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Abstract
Among the coordinates used to construct a conformal compactification of
the Schwarzschild spacetime, none of them simultaneously extend smoothly
both through an event horizon and beyond null infinity. To construct such
coordinates, instead of starting with the Kruskal–Szekeres coordinates, we
assume direct analytic transformation between Schwarzschild and compactified
coordinates and determine their behavior on the event horizon and at null
infinity. We then propose an example of such coordinates and illustrate the way
they cover the conformally extended Schwarzschild spacetime as well as their
suitability for numerical applications.

Keywords: conformal compactification, Schwarzschild spacetime, Penrose–
Carter diagrams
PACS numbers: 04.20.−q, 97.60.Lf, 04.25.D−j

1. Introduction

A very useful tool used to discuss various aspects of black-hole spacetimes are the so-called
Carter–Penrose diagrams, which are based on the mathematical concept of conformal maps
between Lorentzian manifolds. Such maps preserve the causal structure, but they fit the whole
spacetime into a finite picture and so they can be useful to illustrate the physical properties
of spacetimes such as the structure of horizons or the global shape of worldlines of various
observers and null particles, etc.

The standard depiction of compactified Schwarzschild spacetime given in textbooks [1–3]
simply shrinks the well-known Kruskal–Szekeres construction of the maximal extension of
the Schwarzschild metric into a finite picture. If this depiction appears next to a diagram of
the compactified Minkowski spacetime (see figure 1), the two plots seem not only to differ at
regions close to the horizon, but also near the null and spatial infinities. This is not supposed to
happen as the Schwarzschild spacetime is the most famous member of the family of spacetimes
with Minkowski-like infinities—the so-called asymptotically flat spacetimes.

0264-9381/14/015007+09$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0264-9381/31/1/015007
mailto:j.halacek@gmail.com
mailto:tomas.ledvinka@mff.cuni.cz


Class. Quantum Grav. 31 (2014) 015007 J Haláček and T Ledvinka

Figure 1. The standard compactified Kruskal diagram of the Schwarzschild spacetime
(left) and the Carter–Penrose diagram of the Minkowski spacetime (right). For M = 1,
a coordinate grid of both corresponds to r = 0, 0.2, 0.4, . . . , 3, 4, 5, 6, . . . , 10, 20, . . .
and |t| = 0, 0.5, 1, 2, . . . . The emphasized lines are r = 0, 1, 2, 3, 5, 10. The details of
regions near i0 are also displayed.

Since the compactified diagrams of the Schwarzschild black-hole spacetime are regularly
used to describe processes from the point-of-view of very distant observers or, e.g., to illustrate
geometrical objects stretching to infinity, an important distortion may appear. Typical example
can be found in [4], where hyperboloidal slices both in Minkowski and in Schwarzschild
spacetimes are studied (see [4], figures 4 and 10). The fact, that curves representing the slices
look so differently near the null infinity is only an artifact due to very different behavior of
each compactification near infinity. Similarly, also the depiction of the spacelike slicing of
the Schwarzschild geometry represented by hypersurfaces t = constant is distorted at infinity
(see figure 1). Thus, the standard compactification of the Schwarzschild spacetime cannot,
for example, be used to illustrate faithfully the geometry of slices through the spacetime
with moving Schwarzschild black hole, because the angle under which slices meet at spatial
infinity no longer indicates their relative velocity. Practical problems may also arise when such
coordinates are used numerically, since they do not behave well near infinities.

Since both the Schwarzschild geometry and the Carter–Penrose diagrams represent usual
textbook topics, several coordinate transformations which should amend this distortion at
infinities have been proposed [3, 5]. Even though the existence of analytic coordinates on the
manifold conformally-related to the Schwarzschild spacetime that cover both horizon and null
infinities has been proven [6]; the available closed-form transformations given in [3, 5] are not
analytic in the null infinity. This situation is not limited to the Schwarzschild spacetime—in [7]
the dissimilarity of the asymptotic regions between the available Carter–Penrose diagrams for
the asymptotically flat exact solutions of Einstein equations and those for the Minkowski
spacetime is mentioned be a general feature.

