance
energy acquires its complex part. To calculate the bound state ener-
gies and their square integrable wave functions is now a routine
task and many commercial programs are available. This makes this
method very attractive.

The coefficients of the polynomials in Eq. (5) are determined as
the least square approximation to the data obtained by minimizing
the v2 functional

v2 ¼
XL

l¼1

1
�2

l

PNðxlÞ
Q MðxlÞ

� fl

����
����

2

: ð6Þ
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In the above equation �l indicates the inaccuracy of the data used.
The calculation of the Padé III approximation is a nonlinear prob-
lem; an efficient solution is described in Ref. [54]. As discussed in
Ref. [54] the Padé approximation has two very important features
(among others): (1) as already mentioned above it carries out the
analytical continuation automatically; and (2) it is flexible enough
to approximate functions with singularities (poles and cuts).

The ACCC calculation proceeds as follows:

� Bound state energies Ei are calculated for several values of the
parameter ki using standard quantum chemistry codes and
input data fki; ki; i ¼ 1;2; . . . ; Lg are generated ð�h2k2

i =2m ¼ EiÞ.
This step represents a routine task.
� Padé approximation of the inverse function kðjÞ is constructed

and evaluated at j ¼ 0. In this way the bifurcation point k0 is
determined.
� Based on the input data and the calculated k0 the statistical

Padé approximation k½N=M� is constructed.
� The approximation k½N=M� ffiffiffiffiffiffiffiffiffiffiffiffiffi

k� k0
p� �

is evaluated at k = 0 and the
resonance parameters thus determined.
Fig. 1.
tion as
the actu
k ¼ 0 t
multipl
k1 þ ik2 ¼ k½N=M�ðk ¼ 0Þ: ð7Þ
ER ¼ ðk2
1 � k2

2Þ�h
2
=2m; C ¼ 2k1k2�h2

=m: ð8Þ
Fig. 2. Resonance energy (horizontal axis) and resonance width (vertical axis) of
Glycine calculated at the OVGF level by means of the ACCC method using 1/1 Padé
approximation. The results were obtained using 3000 subsets each consisting of 20
data points. It is seen that the calculated resonance parameters are scattered in a
very narrow energy range. For details see the text.
Sample calculation for glycine is shown in Fig. 1. Here the
dependence of the resonance energy on the stabilization charge –
solid line – and the resonance width (multiplied by 10) – dashed
line – is plotted together with some nearest data points for the
Padé 1/1 approximation. Higher Padé (2/2 and 3/3) approximations
are indistinguishable from 1/1 approximation. Above the bifurca-
tion point about 0.081 the resonance width equals zero. Below it
the width is nonzero as well as the resonance energy (negative
in the figure).

The problem of analytical continuation is a typical example of
an ill-posed problem. A small change in the input data can, in
Calculated resonance energy and width for glycine at Padé 1/1 approxima-
a function of the stabilization charge k. The crosses represent input data (in
al calculation over 50 data points were used; not shown in the figure). At

he resonance energy about 2.22 eV and width 0.21 eV (in the figure
ied by 10) are obtained.
principle, lead to very large errors in the continued values. To avoid
this principal difficulty we use a statistical approach which con-
sists in the following: From a given set of data points consisting
of N points we select by random M subsets of points, consisting
of L < N points and repeat the ACCC calculation for each subset.
From the distribution of the calculated points we can estimate
Fig. 3. The same as in Fig. 2 but for the Padé 2/2 approximation. The data are
scattered in a broader range of energies.



Table 1
Some calculated molecular properties of Glycine most stable conformer.

Glycine Energy (Hartree) Rotational constants (GHz) l (Debye)

MP2(full)/6-311++G(2df,2pd) �284.056021 10.370 3.916 2.936 1.304
MP2(full)/6-311+G(2d,2p) �283.960152 10.325 3.894 2.920 1.300
B3LYP/6-31++G⁄⁄a �284.456874 No val. No val. No val. 1.217
MP2(full)/6-311++⁄⁄b �283.883499 10.279 3.877 2.908 1.3
Experimentc 10.342 3.876 2.912 1.1

a Ref. [55].
b Ref. [56].
c Refs. [63,64].

Table 2
Some calculated molecular properties of Alanine most stable conformer.

