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Abstract
We study the motion of a test particle in a stationary, axially and reflection-
symmetric spacetime of a central compact object, as affected by interaction with
a test radiation field of the same symmetries. Considering the radiation flux with
fixed but arbitrary (nonzero) angular momentum, we extend previous results
limited to an equatorial plane motion within a zero angular-momentum photon
flux in the Kerr and Schwarzschild backgrounds. While a unique equilibrium
circular orbit exists if the photon flux has zero angular momentum, multiples
of such orbits appear if the photon angular momentum is sufficiently high.

PACS number: 04.20.Cv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Calculating the motion of test particles in black hole and other compact object fields is a
standard way to reveal the properties of strong field spacetimes, and possibly also to estimate
the behavior of matter in certain actual astrophysical systems. While various simple limiting
cases which cover just some aspects of the problem—the motion of free particles in particular—
now belong to textbook exercises; it is clear that the real picture is much more complicated
due to various ‘perturbations’ both of the ‘background’ as well as of the ‘particle’. Even
without taking into account any quantum effects, extra dimensions, non-standard topology,
additional hypothetical fields or a more sophisticated cosmological setting, there still remain
several obvious effects whose relative importance and interconnections are not clear. First, the
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compact objects discussed and modeled in astrophysics are observable and hence interacting,
so some matter must be present around them. When studying the behavior of a certain
‘particle’ of that matter, the overall gravitational and also direct physical influence of the
‘bulk’ material should be taken into account. Due to the very energetic processes occurring
in strong and non-homogeneous fields close to compact objects, the matter is highly ionized
and prone to electromagnetic interaction, either with the field generated by its own currents
or (in the case of neutron stars) with that maintained by the central body. High energies and
electromagnetic fields in turn produce radiation—in fact very intense (and hard) radiation,
namely that which enables us to detect the source. Also there are more ‘hairs’ (besides just
mass) on the side of the test body whose motion is in question. The latter is often endowed
with proper angular momentum at least (‘pole–dipole approximation’), and probably even
higher multipoles may be relevant in some cases. To appreciate this, one should note that the
‘particle’ may sometimes represent such a large and elastic body as a whole star (as in the
discussion of motion around supermassive black holes in galactic nuclei).

When asking about the short-term evolution of a body located deep in a well of the exterior
field of a black hole, the above influences may generically be neglected, because the force field
is typically dominated by the center’s gravitational pull there. However, when studying the
longer term evolution of the system, its stability comes into consideration and this may well be
affected by various ‘external’ ingredients, mainly at moderate distances from the center. It has
in fact become clear that the Kerr(–Newman) family of black holes—though being the most
general among isolated and stationary cases in asymptotically flat universes—is very special
in its multipole structure, in particular, it is just the one required for uniqueness theorems
that permits the solution of geodesic equations of motion in terms of separated first integrals
(see e.g. [1]). This full integrability is lost if any of the assumptions (isolation, stationarity,
asymptotic flatness) is removed—and they are all violated in astrophysical circumstances.
Then, however, even a tiny ‘perturbation’ generically makes the dynamics of test motion
chaotic, which means that the long-term evolution of the system may depart considerably
from that obtained in the Kerr(–Newman) background.

In the present series of papers, we also focus on just one of the above ‘perturbations’,
namely on the effect of a test radiation field. There probably exists a complicated radiation
situation around a real accreting compact object, but we will limit ourselves to the case of
a coherent flux, composed of photons traveling along geodesics in some preferred direction.
Possible scenarios include a hot (young or accreting) neutron star, radiating roughly radially,
a black hole accreting radiation roughly radially,8 or a system with an accretion disc which
radiates preferentially in the perpendicular (‘vertical’) direction. It has been mainly this last
case that attracted astrophysical attention, in connection with whether such a disc radiation
could accelerate particles along the rotation axis (and thus help to form jets observed in many
accretion systems)—see, e.g., [2]. With similar motivation, the authors of [3] examined radial
motion of a material particle in a Schwarzschild background, when subjected to a radial
radiation field.

