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We construct a general relativistic analogy of an infinite solenoid, i.e., of an infinite
cylinder with zero electric charge and non-zero electric current in the direction tangential
to the cylinder and perpendicular to its axis. We further show that the solution has a
good weak-field limit.
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1 Introduction

In classical electrodynamics, a solenoid is an infinite coil conducting electric
current that acts as the source of the homogeneous magnetic field inside (there is no
field outside). As a model, we consider an infinite cylinder with vanishing charge but
non-zero surface current density. In general relativity, there is no solution involving
only a homogeneous magnetic field. The only static solution of Einstein–Maxwell
equations representing a magnetic field that is cylindrically symmetric and regular
on the symmetry axis is the Bonnor–Melvin universe [1], the invariant of which
decreases with increasing distance from the axis. This is a natural consequence of
the fact that the energy of the magnetic field curves the spacetime. However, a weak
field changes only slowly near the axis representing thus a good approximation of
the classical situation.

Therefore, we take the Bonnor–Melvin spacetime and join it to the Levi-Civita
spacetime, i.e., to the most general static, cylindrically symmetric solution of vac-
uum Einstein equations. This is achieved in such a way that junction conditions are
satisfied on the hypersurface that separates the two spacetimes and represents a
thin cylindrical shell of matter. To determine the surface energy-momentum tensor
and the electric current on the shell, we apply Israel formalism [2] generalized by
Kuchař [3] to Einstein–Maxwell fields. There is one free parameter in the interior
Bonnor–Melvin solution and two free parameters in the exterior Levi-Civita solu-
tion. We show that for any circumference of the cylinder we can always choose these
three parameters in such a way that the the density and pressure of the matter on
the shell satisfy energy conditions. Moreover, the energy-momentum tensor can be
interpreted as that of counter-rotating, charged particles held in equilibrium by the
Lorentz force and gravity.

With a weak magnetic field inside, low unit-length mass of the shell, and a small
radius of the shell, the resulting field corresponds very well to the Newtonian case
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and classical electrodynamics. However, the picture is substantially different for
stronger magnetic and gravitational fields and/or greater radii of the shell.

2 Construction of the solenoid

The spacetime metric inside the shell is the Bonnor–Melvin universe [4]

gµν = α−2(−c2dτ2 + dζ2) + α−5dρ2 + αρ2dϕ2, (1)

where

α = 1− GK2

c4
ρ2 (2)

and ρ ≤ r < c2/K
√
G. Constant K determines the strength of the magnetic field

since the 4-potential reads
A = Kρ2dϕ. (3)

The Maxwell tensor only has one non-zero component,

Fρϕ = 2Kρ, (4)

and its invariant reads
FµνF

µν = 8K2α4. (5)

The analogy between the Bonnor–Melvin magnetic field and a special-relativistic
homogeneous magnetic field H oriented along the z-direction (Fρϕ = Hρ and
FµνF

µν = 2H2) is H = 2K. However, we must bear in mind that the invariant
of the field is not constant in our case — this is to be expected since the electro-
magnetic field adds to the gravitational mass and a homogeneous field is thus not
possible.

The usual form of the metric [1],

gµν = β2(−c2dτ2 + dζ2 + dρ̃2) +
ρ̃2

β2
dϕ2 , (6)

where β = 1+GK2ρ̃2/c4, is obtained from (1) by the transformation ρ̃2/β2 = αρ2.
The singular surface located at ρ = c2/K

√
G at infinite proper distance from

the axis cannot be reached in finite time even by photons and all timelike geodesics
have their turning points closer to the axis.

The circumference of rings τ, ζ, ρ = constant reaches its maximum value of

Cmax =
πc2

K

√
G (7)

for ρ = c2/K
√
2G or α = 1/2 and then decreases to zero again (see Fig. 1).

