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Abstract We consider the geodesic equation in impulsive pp-wave space-times in
Rosen form, where the metric is of Lipschitz regularity. We prove that the geodesics (in
the sense of Carathéodory) are actually continuously differentiable, thereby rigorously
justifying the C1-matching procedure which has been used in the literature to explicitly
derive the geodesics in space-times of this form.
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1 Introduction

Impulsive pp-waves [16] have become text-book examples of exact solutions modeling
gravitational wave pulses, see [9, Ch. 20] and [17] for an overview. They can be
described by the line element in Brinkmann form

ds2 = 2H(ζ, ζ̄ )δ(U)dU2 − 2dUdV + 2dζdζ̄ , (1)
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where for convenience we have used complex coordinates

ζ = 1√
2

(
x + iy

)
, ζ̄ = 1√

2

(
x − iy

)
,

and (U ,V, x, y) ∈ R
4. Here H is a real-valued function of the spatial variables which

we assume to be smooth (except for possible singularities which we then remove from
the space-time) and δ denotes the Dirac-function. In these coordinates the metric takes
manifestly Minkowskian form in front and behind the wave impulse which is located
on the null hypersurface {U = 0}. This, however, comes at the expense of introducing
a distributional coefficient into the metric. Alternatively the space-time is described
in Rosen form [4,16,24]

ds2 = 2
∣∣dZ + U+

(
H,Z Z̄ dZ + H,Z̄ Z̄ d Z̄

)∣∣2 − 2dUdV, (2)

where again we have used complex coordinates in the transverse space

Z = 1√
2

(
X + iY

)
Z̄ = 1√

2

(
X − iY

)
,

and (U, V, X, Y ) = (U, V, X2, X3) ∈ R
4. Moreover,

U+(U ) =
{

0 if U ≤ 0,

U if U ≥ 0

denotes the kink-function and hence the metric (2) is Lipschitz continuous.
The geodesics of (1), which actually are broken and refracted straight lines with

a jump in the V-coordinate, have been derived in [7], while in [2,26] the geodesic
equations (which are non-linear ODEs with distributional right hand sides, hence
mathematically delicate) have been treated rigorously. Finally in [14] the geodesic
equations of (1) have been proven to possess unique global solutions in a suitable space
of (non-linear) generalized functions [3,8]. This result in turn enabled a mathematically
sensible treatment [13,5] of the discontinuous “coordinate transform“ introduced by
Penrose [16] which relates (1) and (2) [(see also (9), below].

On the other hand the geodesics in space-times similar to (2) (impulsive pp-waves
[25,27], non-expanding (Kundt) impulsive waves with a cosmological constant [19,
21], and expanding impulsive waves [22,23]) have been derived by pasting together the
geodesics of the background in a C1-manner. More precisely, in our case assuming the
geodesics to be C1-curves in the continuous metric (2) one may match the straight line
solutions given in manifestly Minkowskian coordinates on either side of the wave to
obtain explicit global geodesics (see also section 3, below). While this “C1-matching
procedure” basically gives the correct answer [27, Sec. 4] the key assumption that
allows for the matching at all has remained unproven. In fact, the Christoffel symbols
of the Lipschitz continuous metric (2) and hence the right hand side of the geodesic
equations are only locally bounded but discontinuous, and at first sight the C1-property
as well as uniqueness of the geodesics seems to be too much to hope for.
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In this short note, we prove that the geodesic equation of (2) actually possesses
unique C1-solutions. To this end we employ the most natural solution-concept available
for ODEs with discontinuous right hand sides of this form, which is due to Carathéo-
dory (see e.g. [6, Ch. 1]). It is a minimal extension of the classical solution concept
and provides an existence and uniqueness theorem for systems of the form

ẋ(t) = f (t, x(t))

basically assuming f to be Lipschitz continuous only with respect to x and merely
measurable w.r.t. t . Moreover the solutions are guaranteed to be absolutely continuous.
For the convenience of the reader we have collected the basic facts on Carathéodory
solutions in an appendix, for all details we refer to the literature.

We prove the C1-property of the geodesics in Sect. 2 and using the (now justified)
matching procedure derive an explicit description of the geodesics in generic impulsive
pp-waves in Sect. 3.

2 The regularity of geodesics for impulsive pp-waves

In this section we explicitly calculate the geodesic equations for impulsive pp-waves
in the continuous form of the metric (2) and demonstrate that the coefficients obey
the assumptions of Carathéodory’s existence and uniqueness theorem (Theorem 2).
In this way we prove that the (Carathéodory) solutions of the geodesic equations are
continuously differentiable.