Alanine Energy (Hartree) Rotational constants (GHz) l (Debye)

MP2(full)/6-311+G(2d,2p) �323.190915 5.102 3.067 2.312 1.436
MP2(full)/6-311++G⁄⁄a �323.103013 5.085 3.054 2.306 1.4
MP2/6-311G⁄⁄b No val. 5.145 3.171 2.269 1.4
B3LYP/6-311++G⁄⁄c �323.856078 5.055 3.038 2.263 1.4
HF/6-31G⁄d No val. 5.146 3.163 2.270 1.5
Experimente 5.066 3.101 2.264 1.8

a Ref. [56].
b Ref. [57].
c Ref. [58].
d Ref. [59].
e Refs. [63,64].

Table 3
Some calculated molecular properties of Valine most stable conformer.

Valine Energy (Hartree) Rotational constants (GHz) l (Debye)

MP2(full)/6-311+G(2d,2p) �401.647375 2.958 1.456 1.348 1.464
MP2/6-311++G(2d,2p)a �401.481953 2.948 1.449 1.343 1.45
HF/6-31G⁄b �399.93591 No val. No val. No val. No val.
MP2/6-31+G⁄b �401.12801 2.979 1.434 1.324 1.48
B3LYP/6-31++G⁄⁄c �402.410023 2.910 1.410 1.309 1.36

a Ref. [60].
b Ref. [61].
c Ref. [62].

Table 4
Glycine, Alanine and Valine vertical attachment energies and resonance widths.

MP2/6-311++G(2df,2pd) OVGF/6-311++G(2df,2pd) Exp.

NP ACCC NP ACCC Ref. [21]

(eV) (eV) C (eV) (eV) C (eV)

Glycine 2.49 2.35 0.23 2.35 2.22 0.21 1.93
(2.57) (2.50) (0.24) (2.48) (2.40) (0.22)

Alanine 2.38 2.21 0.20 2.21 2.07 0.17 1.80
(2.45) (2.32) (0.20) (2.34) (2.19) (0.18)

Valine 2.22 2.07 0.14 2.03 1.90 0.12 No val.
(2.28) (2.14) (0.15) (2.15) (2.02) (0.13)

Values in parenthesis are for 6-311+G(2d,2p) basis set.

Table 5
Relative vertical attachment energies of Alanine and Valine compared to Glycine.

MP2/6-311++G(2df,2pd) OVGF/6-311++G(2df,2pd) Exp.

NP ACCC NP ACCC Ref. [21]

(eV) (eV) C (eV) (eV) C (eV)

Glycine 0.00 0.00 0.23 0.00 0.00 0.21 0.00
(0.00) (0.00) (0.24) (0.00) (0.00) (0.22)

Alanine �0.11 -0.14 0.20 �0.14 �0.15 0.17 �0.13
(�0.12) (�0.18) (0.20) (�0.14) (�0.21) (0.18)

Valine �0.27 �0.28 0.14 �0.32 �0.32 0.12 �0.30a

(�0.29) (�0.36) (0.15) (�0.33) (�0.38) (0.13)

a Mean relative energy Val–Gly calculated from theory.

Table 6
HCOOH monomer and dimer vertical attachment energies and resonance widths.

HCOOH (HCOOH)2

NP ACCC NP ACCC

(eV) (eV) C (eV) (eV) C

MP2/aug-cc-pVTZ 2.66 2.16 0.34 1.82 1.6 0.13
SCS-MP2/aug-cc-pVTZ 2.77 2.30 0.34 2.10 1.9 0.15
MP4/aug-cc-pVTZ 2.66 2.15 0.33
OVGF (full)/6-311+G(2d,2p) 2.55 2.34 0.22 2.14 2.0 0.15
OVGF/aug-cc-pVTZ 2.66 2.10 0.28 1.96 1.9 0.13
OVGF (full)/aug-cc-pVQZ 2.45 1.98 0.26
QCISD (T,E4T)/aug-cc-pVTZ 2.61 2.09 0.33 1.92 1.7 0.13
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the quality of the data and the stability and accuracy of the results.
This is demonstrated in Fig. 2 which shows the results of the ACCC
calculation for glycine at the OVGF/6-311++G(2df,2pd) level using
Padé 1/1 approximation for the determination of the resonance en-
ergy and width.