The spacetime metric outside the shell is the Levi-Civita universe

gµν = −ρ2mc2dτ2 + ρ2m(m−1)(dζ2 + dρ2) +
ρ2(1−m)

C2
dϕ2, (8)
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Fig. 1. Circumference C of rings τ, ζ, ρ = constant in Bonnor–Melvin universe as a function
of their radius ρ. The maximum value is attained at ρ = c2/K

√
2G or α = 1/2.

where C is the conicity parameter of the metric, m is the Levi-Civita parameter
related to the strength of the gravitational field, and ρ ≥ R.

We identify both parts of the spacetime along a cylindrical shell of radius r as
measured inside and R as measured outside. The only condition we must satisfy
is that the length of the hoops around the cylinder be the same from inside and
outside

√
αr =

R(1−m)

C
, (9)

which we can understand as an equation fixing the conicity parameter C outside.
This means that for a given outer spacetime and a fixed value of the magnetic field
inside there may be two different inner spacetimes of the same circumference (if
this value is less than Cmax of (7)), there could be just one (for this critical value),
or none at all — it is not possible to join such an external spacetime to a Bonnor–
Melvin universe. We choose the intrinsic coordinates T,Z,Φ on the shell in such
a way that the induced metric is Minkowskian, T being the proper time of static
observers and Z,Φ the proper distances in the Z and Φ directions.

3 Interpretation

We now calculate the properties of the material within the seam, using the Israel
formalism [2]. The resulting surface energy-momentum tensor can be understood in
terms of phenomenological pressures or tensions satisfying various energy conditions
or it can be given a more direct physical meaning via particle interpretation as
shown below. We find

8π
GSTT

c4
=

α3/2

r
− (1−m)2

RA ,
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8π
GSZZ

c4
= −α3/2

r
+

1
RA , (10)

8π
GSΦΦ

c4
= −4(1− α)α3/2

r
+

m2

RA ,

where A = m2 − m + 1 and α is evaluated at ρ = r and is thus a function of r
and K. The induced 3-current only has the axial component since Ja = [Fa⊥] ≡
(Fa⊥)out − (Fa⊥)in = −(Fa⊥)in:

JΦ =
c

2π
Kα2. (11)

It is to be noted that this value only depends on the inner spacetime parameters. If
we increase the inner radius of the cylinder up to its maximum value then α → 0,
the circumference of the ‘solenoid’ decreases, and so does the surface current for any
intensity of the magnetic field on the axis. Therefore, it is difficult to understand
the current as the source of the magnetic field as in the classical case.

The surface energy-momentum tensor (3) can be interpreted as due to four
streams of charged particles spiraling along the axis with

U1 = γ[c, vZ , vΦ ], U2 = γ[c, vZ ,−vΦ],
U3 = γ[c,−vZ , vΦ ], U4 = γ[c,−vZ ,−vΦ ],

(12)

where γ = 1/
√
1− v2

Z/c
2 − v2

Φ/c
2. The corresponding energy-momentum tensor

Sij = ρ(U1iU1j + U2iU2j + U3iU3j + U4iU4j), where ρ is the surface rest density of
the rest mass of the streams, has the following form

Sij = 4ργ2


 c2 0 0

0 v2
Z 0

0 0 v2
Φ


 . (13)

For the 3-current J = σ(U1 − U2 + U3 − U4), with σ being the surface rest density
of the charge of the streams, we obtain

Ji = 4σvΦγ[0, 0, 1]. (14)

Comparing these expressions to the induced energy-momentum tensor (3), we derive

ρ =
c2

16πG

(
α3/2

r
(3− 2α)− A

RA

)
, σ2 =

K2α4

64π2

α3/2 (3− 2α)
r

− A
RA

m2

RA − 4α3/2 (1− α)
r

,

v2
Z = c2

1
RA − α3/2

r
α3/2

r
− (1−m)2

RA

, v2
Φ = c2

m2

RA − 4α3/2 (1− α)
r

α3/2

r
− (1−m)2

RA

.

(15)
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Another physical characteristic of the cylinders is their mass per unit length of the
shell

M1 ≡ (Circumference) · STT = 2πrα1/2STT =
c2

4G

[
α2 − (1−m)2

CRm2

]
. (16)

It should be noted that its value is always less than 1/4 — the same restriction
holds also for solid cylinders [5, 6] and in the absence of magnetic fields [7].

