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ABSTRACT

The Hamiltonian description of a system of N bodies in-
teracting by their gravitational field is given in the first-
order post-Minkowskian approximation of the General
relativity. The bodies are represented by their rest mass,
canonical coordinates and momenta. Their velocity is not
assumed to be small, as is the case in the post-Newtonian
approximation, even particles with zero rest mass mov-
ing with the speed of light are allowed. The Hamilto-
nian given in [4] includes all terms linear in the gravi-
tational constant. It has quite a simple form of a sum
of kinetic energies of individual particles and binary in-
teraction potentials. The dynamics of gravitational field
is eliminated by solving inhomogeneous wave equations,
applying transversetraceless projections, and using the
Routh functional. To illustrate properties and possible
applications of the post-Minkowskian Hamiltonian de-
scription of system of gravitationally interacting bodies
several general-relativistic phenomena are discussed em-
phasizing the uniform treatment of gravitating and test
bodies as well as test photons in this approach.

Key words: General relativity, post-Minkowskian ap-
proximation.

1. INTRODUCTION

While Einstein’s theory of gravitation has a surprisingly
simple formulation, the exact solution describing even a
binary gravitationally interacting system is not available.
In many situations, e.g. in the solar system, the gravita-
tional field is weak enough so that approximations to the
full general relativity can be used. Namely, the so-called
post-Newtonian (PN) approximation based on expansion
in the parameter v2/c2 � 1 can address this question,
both for a binary and N -body system (see e.g. [6]). To
describe situations, when radio waves or light are used to
measure distances, due to the limitation v2/c2 � 1 these
have to be treated in a different way, e.g., as test null parti-
cles in the gravitational field of massive bodies [3]. In this
contribution, we present a different approach – an exam-
ple of uniform description of the gravitational interaction

of both massive and massless particles in the first post-
Minkowskian (PM) approximation [4] given in terms of
canonical Arnowitt-Deser-Misner (ADM) formulation of
general relativity [2].

2. GRAVITATIONAL INTERACTION IN ADM
CANONICAL FORMALISM

We assume that the source of the gravitational field is a
set of N point-like particles (without explicit multipolar
structure, e.g., due to spin) described by action

IM =
∑
a

∫
paµdx

µ
a ,

i.e. the energy-momentum tensor is proportional
to δ-function distributed along particles’ trajectories
xµa(λa), µ = 0, 1, 2, 3, for massive particles the affine pa-
rameter λa is replaced with the proper time. In 3 + 1
Hamiltonian form, particles numbered a = 1, 2, .., N are
thus represented by their invariant mass ma, coordinates
xa and momenta pa. This is combined with the Einstein-
Hilbert action

IG =
1

16πG

∫
R
√
|g| d4x

for the gravitational field gµν(xν) which is split into 3+1
quantities (indices i, j, .. = 1, 2, 3) – lapse α, shift βi and
spatial metric

gij =

(
1 +

1

8
φ

)4

δij + hTT
ij . (1)

Conjugated momenta πij are linearly related to the ex-
trinsic curvature tensor of a hypersurface t = const.,
i.e. to the time derivative of gij . If a suitable gauge
(3gij,j − gjj,i = 0 , πii = 0) is used, the degrees of free-
dom of the gravitational field are reduced to canonically
conjugated hTT

ij and πTT ij . Assuming that at the infinity
the spacetime approaches asymptotically the Minkowski
spacetime the dynamics of these fields and particles is
then described by Hamiltonian [5]

H(hTTij , π
TT
ij ;xa,pa) = − 1

16πG

∫
∆φ d3x , (2)



where ∆φ becomes a known quantity once constraints of
Einstein equations in 3 + 1 splitting are solved. Both
constraints lead to elliptic partial differential equations
which are in the PN approach solved iteratively assuming
that all quantities can be expanded in parameter 1/c2, i.e.
assuming that the velocity of particles v/c� 1.