On the real axis we plot the resonance energy and on the imag-
inary axis the width. To get the data in Fig. 2 we used 30 input
points in the energy range 0.28–8.98 eV. Out of these we selected
3000 random subsets consisting of 20 points. We observe that
the Padé 1/1 approximation is very stable and the results are lo-
cated in a very limited range of energies. This range however de-
pends on the initial data set. If for example the range of energies



Fig. 4. The ground state optimized structures of glycine, alanine and valine amino acids.
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is very narrow or the data are not very accurate the scatter of cal-
culated results gets bigger and the final results become less accu-
rate. Considering these and other factors we expect that our
results are correct to 20 meV assuming that the input quantum
chemistry data are precise with the same accuracy. In Fig. 3 the
2/2 Padé approximation was used with the same input data set
as in Fig. 2. We see that the points are scattered in a broader range
but the center of the distribution remains at the same position as in
Fig. 2. It is well known that at increasing order of the Padé approx-
imation the continued values become less stable because the Padé
approximation attempts to describe the noise of the data.

3. Results

To compare the optimized geometries of the ground states of
amino acids with the known results, we have calculated from the
most stable structures rotational constants and dipole moments
which are given in Tables 1–3.

Our values are in good agreement with other theoretical ones
for glycine [55,56], alanine [56–59] and valine [60–62] as well as
with the experimental ones for glycine and alanine [63,64]. These
geometries represent the input structures used for the calculations
of the ground state energy as well as for the energy of transient
negative ions. The values of the vertical attachment energies and
resonance widths of amino acids are summarized in the Table 4.

The data in the parentheses are obtained from the calculations
with the smaller basis set. The larger basis set calculations resulted
in the lowering of the VAE of all amino acids towards the experi-
mental values obtained by Aflatooni et al. [21]. The differences be-
tween the VAE of alanine, valine and glycine in the frame of the
methods remain unchanged for the larger basis set (see Table 5).

The difference between the experimentally obtained VAE for
glycine and alanine has a value of 0.13 eV while our ACCC calcula-
tions yield the values of 0.14 eV (from MP2 energies), 0.15 eV
(from OVGF energies). The NP stabilization approach [9–11] gave
the values of 0.11–0.16 eV respectively. For the valine amino acid
the NP and ACCC methods yield very similar values of VAE (in
the frame of MP2 and OVGF methods). According to our experience
[14], the OVGF method yields qualitative correct (best) results. This
method is a third-order perturbation-type single particle Green’s
function approach, which allows calculating ionization potentials
directly. In the present case we have calculated the electron affin-
ity as the negative value of the ionization potential of the stabilized
anion. On the base of our calculations which confirm the equal dif-
ferences between the VAE of amino acids in the frame of used
methods we can estimate the decreasing of the experimental
VAE for the valine to be 1.63 eV. The influence of the basis set on
the value of the resonance width is negligible. Dissociative electron
attachment to formic acid and formic acid dimer leads at low ener-
gies to the resonances which was confirmed at the theoretical
[22,24] and experimental level [21,23]. Gianturco et al. [22] identi-
fied for the formic acid dimer seven resonances in the energy range
up to 15 eV. The two lowest have also been observed by Allan [23]
at 1.4 and 1.96 eV, Aflatooni et al. [21] assigned value of 1.7 eV.
Gorfinkiel and Caprasecca [24] using of multiple-scattering ap-
proach to electron collisions with molecules found the peaks cen-
tered around 1.45 eV, 1.7 eV and 1.83 eV respectively. Results from
our calculations are presented in Table 6; the ground state opti-
mized structures used for the calculations are depicted at the Fig. 4.

ACCC method with the energies calculated at the QCISD (T,E4T)
level of the theory (the best description of the electron correlation)
assigned the value of VAE = 2.09 eV to the monomer and 1.7 eV to
the dimer structure with the values of resonance widths 0.33 eV
and 0.13 eV respectively. In Table 6 there are also given VAEs
and resonance widths obtained on the energy points calculated
at various levels of the theory as well as with using of various basis
sets. Comparable results are obtained with using of OVGF calcula-
tions with the same basis set.
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