However, we will not limit ourselves necessarily to flux geometries with direct
astrophysical justification here. Instead we will focus on a stationary axisymmetric beam of
photons emitted from a ring in the equatorial plane where it impacts a test particle in motion,
investigating the qualitative features of the resulting orbits as a function of the radiation
strength and angular momentum. In particular we check whether this system allows for some
particular, remarkable results of interplay between the radiative flux pressure and friction-like

8 In realistic accretion systems the radiation would hardly come to the hole in a spherically symmetric manner, but
one may also refer here to a rather solitary hole in a ‘bath’ of relic radiation.
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drag, the test particle inertia and the gravitational attraction (and dragging) of the central
object.

In a previous article [4], steps were already taken in that direction. Test particle motion
in a Kerr spacetime was studied in its equatorial plane with a stationary axisymmetric test
electromagnetic flux consisting of a beam of zero angular momentum photons moving in the
purely radial outward direction in that plane with respect to the locally nonrotating frames
naturally associated with the family of zero angular momentum observers (ZAMOs). Unless
the radiation force is so strong or the test particle’s initial energy is too high so that it escapes
to infinity, there is always a critical radius at which test particles come to rest with respect
to the ZAMOs due to the drag forces exerted by the radiation. This equilibrium situation
represents a balance of the outward radiation force with the inward gravitational force. Of
course the problem of radiation drag exerted on a material particle is by no means new, an
effect bearing the names of Poynting [5] and Robertson [6] who tackled it within Newtonian
theory and within linearized general relativity, respectively. See [4] for a brief history of this
effect with further references. All of these models involve a single coherent stream of photons
emanating from a surface surrounding a central source. If the critical radius lies inside the
cut-off radius of the emitting surface beyond which the model is no longer relevant, of course,
test particles fall into this surface.

More realistic general relativistic models allow for photons to be emitted in any direction
from the emitting region surface. Abramowicz et al [7] considered the special case of only
radially moving test bodies in the Schwarzschild spacetime, and they classified quantitatively
the types of motion which result, including the radial equilibrium solutions in which the test
body remains at rest under the combined inward gravitational 3-force and the outward photon
pressure. Miller and Lamb [8–10] generalized this to arbitrary test equatorial plane particle
motion in the Schwarzschild spacetime and then considered the effects of a small rotation of
the gravitational source, but did not study the equilibrium solutions in detail. This was instead
done recently by Oh et al [11] using the Miller–Lamb slow rotation model for the source of
the gravitational field, finding similar behavior to Bini et al [4] for the corotating equilibrium
orbits. The difficulty with these models is that they are much more complicated to work with
compared to the simpler model with a unidirected radiation stream impacting the test particle,
and are limited to slow rotation effects.

In this paper, to get some rough idea of the effects of strong rotation, we generalize our
previous discussion [4] of test particle motion in the equatorial plane of a Kerr spacetime
under the influence of a radial photon flux with zero angular momentum to the case of nonzero
angular momentum and hence a nonzero azimuthal component of the photon 4-momentum.
This is motivated by the observation that radiation emitted at the surface of a fast rotating source
would be expected to have angular momentum correlated with that rotation. If a test particle
impacted by this radiation does not escape to infinity because the outward radiation force is too
strong or its initial energy is too high, instead of coming to rest with respect to the ZAMOs at a
single critical radius which is a stable equilibrium for the radial motion as in the previous case,
the critical circular orbits have a constant nonzero azimuthal velocity equal to the azimuthal
velocity of the photons at the critical radius. As the photon angular momentum impact
parameter increases, multiple such critical radii appear, leading to a much more complicated
dynamical scenario. As in the previous paper, we first describe the dynamical equations and
conditions for the critical orbits in the reflection-symmetric plane in a general orthogonally
transitive, stationary, axially and reflection-symmetric spacetime, and then specialize them to
the equatorial plane of the Kerr and Schwarzschild spacetimes, outside of some cut-off radius
of the ring surrounding the central object at which the radiation is emitted.
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2. Stationary, axisymmetric and reflection-symmetric spacetimes

2.1. Metric and fiducial observers

The metric of an orthogonally transitive stationary axisymmetric spacetime using coordinates
{t, r, θ, φ} adapted to the spacetime symmetries has a line element of the form [12]9

ds2 = gtt dt2 + 2gtφ dt dφ + gφφ dφ2 + grr dr2 + gθθ dθ2 , (2.1)

where all the metric coefficients depend only on r and θ and ∂t (timelike) and ∂φ (spacelike, with
closed orbits) are (commuting) Killing vectors. As is the case for the black hole spacetimes,
we further require the metric to be reflection symmetric with respect to the equatorial plane
θ = π/2.