Interpretation can become considerably simpler if the SZZ component vanishes.
We thus require

RA =
r

α3/2
, (17)

obtaining

Sij =
α3/2c4

8πGr


m(2−m) 0 0

0 0 0
0 0 m2 − 4(1− α)


 . (18)

In this case it is sufficient to only consider two oppositely charged streams of par-
ticles moving in the azimuthal direction with U1 = γ[c, 0, vΦ ], U2 = γ[c, 0,−vΦ],
where γ = 1/

√
1− v2

Φ/c
2. Therefore

Sij = 2ργ2


 c2 0 0

0 0 0
0 0 v2

Φ


 . (19)

For the 3-current Ji = σ(U1 − U2), we obtain

Ji = 2σvΦγ[0, 0, 1]. (20)

Comparing these expressions to expression (18), we find

ρ =
α3/2c2

8πGr
((3− 2α)−A) ,

v2
Φ = c2

m2 − 4(1− α)
m(2−m)

,

σ2 =
K2α4

8π2

(3− 2α)−A
m2 − 4(1− α)

.

(21)

Finally, we find

M1 =
α2c2

4G
m(2−m). (22)

For the ratio of the charge rest density of the streams to their rest-mass rest density,
we obtain

ε2 ≡
(
σ

ρ

)2

= 8G
α(1− α)

[m2 − 4(1− α)][m(1−m) + 2(1− α)]
. (23)
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Fig. 2. Interpretation ranges for counter-rotating and counter-spiraling particles: α cor-
responds to the inner radius of the cylinders and m is the outer Levi-Civita parameter.
Counter-spiraling particles admit solutions between the two full curves, while counter-
rotating particles only between the upper full curve and the dotted curve. In these areas
we can always find such a combination of the 5 spacetime parameters that the result-
ing shell can be made of particles. Solutions along the α = 0.5 line reach the maximum

possible circumference.

The admissible range of α for a given m is given by the requirements ρ, v2
Φ , σ

2 > 0
and v2

Φ < 1. This gives m ∈ (0; 2) and α ∈ (1−m2/4; 1−m2/2 +m/2), as can be
seen in Fig. 2. All these shells can be constructed of counter-rotating particles only
moving in the azimuthal direction. For m ∈ (

√
2; (1 +

√
5)/2), the shells can reach

their maximum possible circumference. If we fix all three parameters of the outer
spacetime (m,R,C), then there is only a single inner spacetime (K, r) that can be
attached to it due to the conditions (9) and (17).

If we go back to the more general case of the spiraling particles, the allowed
range of the parameters is broader, m ∈ (0; 2) and α ∈ ((2 − m)2/2(m2 − 2m
+2); 1−m2/2+m/2), and includes the above case of the azimuthal particles (Fig. 2).
In this case it is possible to completely specify the outer spacetime and still find
different inner solutions (however, the corresponding induced energy-momentum
tensors will be different). Therefore, a given Levi-Civita spacetime can be thought
of as admitting diverse possible sources. (This is due to the fact that the junction
conditions on the shell surface do not require the continuity of the first derivatives
of the characteristic forms of the spacetime.) We should also note that if we want to
reach the maximum possible circumference of the shell (α = 1/2), we must admit
m ≥ 1 entering thus the region, where the Levi-Civita spacetime does not have a
classical counterpart.