In this paper, we propose coordinates which provide an analytical map on the compactified
manifold and thus, lead to the Carter–Penrose diagram of the Schwarzschild spacetime much
more similar to the Carter–Penrose diagram of the compactified Minkowski spacetime. In the
following, in section 2, we first review the available compactification transformations. Then,
in section 3, we show how to make the compactification transformation analytical at null
infinity and horizon. In the final section, we discuss the obtained Carter–Penrose diagrams and
the implications of the analytic properties of transformations in numerical applications. The
well-known properties of the compactification transformation for the Minkowski spacetime,
and for asymptotically flat spacetimes in general, are summarized in the appendix.
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2. The standard compactification of Kruskal–Szekeres coordinates

The usual compactified diagram of the Schwarzschild spacetime is constructed from the null
Kruskal’s coordinates using the transformation similar to (A.1) of the Minkowski spacetime.
Let us recall, that the radial null geodesic for the Schwarzschild metric

ds2 = −
(

1 − 2M

r

)
dt2 + dr2

1 − 2M
r

+ r2dω2 (1)

from which Kruskal’s coordinates are derived are given by the partially implicit prescription

f (r) = V − U, t = U + V, θ = constant, φ = constant, (2)

where r∗ = f (r) is the so-called tortoise coordinate,

f (r) = r + 2M ln
( r

2M
− 1

)
. (3)

The outgoing radial null geodesics are parametrized by V and labeled by U, θ, φ = constant,
the ingoing radial null geodesic are parametrized by U .

To achieve the conformal compactification, we need to construct some mapping which
will put the infinities U → ∞ ∨ V → −∞ (horizon) and U → −∞ ∨ V → +∞ (the null
infinity) into the inner points of some larger, unphysical manifold. While later, we will show
that to obtain an analytical compactification of the Schwarzschild spacetime it is easier to treat
at once both the null infinity and the horizon, the standard compactification uses the function
ln(x) to penetrate the horizon first [8] and only then the function tan(x) is plugged in to fit the
Kruskal coordinates into a finite interval [1]. These new coordinates U ,V ∈ (−π/2, π/2) are
related to the Schwarzschild coordinates t, r by the transformation

f (r(U ,V )) = 2M ln(tan V ) + 2M ln(− tan U ), (4)

t(U ,V ) = �[2M ln(tan V ) − 2M ln(− tan U )]. (5)

To point out the structure of this transformation, we prefer to use the real part on the right-hand
side of (5) instead of the usual ln | tan U/ tan V|. Then,

ds2 = − 1

cos2 U cos2 V
32M3

r
e− r

2M dU dV + r2dω2. (6)

When r < 2M, the transformation (4) becomes a complex-valued implicit function prescription
for a real function of the two real variables r(U ,V ). Because the metric coefficients in (6) are
simple analytic functions of U ,V and r, the fact that the (here compactified) Kruskal maximal
extension can be found is implied by the existence of analytic function r(U ,V ) solving (4).
Since the Lambert function W0(z) appearing in the transformation

r(U ,V ) = 2MW0(−e−1 tan U tan V ) (7)
is analytic on the real axis along the interval z ∈ (−e−1,∞) [9], the line element (6) is analytic
in the domain, where −∞ < tan U tan U < 1 i.e. r > 0, namely at the horizon. The way the
Schwarzschild coordinates r, t cover this domain can be seen in figure 1.

It is known that the exponential term e−r/2M in the Kruskal line element (6) prohibits
one to satisfy conditions (A.4) and (A.5) required for asymptotically flat spacetimes. Thus,
several coordinate transformations have been given in the literature [3, 5] which should lead to
compactification behaving the same way as the Minkowski spacetime for r → ∞. Namely, as
the adjective conformal should mean angle-preserving, these coordinates restore the way the
curves representing hypersurfaces t = constant behave near i0. As an example, let us check
the properties of the transformation proposed in [3],

U = arctan argsinh U , V = arctan argsinh V, (8)
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which leads to an implicit equation for r(U ,V ) given by

f (r(U ,V )) = 2M ln(2 sinh tan V ) + 2M ln(−2 sinh tan U ). (9)