The time coordinate lines, when timelike, are the world lines of the static observers. The
ZAMO family of fiducial observers has instead a 4-velocity field n equal to the future-pointing
unit normal to the time coordinate hypersurfaces t = constant, namely

n = N−1(∂t − Nφ∂φ) , (2.2)

where N = (−gtt )−1/2 and Nφ = gtφ/gφφ are the lapse function and only nonvanishing
component of the shift vector field respectively. Discussion here is limited to those regions
of spacetime where the time coordinate hypersurfaces are spacelike: gtt < 0, i.e outside the
outer horizon of black hole spacetimes. The ZAMO relative velocity of the static observers
following the time coordinate lines at constant azimuthal angle φ is ν(s) = g

1/2
φφ N−1Nφ , whose

absolute value goes to 1 at the outer boundary of the ergosphere in black hole spacetimes.
Inside this surface its reciprocal ν̄(s) = 1/ν(s) is the relative azimuthal velocity of the orthogonal
timelike direction within the Killing cylinder of the t-φ coordinate surface, which goes to zero
at the horizon. For the non-negative Kerr rotation parameter range 0 � a/M � 1 that we
assume here, ν(s) and ν̄(s) are negative.

An orthonormal frame adapted to the ZAMOs is given by

et̂ = n, er̂ = 1√
grr

∂r ≡ ∂r̂ , eθ̂ = 1√
gθθ

∂θ ≡ ∂θ̂ , eφ̂ = 1√
gφφ

∂φ , (2.3)

with dual frame:

ωt̂ = N dt, ωr̂ = √
grr dr, ωθ̂ = √

gθθ dθ, ωφ̂ = √
gφφ( dφ + Nφ dt), (2.4)

corresponding to the re-expressed form of the line element:

ds2 = −N2 dt2 + gφφ(dφ + Nφdt)2 + grrdr2 + gθθdθ2. (2.5)

The accelerated ZAMOs are locally nonrotating in the sense that their vorticity vector
ω(n) vanishes, but they have a nonzero expansion tensor θ(n) whose nonzero components can
be completely described by a shear vector:

θ(n) = eφ̂ ⊗ θφ̂(n) + θφ̂(n) ⊗ eφ̂, θφ̂(n)α = θ(n)αβeφ̂
β . (2.6)

Since the expansion scalar θ(n)αα is zero, the expansion and shear tensors coincide.
The nonzero ZAMO kinematical quantities (acceleration a(n) = ∇nn and shear tensor)

as well as the associated Lie relative curvature vector [13–16] only have nonzero components
in the r-θ 2-plane of the tangent space:

a(n) = a(n)r̂er̂ + a(n)θ̂ eθ̂ = ∂r̂ (ln N)er̂ + ∂θ̂ (ln N)eθ̂ ,

θφ̂(n) = θ(n)r̂ φ̂er̂ + θ(n)θ̂ φ̂eθ̂ = −
√

gφφ

2N
(∂r̂N

φer̂ + ∂θ̂N
φeθ̂ ) , (2.7)

k(lie)(n) = k(lie)(n)r̂er̂ + k(lie)(n)θ̂ eθ̂ = −[∂r̂ (ln
√

gφφ)er̂ + ∂θ̂ (ln
√

gφφ)eθ̂ ] .

9 See section 25.6 for the impact parameter in the Schwarzschild spacetime.
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Table 1. Metric and ZAMO kinematical quantity expressions for the equatorial plane of the Kerr
spacetime, where 
 = r2 − 2Mr + a2.