It is interesting that if we insist that there be Minkowski spacetime inside the
cylinder [7], then the particle (or photon) interpretation only allows m ∈ [0; 1].
By admitting magnetic fields inside the cylinder, we extended the particle-inter-
pretation range for the sources of the Levi-Civita spacetime. Curiously, if we inves-
tigate the weak, strong, and dominant energy conditions, the range of m remains
unchanged.
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4 The weak-field limit

First we summarize the results for classical cylinders composed of two streams
of oppositely charged particles moving in +Φ and −Φ directions (if we admit axial
current, we find there is a nonzero magnetic field outside the cylinder, which we do
not consider the classical counterpart of the relativistic cylinders treated above).
The properties of the particles are characterized by the ratio of their charge to
their rest mass, ε, and their density is described by the mass per unit length of the
cylinder, M1. The azimuthal velocity of the streams is

vΦ =

√√√√√ G

ε2

c2
+

1
M1

. (24)

Expressing ε as a function of the remaining parameters, we obtain

ε = c

√
G

v2
Φ

− 1
M1

. (25)

If we have a cylinder of radius r made of charged fluid of pressure p (p = ρv2
Φ due

to the streaming of the particles, composing the fluid) that induces magnetic field
H inside, we find

GM2
1 = 2πrp+ 1

4r
2H2 ≡ P + 1

4r
2H2, (26)

where P = 2πrp = Cp is the pressure integrated around the cylinder.
We can now compare the classical cylinders to the weak-field limit of the rela-

tivistic results. We base our interpretation on one of the junction conditions due to
Kuchař [3], namely

K̃ABS
AB =

1
c
F̃A⊥J

A, (27)

where K̃AB = (K+
AB + K−

AB)/2 is the mean extrinsic curvature of the surface,
SAB is the induced energy–momentum tensor, F̃A⊥ = (F+

A⊥ + F−
A⊥)/2 is the mean

Maxwell tensor, JA is the induced current, and upper-case Latin indices take on
values T,Z,Φ. In fact, (27) is not an additional constraint on the solution — it
is automatically satisfied here, since both spacetimes obey the Einstein–Maxwell
equations. We now interpret STT as the energy density, ρc2, of the induced matter
and SΦΦ as its pressure, p. We find

− 1
2r
α3/2(m+ 2(1− α))ρc2 − 1

2r
α3/2(m− 2α)p = − 1

2π
K2α4. (28)

We first set K = 0 and thus α = 1 to check the uncharged case (Minkowski inside).
We obtain

mρ+ (m− 2)p = 0. (29)
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M. Žofka and J. Langer

In the weak-field limit of m → 2GM1/c
2 → 0 (see (16) and also [7]) and M1 =

Cρ = 2πrρ, where C is the shell circumference, we finally have the correct formula
(see (26))

GM2
1 − P = 0, (30)

where P = Cp. If we keep the Lorentz force in our equation, we have

M1c
2(m+ 2(1− α)) + P (m− 2α) = 2r2K2α3, (31)

with C = 2πr
√
α. If we are interested in cylinders of small radii in which the

electromagnetic field does not contribute much to their gravitational mass, then
α → 1 and we obtain

M1c
2(m+ 2(1− α))− 2P = 2r2K2. (32)

Assuming further 2(1 − α) � m � 1 and remembering that H = 2K, we finally
find

GM2
1 = P + 1

4r
2H2, (33)

which is the same as (26). To keep higher-order terms in the equation, we rewrite
(32) as follows:

2GM1

(
M1

2
+
K2r2

2c2

)
− P = r2K2. (34)

If we integrate FµνF
µν/16π (the energy density of the electromagnetic field) within

the cylinder up to unit proper length in z, we find

E1 =
∫ 2π

0

dϕ
∫ r

0

dρ
∫ α

0

dz
ρ

α3

K2α4

2π
=

1
2

(
K2r2 − G

c4
K4r4 +

G2

3c8
K6r6

)
. (35)

Bearing in mind that the mass of the shell M1 acts on itself with a weight factor of
1/2, we see that the lowest-order term in (35) exactly corresponds to the additional
term in the gravitational mass in (34). This is a nice confirmation of the fact that
the energy of the electromagnetic field contributes to the gravitational mass of the
cylinder.

A direct comparison between the general relativistic formula for the ratio of
the charge rest density of the streams to their rest-mass rest density (23) and its
classical counterpart (25) is not possible since (23) is expressed in terms of α andm.
Although a straightforward substitution for these parameters in terms of M1 and
vΦ from (21) and (22) does not yield a simple algebraic formula, a series expansion
verifies their correspondence.
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