Using �2 = cos U cos V /(16M2) the conformally related metric reads

d̃s2 = −coth tan U coth tan V

16M2

(
1 − 2M

r2

)
dU dV + �2

2r2dω2. (10)

With this metric the conformal factor �2 satisfies conditions (A.4) and (A.5), but the metric
still cannot be extended through I ± since the function coth tan z has an essential singularity at
z = ±π/2, which simplifies to a discontinuity for real arguments. Similarly the transformation
mentioned in [5] which is also based on the Kruskal coordinates provides compactification
bounded by I . The fact that the conformally related metric is not available beyond I ±

may seem to be only a small issue, but later we will show that this fact can be numerically
observed from the behavior of metric coefficients within the physical domain 2M < r < ∞
(see figure 4).

3. The analytic conformal compactification of the Schwarzschild spacetime

We do not search for the ‘right’ compactification of the Kruskal coordinates, instead we propose
the direct transformation between the Schwarzschild coordinates t, r and the compactified
coordinates u, v in the following form:

f (r(u, v)) = h(v) + h(−u), (11)

t(u, v) = h(v) − h(−u). (12)

This choice is inspired by the common form of transformations (4) and (9), which is given by
the fact that such a transformation changes −dt2 + dr2

∗ into a term proportional to du dv. The
choice of parameters of a yet unknown function h is such that in the exterior Schwarzschild
region r > 2M both v and −u are positive. Then, the Schwarzschild line element reads

ds
2 = −4

(
1 − 2M

r

)
h′(v) h′(−u)du dv + r2dω2. (13)

Let us now discuss what kind of function h would lead to an analytic conformal embedding
(A.3) of the complete Schwarzschild manifold using the conformal factor �3 ∼ cos u cos v,
which implies, we assign u = −π/2, v = π/2 to the coordinates of null infinities I ± and
the horizon H± is simply put at u = 0 ∨ v = 0. The transformation (11) again represents
a complex-valued implicit equation for the real function r(u, v). To prescribe precisely the
behavior of the transformation function h(x) in the complex domain, we decompose it into

h(x) = α(x) + 2M ln β(x), (14)

where α, β are the analytic functions on (−π, π ) up to simple poles at ±π/2 (i.e. at I ±, see
equation (19)). Indeed, α and β are also restricted by the fact that for a regular transformation
h′(x) 
= 0 on this interval.

From (3), we see that β should become negative for r < 2M so that imaginary parts on
both sides of (11) match due to the common factor 2M in front of the logarithm in (14) and
(3). The solution of (11) can be given using the Lambert function

r = 2M
[
1 + W0

(
β(v)β(−u) e

α(v)+α(−u)

2M −1
)]

, (15)

which (using W0(x) ∼ x) implies that the analytic covering of the horizon requires

α(x) ∼ 1, β(x) ∼ x for x � 0. (16)
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Figure 2. The Carter–Penrose diagram of the Schwarzschild spacetime and its analytic
extension beyond I ± using coordinates (21). A compactification scale μ = 3M is
used. A coordinate grid corresponds to r/M = 0, 0.5, 1, 1.2, . . . , 2.8, 3, 4, 5, 6, . . . , 10,
20, . . . , 100, ∞, −100, −90, . . . , −10, −9, . . . , −1, 0 and |t/M| = 0, 1, . . . , 10,
20, . . . , 100. The emphasized lines are |r/M| = 0, 1, 2, 3, 5, 10, 100.