ZAMO quantity Kerr

N = (−gtt )−1/2 [r
/(r3 + a2r + 2a2M)]1/2

Nφ = Nφ/gφφ −2aM/(r3 + a2r + 2a2M)

Nφ = gtφ −2aM/r

grr r2/


gφφ (r3 + a2r + 2a2M)/r

a(n)r̂ M[(r2 + a2)2 − 4a2Mr]/[r2
1/2(r3 + a2r + 2a2M)]
θ(n)r̂

φ̂ −aM(3r2 + a2)/[r2(r3 + a2r + 2a2M)]
k(lie)(n)r̂ −
1/2(r3 − a2M)/[r2(r3 + a2r + 2a2M)]

ν(s), ν± −2aM

r

,

r2 + a2 ∓ 2a
√

Mr


1/2(a ± r
√

r/M)

In the static limit Nφ → 0, the shear vector θφ̂(n) vanishes. In the equatorial plane the
above quantities have only a radial component, as summarized in table 1 above for the Kerr
spacetime.

2.2. Photons

Let a pure electromagnetic radiation field with the same symmetry properties as the spacetime
be superimposed as a test field on this gravitational background, with the energy–momentum
tensor:

T αβ = �2kαkβ, kαkα = 0, kα∇αkβ = 0, (2.8)

where the 4-momentum field k is assumed to be tangent to a family of affinely parametrized
null geodesics which in the equatorial plane has kθ = 0 because of the reflection symmetry,
so that the photon orbits remain in that plane. The 4-momentum and unit vector direction of
the relative velocity with respect to the ZAMOs are then, respectively,

k = E(n)[n + ν̂(k, n)], ν̂(k, n) = sin βer̂ + cos βeφ̂, (2.9)

where

E(n) = −k · n = E + LNφ

N
= E

N
(1 + bNφ), b ≡ L

E
(2.10)

is the relative energy of the photons, E = −kt > 0 is the constant conserved energy associated
with the timelike Killing vector field, L = kφ is the constant conserved angular momentum
associated with the rotational Killing vector field, and

cos β = LN√
gφφ(E + LNφ)

= bN√
gφφ(1 + bNφ)

= bE√
gφφE(n)

, (2.11)

which implies

N |b tan β| = [gφφ(1 + bNφ)2 − b2N2]1/2. (2.12)

The constant b = L/E is the photon impact parameter [12, 17] and [18]10, which can be
re-expressed in terms of the photon angle by inverting equation (2.11):

b =
√

gφφ cos β

N(1 − ν(s) cos β)
=

√
gφφ cos β

N(1 − cos β/ν̄(s))
. (2.13)

10 See chapter 13 for the Kerr impact parameter.
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The limit cos β → ν̄(s) (which for a black hole spacetime can only occur in the ergosphere
where |ν̄(s)| < 1) leads to ±b → ∞. Restricting to the photons with E > 0 (those with E < 0
can only exist inside ergosphere), we will assume 1 + bNφ > 0 so that E(n) > 0 and k is a
future-directed vector. Note that the value of 1 + bNφ is also constrained by the requirement
that | cos β| � 1.

The case sin β > 0 corresponds to outgoing photons (increasing r) and sin β < 0 to
incoming photons (decreasing r). Although we are primarily interested in the outgoing case,
we include the incoming case for completeness. The case sin β = 0 of purely azimuthal
geodesic motion of the photons can only take place at the null circular geodesic radii and no
other, so we exclude it.

Since k is completely determined, the coordinate dependence of the quantity � then
follows from the conservation equations T αβ ;β = 0, and will only depend on r in the equatorial
plane due to the axial symmetry. From equation (2.8) using the geodesic condition for k, these
can be written as

0 = ∇β(�2kβ) = 1√−g
∂β(

√−g�2kβ) = ∂r(
√−g�2kr), (2.14)

leading to
√−g �2kr = NE(n)

√
gθθgφφ �2 sin β = const = E�2

0 and therefore

�2 = �2
0√

gφφN |b tan β| . (2.15)

Note that from equation (2.12) this expression has the b → 0 limit �2
0/

√
gθθgφφ for photons

in radial motion with respect to the ZAMOs [4].
The test radiation field is assumed to start at some axisymmetric emission surface which

intersects the equatorial plane at the radius r = R, where R is certainly greater than the horizon
in a black hole spacetime. Abramowicz et al [7] choose R/M = 3 to be the radius of the last
circular null geodesic in the Schwarzschild spacetime, for example. This should be kept in
mind when the region outside the outer horizon of black hole spacetimes is considered, in the
following.