We start by rewriting metric (2) in real form

ds2 = gi j (U, Xk) dXi dX j − 2 dUdV, (3)

where the spatial metric is given by

gi j = δi j + 2U+H,i j + (U+)2δkl H,ik H, jl (4)

for i, j, k, l = 2, 3. So the gi j and hence the entire metric is smooth w.r.t. Xi but
merely Lipschitz continuous w.r.t. U . Recall that by Rademacher’s theorem (locally)
Lipschitz continuous functions are differentiable almost everywhere with derivative
belonging (locally) to L∞. Taking derivatives of the metric coefficients will always
be understood in this sense. Therefore we deliberately do not denote the kink function
by U�(U ) to avoid any confusion which might arise from using multiplication rules
on (U�(U ))2 (possibly obscuring the fact that U 2+ ∈ C1).

The non-vanishing Christoffel symbols are

�V
jk = 1

2
g jk,U , �i

Uk = 1

2
gi j g jk,U , �i

kl , (5)

where �i
kl (i, k, l = 2, 3) are the Christoffel symbols of the spatial metric (4). Since all

the Christoffel symbols of the form �U
μν vanish we may use U as an affine parameter
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for the geodesics. Setting U̇ = 1 the geodesic equations take the form

V̈ + 1

2
gi j,U Ẋ i Ẋ j = 0, Ẍ i + �i

kl Ẋ k Ẋ l + gi j g jk,U Ẋk = 0 (6)

and after some calculations we explicitly obtain

V̈ = −[
(U+),U H,i j + 1

2 (U 2+),U δmn H,im H, jn
]
Ẋ i Ẋ j ,

Ẍ i = −gi j [U+ H, jkl + U 2+ δmn H, jm H,kln
]
Ẋ k Ẋ l (7)

−2gi j [(U+),U H, jk + 1
2 (U 2+),U δmn H, jm H,kn

]
Ẋ k ,

where the coefficients of the inverse spatial metric are of course given by

gi j = D−1gpq(δi jδ pq − δi pδ jq)
, D ≡ det gi j = 1

2

(
δi jδ pq − δi pδ jq)

gi j gpq .

We now interpret system (7) as a first order system in the dependent variables
X := (V, Ṽ = V̇ , X = X2, X̃ = Ẋ2, Y = X3, Ỹ = Ẋ3) and the independent
variable U and check that the conditions of Theorem 2 (see appendix) are satisfied.
Since these are obviously fulfilled for the trivial equations V̇ = Ṽ , Ẋ = X̃ and Ẏ = Ỹ
we are left with the task of verifying conditions (A)–(C) of Theorem 2 for the right
hand sides of (7), locally around every point p lying on the shock surface {U = 0}.

Clearly every such point p has some neighborhood W where D is bounded away
from 0, hence the inverse spatial metric on W is smooth w.r.t. (X, Y ) and Lipschitz
continuous w.r.t. U . Consequently the r.h.s. of (7) is smooth w.r.t. X and (due to the
terms (U+),U = �(U ) merely) L∞ w.r.t. U on W . This, however, gives (A) (with the
exceptional value U = 0), (B), and (C) (with m actually in L∞) on W .

Now given arbitrary data at p, Theorem 2 provides us with a unique solution X
locally around the shock hypersurface. In addition X is absolutely continuous which
implies that the velocities (V̇ , Ẋ , Ẏ ) are continuous. Hence the geodesics are C1. Since
off the shock hypersurface the space-time is just Minkowski space we may match the
solutions obtained above to the geodesics of the background to obtain global solutions.

Hence we have shown that impulsive pp-waves in the continuous form possess
unique global C1-geodesics. More precisely we may state the following theorem.

Theorem 1 The geodesic equations for the impulsive pp-wave metric (2) are uniquely
globally solvable in the sense of Carathéodory and the solutions are continuously
differentiable. (In fact they possess absolutely continuous velocities.)

Finally we remark that our method crucially depends on the fact that the coordinate
U can be used as an affine parameter for the geodesics. This is, however, not the
case for more general classes of impulsive gravitational waves such as non-expanding
impulsive waves on (anti) de-Sitter background [19,21] as well as expanding impulsive
waves in all constant curvature backgrounds [1,10–12,15,16,18,20]. In this situation
the geodesic equations have to be treated as an autonomous system of ODEs and in this
case Carathéodory’s theorem provides no advantage over the classical theory, i.e., it
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also needs the right hand side to be Lipschitz continuous; but of course the Christoffel
symbols will again only be bounded. A thorough investigation of this case is subject
to current research.