We have to further restrict α, β so that the conformally related metric g̃ (primarily its
metric component g̃θθ ) is analytic near I ±. Equation (15) cannot be used directly as we
would need to regularize expression 0.W (∞e∞). We rather decompose

√
g̃θθ = r� into a

sum of two terms

r� = [α(v) + α(−u)] � + [r − α(v) − α(−u)] � (17)

and then we require both of them to be the analytic functions. This for the first term simply
yields α(v) ∼ 1/� near I + and α(−u) ∼ 1/� near I −. The analytic properties of the
second term on the right-hand side of (17) are for an analytic conformal factor � equivalent
to the properties of an auxiliary function ψ(u, v), we define by the following relation:

2M[1 + ψ(u, v)] ≡ r − α(v) − α(−u) = 2M ln
β(v)β(−u)

r
2M − 1

. (18)
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Figure 3. The Carter–Penrose diagram of the Schwarzschild spacetime with three
different choices of the compactification scale μ. A compactified Minkowski spacetime
is shown on the right panel. To construct this diagram, the transformation (A.1) is plotted
with the factor 2, therefore, replaced by 1/μ so that μ = 7 can be used to make the
outer regions of the two right panels match.

We can rewrite this definition as an implicit equation

ψ(u, v) = −1 − ln
1

α(−u)
+ 1

α(v)
+ 2M 1

α(−u)
1

α(v)
ψ(u, v)

2M β(−u)

α(−u)

β(v)

α(v)

. (19)

If we consider e.g. I +, where 1/α(v) → 0 as v → π/2, the right-hand side of (19) does not
depend on ψ there and (19) thus, explicitly determines the values of ψ(u, v = π/2). Indeed,
we also need that the ratio β(v)/α(v) ∼ 1 for v → π/2, i.e. the poles of both functions must
cancel out:

α(x) ∼ β(x) ∼ 1

cos x
for x � π

2
. (20)

With this behavior of α and β at I ±, both sides of (19) are guaranteed to have different
derivatives with respect to ψ and the implicit function theorem then implies that ψ is an
analytic function at I ±. No further restrictions on α and β are implied by a regularity of the
metric component g̃uv .

We found a reasonably simple choice of function

h(x) = μ

cos x
+ 2M ln

tan x

1 + cos x
(21)

and of the conformal factor

�(u, v) = cos u cos v

4μ2
, (22)

which together satisfy all necessary conditions if the compactification scale μ >

0.38896697. . .M (this bound comes from h′ 
= 0). The Carter–Penrose diagram with a grid
of Schwarzschild coordinates plotted for μ = 3M is shown in figure 2. As a consequence of
the analytic properties of the transformation we can see in this figure also the regions behind
I ±. We suppose that in some applications the conformal geometry in a small region behind
I ± may be exploited, e.g. if numerical methods require grid points there. The full extension
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(a) (b) (c)

Figure 4. A comparison of the analytic coordinates (11) with (21) and coordinates
suggested in [3]. (a) An illustration of the hypersurface connecting horizon and null
infinity. (b) A plot of function 1/r(U (s),V (s)) and 1/r(u(s), v(s)) (see equations
(9) and (11)) on a linear combination of either coordinates which represents radial
parameter within the hypersurface. (c) The coefficients of the Chebyshev expansion of
functions 1/r(U (s),V (s)) and 1/r(u(s), v(s)). One can see, that the coefficients of
1/r(u(s), v(s)) decay much faster. See discussion in the text for an example of practical
implications.

up to the r → 0− available in figures 2 and 3 does not necessarily have practical applications,
but it enables a direct visual comparison with the well-known conformal embedding of the
Minkowski spacetime into Einstein static universe. In figure 3, for larger compactification
scales μ the interior region (r < 2M) of the black hole on the diagram shrinks, but the regions
near i0 (both the physical one and those beyond I ±) resemble more and more the compactified
Minkowski spacetime (see, e.g, the behavior of slices t = constant near i0).

Another common feature—worldline r = 0− touching the physical region ‘from behind’
I at i0—illustrates the fact, that (logarithmic) singularity is present at i0, when M > 0 (see,
e.g., [10, 11] for its detailed description).

4. Concluding remarks

The main visual difference between the compactified diagrams of the Schwarzschild black
hole spacetime of figures 1 and 2 is, indeed, the angle σ at which the singularity r = 0
approaches i±. In both cases, the coordinate transformations have the form of equation (11)
so the angle σ is given by the ratio of derivatives h′(0)/h′(π/2). The straight shape of
the singularity r = 0 in figure 1 is thus, related to the very symmetric form of the
transformation function hMTW(x) = 2M ln tan(x) (this substitution turns (11) into (4)) for
which hMTW(π/2 − x) = −hMTW(x). On the other hand, the conditions (16) and (20) for the
analytic extension of coordinates through I ± and H± are different and no similar relation
applies.