2.3. Test particle

Consider now a test particle moving in the equatorial plane, i.e. with 4-velocity and 3-velocity
with respect to the ZAMOs, respectively,

U = γ (U, n)[n + ν(U, n)], ν(U, n) ≡ νr̂er̂ + νφ̂eφ̂ = ν sin αer̂ + ν cos αeφ̂, (2.16)

where γ (U, n) = 1/
√

1 − ||ν(U, n)||2 is the Lorentz factor and the abbreviated notation
νâ = ν(U, n)â has been used. In a similarly abbreviated notation, ν = ||ν(U, n)|| � 0 and
α are the magnitude of the spatial velocity ν(U, n) and its polar angle measured clockwise
from the positive φ direction in the r-φ tangent plane. Note that sin α = 0 (i.e. α = 0, π )
corresponds to purely azimuthal motion of the particle with respect to the ZAMOs, while
cos α = 0 (i.e. α = ±π/2) corresponds to (outward/inward) purely radial motion with respect
to the ZAMOs.

Using expression (2.2) for n leads to the coordinate components of U:

Ut ≡ dt

dτ
= γ

N
, Ur ≡ dr

dτ
= γ νr̂

√
grr

,

Uθ ≡ dθ

dτ
= 0, Uφ ≡ dφ

dτ
= γ νφ̂

√
gφφ

− γNφ

N
= γ√

gφφ

(
νφ̂ − ν(s)

)
,

(2.17)

6
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where τ is a proper time parameter along U. Solving these for the polar angle and speed leads
to

tan α =
√

grr

gφφ

dr

dt

(
dφ

dt
+ Nφ

)−1

,

ν = 1

N

√
grr

(
dr

dt

)2

+ gφφ

(
dφ

dt
+ Nφ

)2

.

(2.18)

For geodesic motion the Killing energy E(p) = −Ut and angular momentum L(p) = Uφ

are conserved, and their ratio is the test particle impact parameter [12, 17, 18]:

b(p) = L(p)

E(p)

= ν
√

gφφ cos α

N(1 − ν(s)ν cos α)
, (2.19)

reducing to the previous formula for photons when ν = 1 and α → β. This quantity is also
constant for accelerated but circular orbits (where cos α = ±1) at a constant radius and signed
azimuthal velocity νφ̂ = ν cos α, in which case this relation becomes

b(p) = νφ̂√
gφφ

N(1 − ν(s)νφ̂)
. (2.20)

Further, if one sets νφ̂ = cos β, this reproduces the photon relation exactly, i.e. for circular
motion at the same azimuthal velocity that the photons have, the photon and particle impact
parameters coincide. This happens simply because the impact parameter is only a function of
the azimuthal velocity.

2.4. Radiation test particle interaction

The scattering of the radiation from the test particle as well as the constant momentum-transfer
cross section σ are assumed to be independent of the direction and frequency of the radiation,
characteristic of Thomson scattering. The associated force is then given by [7]

F(rad)(U)α = −σP (U)αβT β
μUμ, (2.21)

where P(U)αβ = δα
β +UαUβ projects orthogonally to U. The equation of motion of the particle

then becomes ma(U) = F(rad)(U), where m is the mass of the particle and a(U) = DU/dτ is
its 4-acceleration.