3 C1-matching

Using Theorem 1 we now apply the C1-matching procedure outlined in the introduction
to derive the explicit form of the geodesics for impulsive pp-waves. We start with
Minkowski space-time in the form

ds2 = dx2 + dy2 − 2dUdV (8)

and consider the (formal) transformation [9, eq. (20.4)]

U = U,

V = V + �(U )H + 1
2U+

(
(H,X )2 + (H,Y )2

)
,

x = X + U+H,X , (9)

y = Y + U+H,Y ,

which is discontinuous in V at U = 0 and exactly gives Penrose’s junction conditions
used in his “scissors and paste” approach [16]. If we employ the transformation sep-
arately in the regions U < 0 and U > 0 we obtain the continuous line element (3).
Observe that if one formally applies (9) for all U one obtains the distributional form
(1) of the metric (a procedure which has been made mathematically precise in [13,5]).

We now stay with the continuous form (2) of the metric and apply Theorem 1 to
obtain global C1-geodesics which we denote by

V = V (U ), X = X (U ), Y = Y (U ), (10)

again using U as an affine parameter. We now employ transformation (9) separately
for U < 0 and U > 0 and consider the geodesics (10) in the manifestly Minkowskian
“halves” on either side of the impulse. We denote their limits and the limits of their
velocities as we approach the impulse from the region U < 0 by

V−
i , V̇−

i , x−
i , ẋ−

i , y−
i , ẏ−

i

and the limits as we approach the impulse from the region U > 0 by

V+
i , V̇+

i , x+
i , ẋ+

i , y+
i , ẏ+

i .

Here the subscript i stands for “(time of) interaction”. Now the C1-property of the
geodesics (10) allows us to relate these sets of “interaction parameters” to one another.
From (9) we explicitly obtain
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V−
i = V+

i − Hi,

V̇−
i = V̇+

i − Hi,X ẋ+
i − Hi,Y ẏ+

i + 1
2

(
(Hi,X )2 + (Hi,Y )2

)
,

x−
i = x+

i ,

ẋ−
i = ẋ+

i − Hi,X ,

y−
i = y+

i ,

ẏ−
i = ẏ+

i − Hi,Y ,

where Hi, Hi,X and Hi,Y denote the value of H respectively of its derivatives on the
respective geodesic (10) at interaction time U = 0. So the geodesics, as seen in the
Minkowskian “halves” in front and behind the wave, suffer a jump in the V-component
and are refracted in the V-direction as well as in both spatial directions.

These formulae coincide with the (distributional limits of the) geodesics derived
in the distributional form (1) of the metric in [14, Thm. 3] and we have thus given a
second rigorous way of explicitly deriving the geodesics for impulsive pp-waves.

Acknowledgments We thank Jiří Podolský for kindly sharing his expertise and Clemens Sämann, and
Milena Stojković for helpful discussions. This work was supported by FWF-grant P25326 and OeAD
WTZ-project CZ15/2013 resp. 7AMB13AT003.

4 Appendix: Carathéodory solutions

In this appendix we briefly summarize the basic facts of Carathéodory’s extension of
the classical existence theory for ODEs and explicitly state the theorem used to prove
our main result in Sect. 2. For all details we refer to [6, Ch. 1] and [28, Ch. 3 §10,
Suppl. 2].

We consider the initial value problem for a non-autonomous system of first order
ODEs

ẋ(t) = f (t, x(t)), x(t0) = x0. (11)

Here f : I × D → R
d , I is an open interval containing t0 and D ⊆ R

d is an open
and connected set which contains x0.

A Carathéodory solution of (11) on an interval J with t0 ∈ J ⊆ I is an absolutely
continuous function x : J → D which solves Eq. (11) almost everywhere (in the
sense of the Lebesgue measure) and x(t0) = x0. We recall that absolute continuity is a
strengthening of continuity, which is weaker than Lipschitz continuity. More precisely,
a function x : J → R

d is called absolutely continuous if for every ε > 0 there exists
δ > 0 such that for every finite sequence of pairwise disjoint sub-intervals (ak, bk) of
J with total length

∑
k |bk − ak | < δ we have

∑
k |x(bk) − x(ak)| < ε. Equivalently

the derivative ẋ of x exists almost everywhere and we have

x(t) = x(t0) +
∫ t

t0
ẋ(τ ) dτ.
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Hence x is a Carathéodory solution of (11) iff it solves the equivalent integral equation

x(t) = x(t0) +
∫ t

t0
f (s, (x(s)) ds.

Of course every classical solution of (11) is a Carathéodory solution but the existence
of the latter is guaranteed even for certain discontinuous right hand sides f . More
precisely, we have the following basic existence and uniqueness theorem (cf. e.g. [28,
§10, XVIII]).

Theorem 2 Let the function f : I × D → R
d satisfy the conditions

(A) f (t, x) is continuous in x for almost all t ,
(B) f (t, x) is measurable in t for all x,
(C) There exists m ∈ L1(I ) with | f (t, 0)| ≤ m(t) and

| f (t, x) − f (t, y)| ≤ m(t) |x − y|.

Then there exists a unique (absolutely continuous) Carathéodory solution x of (11)
on some interval J with t0 ∈ J ⊆ I .
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