3. FIRST-ORDER POST-MINKOWSKIAN
APPROXIMATION

As an alternative, the expansion in gravitation interaction
constant G can also be used. Such expansion was given
in [6] including terms ∼ G2. In the first-order PM ap-
proximation we neglect the terms ∼ G2. Then

H1PM = HMink +Hp +Hpf +Hf +O(G2), (3)

where (assuming c = 1) the Hamiltonian for free rela-
tivistic motion of particles is simply

HMink =
∑
a

ma (4)

and the first-order terms read

Hp =− 1

2
G
∑
a

∑
b 6=a

mamb

rab

(
1 +

p2a
m2
a

+
p2b
m2
b

)
(5)

+
1

4
G
∑
a

∑
b 6=a

1

rab
(7pa.pb + pa.nab pb.nab) ,

Hpf =− 1

2

∑
a

pa ipa j
ma

hTTij (x = xa), (6)

Hf =
1

16πG

∫ (
1

4
hTTij,k h

TT
ij,k + πij TTπij TT

)
d3x. (7)

We denote ma =
√
m2
a + p2

a, rab = |xa − xb|, and
nab = (xa − xb)/rab. In this approximation, we do not
need to distinguish covariant and contravariant indices,
the contraction is performed using flat δij .

Equations of motion for particles are the usual Hamilton
equations, but those for fields

π̇ij TT =− 16πG δTT ijkl

δH

δhTTkl
(8)

ḣTTij = 16πG δTT klij

δH

δπkl TT
(9)

require application of TT-projection δTT klij which among
others involves a solution of a (fourth-order) elliptic
equation ∆2f = g.

The field equations up to the first order in interaction con-
stant G implied by (3) read

�hTTij =−16πG δTT klij

∑
a

pa kpa l
ma

δ(3)(x− xa), (10)

which means that hTTij is composed of waves generated
by point-like particles with positions xa(t). The shift and

lapse functions are on the other hand given by the gauge
choice and read (again, neglecting O(G2) terms)

βi(x) = −G
2

∑
a

pak

(
7

δik

|x− za|
+

xiax
k
a

|x− za|3

)
, (11)

α(x) = 1−G
∑
a

ma

|x− za|
. (12)

When one writes down the particle’s equation of motion

ẋia =
∂H

∂pai
, ṗai = − ∂H

∂xia
(13)

it contains two types of interaction terms – those which
look like ‘action on a distance’ (such as Gmambnab/r

2)
and those which can be interpreted as interaction of the
particle with gravitational field hTTij . Indeed, also the for-
mer terms represent the interaction with the gravitational
field, namely the lapse and shift which have been deter-
mined through the choice of the gauge, which is of el-
liptic nature and thus it yields the terms which mimic an
immediate force between the particles.

An important simplification is then applied in [4]. Since
hTTij ∼ G and also the acceleration of particles is pro-
portional to G, the changes in the gravitational field due
to the acceleration of the particles are ∼ G2 and can be
neglected when we determine the particle’s dynamics in
desired approximation. Thus we only need to solve (10)
for field hTTij surrounding an unaccelerated particle. It is
well known that both retarded and advanced waves gen-
erated by the unaccelerated particle are given by the same
boosted field of a static particle. This is complicated by
the fact that in ADM gauge this gravitational field has
nontrivial form since the TT-projection has to be applied
to a simple solution of the wave equation. Fortunately,
the solution of (10) can be found in an exact form in the
given approximation:

hTTij (x;xb,pb, ẋb) =
∑
b

G

|x− xb|
1

mb

1

yb(1 + yb)2

×
{ [
ybp

2
b − (nb.pb)

2(3yb + 2)
]
δij

+ 2
[
1− ẋ2

b(1− 2 cos2 θb)
]
pbipbj

+
[
(2 + yb) (nb.pb)

2−
(
2 + 3yb − 2ẋ2

b

)
p2
b

]
nbinbj

+ 2(nb.pb)
(
1− ẋ2

b + 2yb
)

(nbipbj + pbinbj)
}
, (14)

where yb =
√

1− ẋ2
b sin2 θb,nb = (x − xb)/|x − xb|,

and cos θb = ẋb.nb/|xb|.