To evaluate the radiation force which by definition lies in the local rest space of the test
particle, it is useful to introduce the relative decomposition of the photon 4-momentum k with
respect to the test particle 4-velocity in addition to the previous ZAMO decomposition:

k = E(n)[n + ν̂(k, n)] = E(U)[U + V̂(k, U)]. (2.22)

Projecting this with respect to the test particle 4-velocity leads to

P(U)k = E(U)V̂(k, U), U · k = −E(U) (2.23)

so that

F(rad)(U)α = −σ�2
[
P(U)αβkβ

]
(kμUμ) = σ [�E(U)]2 V̂(k, U)α . (2.24)

It then follows that the test particle acceleration is aligned with the photon relative velocity in
the test particle local rest space:

a(U) = σ̃�2E(U)2V̂(k, U), (2.25)

where σ̃ = σ/m. Hereafter, we use the simplified notation ||ν(U, n)|| = ν, γ (U, n) = γ ,
V̂(k, U) = V̂ .

7
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From equation (2.22), after scalar multiplication by U and using equations (2.9) and
(2.16), one finds the relations

E(U) = γE(n)[1 − ν(U, n) · ν̂(k, n)] = γE(n)[1 − ν cos(α − β)], (2.26)

which leads to the following expression for the photon direction unit 3-vector:

V̂ =
[

E(n)

E(U)
− γ

]
n +

E(n)

E(U)
ν̂(k, n) − γ ν(U, n). (2.27)

Its frame components V̂ = V̂ t̂ n + V̂ r̂ er̂ + V̂ φ̂eφ̂ evaluate to

V̂ t̂ = γ ν
cos(α − β) − ν

[1 − ν cos(α − β)]
= ν(V̂ r̂ sin α + V̂ φ̂ cos α) ,

V̂ r̂ = sin β

γ [1 − ν cos(α − β)]
− γ ν sin α , (2.28)

V̂ φ̂ = cos β

γ [1 − ν cos(α − β)]
− γ ν cos α ,

where the second equality of the first line is due to the orthogonality of the pair (V̂, U).
Finally, it is convenient to evaluate the combination �2E(U)2 which appears in the

radiation force:

�2E(U)2 = γ 2(1 + bNφ)2�2
0E

2

N3√gθθ |b tan β| [1 − ν cos(α − β)]2 . (2.29)

In the zero angular momentum limit b → 0, β → π/2, this reduces to [4]

�2E(U)2 → γ 2�2
0E

2

N2√gθθgφφ

(1 − ν sin α)2. (2.30)

This positive factor multiplies the velocity expression (2.27) to become the radiation force
on the right-hand side of equation (2.24). The last term −γ ν(U, n) in (2.27) then leads to a
drag force term opposing the particle velocity, but with a coefficient �2E(U)2 which at large
distances decreases like 1/r2, reducing its effectiveness in slowing down the test particle.

A straightforward calculation then shows that the frame components of the 4-acceleration
a(U) in the equatorial plane and hence the equations of motion of the test particle are given
by

a(U)t̂ = γ 2ν sin α

(
a(n)r̂ + 2ν cos α θ(n)r̂ φ̂

)
+ γ 3ν

dν

dτ
= σ̃�2E(U)2V̂ t̂ ,

a(U)r̂ = γ 2[a(n)r̂ + k(lie)(n)r̂ ν2 cos2 α + 2ν cos α θ(n)r̂ φ̂]

+ γ

(
γ 2 sin α

dν

dτ
+ ν cos α

dα

dτ

)
= σ̃�2E(U)2V̂ r̂ , (2.31)

a(U)θ̂ = 0 ,

a(U)φ̂ = −γ 2ν2 sin α cos α k(lie)(n)r̂ + γ

(
γ 2 cos α

dν

dτ
− ν sin α

dα

dτ

)
= σ̃�2E(U)2V̂ φ̂ .

