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in Robinson—-Trautman Spacetimes |
of Any Dimension
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Robert Svarc and Jifi Podolsky

Abstract Using the invariant form of equation of geodesic deviation we analyze the
relative deformations of a congruence of free test particles in general non-twisting,
shearfree and expanding geometries. In four dimensions this class of exact solu-
tions includes important classes of expanding gravitational waves. On the other
hand, higher-dimensional Robinson—Trautman spacetimes can only be of algebraic
type D. We emphasize the difference between the standard four-dimensional
solutions and their arbitrary-dimensional extensions from the physical point of view
of a geodesic observer.

1 Robinson-Trautman Geometries

The optical scalars A? (twist), % (shear) and ® (expansion) characterizing affinely
parameterized null geodesic congruence k¢ are in arbitrary dimension D given by
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The Robinson—Trautman class of spacetimes is defined as the geometries admitting
nontwisting (A4 = 0), shearfree (0 = 0) and expanding (® # 0) null geodesic
congruence. The line element of a general nontwisting spacetime takes the form
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Relative Motions of Free Test Particles
in Robinson-Trautman Spacetimes
of Any Dimension

Robert Svarc and Jii Podolsky

Abstract Using the invariant form of equation of geodesic deviation we analyze the
relative deformations of a congruence of free test particles in general non-twisting,
shearfree and expanding geometries. In four dimensions this class of exact solu-
tions includes important classes of expanding gravitational waves. On the other
hand, higher-dimensional Robinson—Trautman spacetimes can only be of algebraic
type D. We emphasize the difference between the standard four-dimensional
solutions and their arbitrary-dimensional extensions from the physical point of view
of a geodesic observer.

1 Robinson—Trautman Geometries

The optical scalars A2 (twist), 0 (shear) and @ (expansion) characterizing affinely
parameterized null geodesic congruence k¢ are in arbitrary dimension D given by
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The Robinson-Trautman class of spacetimes is defined as the geometries admitting
nontwisting (A = 0), shearfree (0 = 0) and expanding (® # 0) null geodesic
congruence. The line element of a general nontwisting spacetime takes the form
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416 R. Svarc and J. Podolsky
ds? = gi(r, u, x)dx'dx’ + 2g,(r, u, x) dx'du — 2dudr + g, (r, u, x)du® . (2)

where i, j =2,..., D — 1, u = const defines null hypersurfaces with normal
k* = 9,, r is an affine parameter along the geodesic congruence, and x' represent
D — 2 spatial coordinates in a transverse Riemannian space. As shown in [1], the
shearfree condition o = 0 and the vacuum Einstein equations than imply g,; = 0
in (2) and fully determine the r-dependence of the D-dimensional Robinson—
Trautman metric as

ds? = r?h;(u, x) dx'dx’/ —2dudr —2H (r, u, x) du® 3)

with the function 2 H given by

7 2(Invh) 2A 5 7
r
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2H =
(D —2)(D - 3) D—_2

where % (u, x) is the scalar curvature calculated with respect to the spatial metric /1,
hi(u, x) = P~ *(u,x) yy(x) and dety; =1, 5)

h(u,x) is defined as h = deth; = P?®=P) A is a cosmological constant, and
(1, x) is an arbitrary function. For this general form of the vacuum Robinson—
Trautman line element (3) the nonvanishing components of the Weyl tensor
explicitly become

2
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where %y, is the Riemann tensor of the transverse space h;;, and W,, denotes

1
Wog = Hpg — Mh:, R AN\:A?S - Fklv : (7

Other restrictions on the transverse metric /z;; and the parameters contained in
the metric function / (in general depending on 1 and x’ coordinates) follow from
the remaining vacuum Einstein equations and significantly depend on the number of
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dimensions D, see the detailed discussion in [1]. For our purpose here notice that in
any higher dimension D > 4 the coordinate dependence of these metric functions is

R = R),

= n(u), P(x), P(u,x) for pu =0, (8)

while in standard four-dimensional case we obtain

X = R(u,x), w = u(u), Pu,x), hy = P~ *(u,x)8; . )

2 Geodesic Deviation

In our work [2] we discussed specific influence of an arbitrary gravitational field in
any dimension D on relative motion of geodesic particles. In the case of vacuum
spacetimes the equation of geodesic deviation takes the invariant form

.. 2A 1 .
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1 .
—3 (Woi + W) ZY) (10)
withi, j =2,..., D —1.Here Z", Zz® 7V~ are spatial components of

the separation vector Z = Z“ e, between the test particles in a natural interpretation
orthonormal frame {e,}, i.c., e, - €, = 14, Where ey =u = 70, + id, + X'0; is
the velocity vector of the fiducial test particle, Z(), Z® .. Z®P=D are the corre-
sponding relative accelerations, and the scalars Wy4.. are defined as the components
of the Weyl tensor in the null frame {k, 1, m;} adapted to observer’s D-velocity u,
namely,
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u

and the projections of the Weyl tensor (grouped by their boost weight) are
Wi = Capea k* m? k¢ Sw« ,
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FN\NQI = stni Eww :Nw :NM \SM\ s _&\Nh = Q:Fi k¢ \\u A \A& f
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where i, j,k,l =2,...,D —1.

However, for the vacuum Robinson—Trautman spacetimes using the explicit form
of the Weyl tensor (6) we find that Wy, Wi and ¥y (which correspond to the
highest boost weights +2 and +1) vanish identically. The only non-trivial Weyl
scalars (12) with respect to the null frame (11) that are present in (10) take the form

— o gl
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where the Weyl tensor components are explicitly given by (6) and, due to (8) and (9),
significantly depend on the number of dimensions D.

The Weyl scalars (13)-(15) represent specific combinations of observer’s kine-
matics with the curvature of the spacetime. The overall relative motion measured
by an arbitrary geodesic observer in any dimension D with velocity u described
by equations (10) thus, in general, consists of the isotropic influence of the
cosmological constant A, Newton-like deformation induced by the terms ¥,s and
¥, ru», the longitudinal effects encoded in Y574, and the transverse deformations
corresponding to Wy, see [2] for the physical interpretation of the W,.. scalars.

However, the terms in (13)—(15) containing spatial components X' of observer’s
velocity u can be (at least locally) removed by a suitable particular choice of the
fiducial geodesic with ' = 0. These ‘radial” observers thus measure ‘pure’ effects
of the vacuum Robinson—Trautman gravitational field and are able to distinguish
between four and a higher dimensional spacetime. To be more specific:

° The higher-dimensional constraints (8) imply than in the case X’ = 0 the only
nonvanishing Weyl scalars are ¥,s and ¥, representing Newton-like tidal
deformations governed by the ‘mass’ parameter ju, see (13) and (6).

* From (9) in four dimensions it follows that all Weyl scalars a5, Ysran, Yarpi
and Y,; are in general nonvanishing and the test particles in vacuum Robinson—
Trautman spacetimes are thus affected by Newton-like tidal deformation (13),
the longitudinal effects (14), and by the transverse gravitational waves (15).
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This agrees with previous results of [1, 3] that vacuum Robinson-Trautman
spacetimes in D > 4 are only of algebraic type D, while in D = 4 they are of
type II, or more special.
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