Finally, the Hamiltonian for particle and field has to be
converted into another one which is function of particle
variables only. Since variational derivative of Hamilto-
nian yields (generally) non-vanishing time derivative of
the conjugated field, one cannot simply substitute the
known solution of the field equations into the Hamilto-
nian. Rather the Legendre transformation to the so-called



Routh functional has to be performed

R(xa,pa, h
TT
ij , ḣ

TT
ij ) = H − 1

16πG

∫
d3x πTT ij ḣTTij .

It has vanishing variational derivatives (with respect to
hTTij , π

TT ij) if field equation are satisfied and thus it
plays the role of particles-only Hamiltonian, after few
more technical details are resolved [4]. Then the grav-
itational interaction of particles in 1PM is described by
Hamiltonian

H =
∑
a

ma −
1

2
G
∑
a,b 6=a

mamb

rab

(
1 +

p2
a

m2
a

+
p2
b

m2
b

)
+

1

4
G
∑
a,b6=a

1

rab
(7pa.pb + (pa.nab)(pb.nab))

−1

4
G
∑
a,b6=a

1

rab

(mamb)
−1

(yba + 1)2yba

×

{
2

m2
b

[
2(pa.pb)

2(pb.nba)2 + (pa.nba)2p4
b

− 2(pa.nba)(pb.nba)(pa.pb)p
2
b − (pa.pb)

2p2
b

]
− 2p2

a(pb.nba)2 + 4(pa.nba)(pb.nba)(pa.pb)

+ 2(pa.nba)2
(
(pb.nba)2 − p2

b

)
+ 2(pa.pb)

2

+
[
(pa.nba)2(pb.nba)2 − 3p2

a(pb.nba)2

+ 8(pa.nba)(pb.nba)(pa.pb) + p2
ap

2
b

− 3(pa.nba)2p2
b

]
yba

}
, (15)

where we use

yba =

√
m2
b + (nba.pb)

2

m2
b + p2

b

. (16)

Let us mention that the particles’ coordinates xa and mo-
menta pa appearing in the Hamiltonian (15) are not iden-
tical to those which appear in (3), (12), or (11) since
several canonical transformations were performed along
the way: First, part of Hf which has a form of a total
time derivative was dropped which is equivalent to some
canonical transformation. Also, since (14) contains par-
ticles’ velocities ẋa, after the Routh functional had been
used to obtain particle-only Hamiltonian, it still depended
on ẋa. To convert this generalized Hamiltonian to the
standard one depending on positions and momenta only,
another canonical transformation had to be used.

4. DYNAMICS OF MASSLESS PARTICLES

To illustrate the properties of the obtained 1PM Hamilto-
nian for gravitationally interacting point particles, let us
discuss its description of the dynamics of massless parti-
cles. The simplest example which takes advantage of PM

approach is the Hamilton for a test photon (m2 = 0,x2 =
x,p2 = p) in the static (p1 = 0,x1 = 0) field of massive
(m1 = M ) particle

H(x,p) =

(
1 + 2

GM

|x|

)
|p|. (17)

The factor 2 comes from the ultra-relativistic limit of
factor 1 + p2/m2 unreachable by a simple PN expan-
sion. This is identical to the truncated expansion of
the Hamiltonian one would obtain for a test photon in
isotropic Schwarzschild coordinates. Neglecting terms
proportional to higher powers of G it correctly describes
such effects as ligth deflection and Shapiro delay in grav-
itational field. In this approximation there also is an
unstable circular photon orbit. (The orbital frequency
ω0 = (8GM)−1 is about two thirds of the correct value,
but the 1PM approximation can also describe a system,
where the momentum of the orbiting null particle cannot
be neglected with respect to the mass of the massive com-
panion or even two massless particles in mutual orbits.)

When the gravitating object is not static (p1 6= 0)
the situation becomes much more complicated, but it
is easy to check, that even though (16) reduces to
yba = |nba.pb|/|pb| for massless (mb = 0) particle,
Hamiltonian (15) does not contain terms proportional to
|nba.pb|−1 divergent at plane nba.pb = 0. Still, for a
massless particle the non-smooth term |nba.pb| will re-
main in Hamiltonian. It is related to the well-known fact
that gravitational field accompanying the massless parti-
cle has form of an impulsive wave [1]. Thus the solutions
of equations of motion implied by (15) are continuous
functions but they are not generally smooth when mass-
less particles are involved.
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