If we take coordinate (8) as proposed in [3], the Carter–Penrose diagram would in the
physical regions look very similar to the analytic one in figure 2. But as we already mentioned
this transformation does not yield an analytic coverage of null infinity. Even though the
analytic properties of transformations cannot be easily seen from a plot, they may still have
practical implications. As an example, let us consider a situation, where we would like
to solve numerically a problem involving an object which spans from horizon H+ to null

7
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infinity I +, e.g., the hyperboloidal hypersurfaces discussed in [12]. Assume also, that the
problem can be cast into the form of a differential equation. The coefficients of this differential
equation would contain the Schwarzschild geometry represented by function 1/r depending
on the compactified coordinates and the regularity of these coefficients would determine the
regularity of the solution and, e.g., the behavior of the numerical methods used to find this
solution. Since various choices of the compactified coordinates yield significant differences
in the coordinate dependence of 1/r, as will be illustrated below, we can observe differences
between the compactified coordinates even for problems formulated completely inside the
physical spacetime r < ∞.

In figure 4, the analytic coordinates (11) with (21) and the coordinates suggested in [3]
are compared. First, we show a plot of function 1/r(s) when parameter s linearly advances
along a straight line from horizon to null infinity either in compactified coordinates U ,V or
u, v (as illustrated in figure 4(a)). Indeed, one cannot distinguish on this plot which of the
functions behaves better. To test this, both functions are decomposed into the Chebyshev series
1/r(s) = ∑

akTk(s) and the absolute values of the coefficients ak are plotted as a function of k
in figure 4(c). One can see that for analytic compactification, the coefficients decay much faster
(exponentially). This indicates some of the practical implications of using analytic Carter–
Penrose compactifications: numerical methods which require (or take advantage of) the good
analytic properties of the function involved would provide better (or faster) results.
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Appendix. Asymptotically flat spacetimes

The standard way to introduce the notion of asymptotically flat spacetimes refers to
the Minkowski spacetime. Therefore, the coordinates ūM, v̄M are usually given by the
transformation

2rM = tan v̄M − tan ūM, 2tM = tan v̄M + tan ūM, (A.1)

which changes the usual Minkowski line element in spherical coordinates ds2
M = −dt2

M +
dr2

M + r2
M dω2 with dω2 = dθ2 + sin2 θdφ2 into

ds 2
M = 1

cos2 ūM cos2 v̄M

(
−dūMdv̄M + 1

4
sin2(v̄M − ūM ) dω2

)
. (A.2)

The infinities of the Minkowski spacetime M appear on the boundary I : ūM = −π/2∨ v̄M =
π/2, and depending upon the character of geodesics which end at those points, the spacelike
infinity (i0), the future and past null infinity (I ±), and the future and past time-like
infinity (i±) can be distinguished. Then, using the conformal factor �M = cos ūM cos v̄M

which can be clearly identified in (A.2), we obtain a larger manifold M̃ with metric
d̃s2

M = �2
Mds 2

M regular on I . The coordinates ũM = ūM, ṽM = v̄M are no longer restricted to
[−π/2, π/2] × [−π/2, π/2].

The choice of the compactified coordinates and the conformal factor above are restricted
by the requirements present in the definition of the class of the asymptotically flat spacetimes
[2, 13, 14]: the coordinates and the conformal factor � must lead to the conformally related
metric

d̃s2 = �2ds 2 (A.3)

8
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regular at null infinity and the conformal factor must vanish at infinity with the leading terms
in its power expansion near I being

�(I ±) = 0, ∇̃μ�(I ±) 
= 0, (A.4)

�(i0) = 0, ∇̃μ�(i0) = 0, ∇̃μ∇̃ν�(i0) = 2g̃μν (i
0). (A.5)

Note that a simple choice of the conformal factor � = 1/r does not satisfy (A.5) despite the
fact that such a choice is sometimes suggested.
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