The first of these equations is a linear combination a(U)t̂ = ν[a(U)r̂ sin α + a(U)φ̂ cos α]
of the remaining ones due to the orthogonality of a(U) and U, while the third is identically
satisfied. Solving the remaining two nontrivial equations for dν/dτ by taking an appropriate
combination one obtains
dν

dτ
= − sin α

γ
[a(n)r̂ + 2ν cos α θ(n)r̂ φ̂]

+
A(1 + bNφ)

N2(gθθgφφ)1/2| sin β| [cos(α − β) − ν][1 − ν cos(α − β)] , (2.32)

8
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where A = σ̃�2
0E

2 = (σ/m)�2
0E

2 is a positive constant for a given fixed radiation field. For
a black hole spacetime where

√
gφφ = r , the luminosity at infinity is L∞ = 4πE2�2

0, while
the Eddington luminosity at infinity is LEdd = 4πMm/σ [7], this constant satisfies

A

M
= L∞

LEdd
. (2.33)

Back substituting this solution into the radial equation and solving for dα/dτ leads to

dα

dτ
= −γ cos α

ν
[a(n)r̂ + 2ν cos α θ(n)r̂ φ̂ + ν2k(lie)(n)r̂ ]

+
A

ν

(1 + bNφ)[1 − ν cos(α − β)]

N2(gθθgφφ)1/2| sin β| sin(β − α) . (2.34)

In the zero angular momentum limit b → 0, cos β → 0, then sin β → ±1, cos(α − β) →
± sin α, sin(β − α) → ± cos α and these two equations reduce to those in [4].

Finally, we have in addition the remaining two equations:

dr

dτ
= γ ν sin α√

grr

,
dφ

dτ
= γ√

gφφ

(ν cos α − ν(s)). (2.35)

This system of four differential equations for ν, α, r and φ admits a critical solution
at a radial equilibrium which corresponds to a circular orbit of constant radius r = r0,
constant speed ν = ν0 and constant angles β = β0, α = α0. The constancy of the
radius requires sin α0 = 0, cos α0 = ±1 and therefore sin(β0 − α0) = cos α0 sin β0 and
cos(α0 − β0) = cos α0 cos β0. For circular orbits it is convenient to reintroduce the azimuthal

velocity component νφ̂

0 = ν0 cos α0 = ±ν0. This occurs in the conditions dν/dτ = 0 = dα/dτ

for such a critical orbit to exist, which due to equations (2.32) and (2.34) imply, respectively,

0 = A(1 + bNφ)

N2(gθθ )1/2| sin β0|
(

cos β0 − ν
φ̂

0

)(
1 − ν

φ̂

0 cos β0
)
, (2.36)

0 = γ0

ν0

[
− [

a(n)r̂ + 2ν
φ̂

0 θ(n)r̂ φ̂ +
(
ν

φ̂

0

)2
k(lie)(n)r̂

]

+
A sgn(sin β0)(1 + bNφ)γ −1

0

(
1 − ν

φ̂

0 cos β0
)

N2(gθθgφφ)1/2

]
, (2.37)

where it is understood that all functions of r are evaluated at r = r0. The first equation (2.36)
simply equates the particle azimuthal velocity to the photon azimuthal velocity,

ν
φ̂

0 = cos β0 = bN√
gφφ(1 + bNφ)

→ γ0 = 1/| sin β0|, (2.38)

so that the circular orbit particle impact parameter (2.20) coincides with the photon impact
parameter (2.13). This makes the photon relative velocity with respect to the test particle
(2.28) purely radial, reducing to (V̂ t̂ , V̂ r̂ , V̂ φ̂) = (0, sgn(sin β0), 0). In fact one could start
from this obvious requirement on the photon direction in the particle rest space for a circular
orbit at constant speed to be consistent, and insert these simple values into the acceleration
equation (2.31) to directly get the conditions that such an orbit exist.

The remaining differential equation (2.37) for the radial acceleration implies

a(n)r̂ + 2ν
φ̂

0 θ(n)r̂ φ̂ + k(lie)(n)r̂ν
φ̂

0
2 = A sgn(sin β0)(1 + bNφ)γ −3

0

N2(gθθgφφ)1/2
. (2.39)

9
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Introducing the corotating and counter-rotating circular geodesic azimuthal velocities ν+ and
ν− and re-expressing the b factor in terms of the speed through the relation 1 + bNφ =(
1 − ν

φ̂

0 /ν̄(s)
)−1

> 0 (which follows from combining (2.38) and (2.13)), we have

a(n)r̂
(

1 − ν
φ̂

0

ν+

)(
1 − ν

φ̂

0

ν−

)
= A sgn(sin β0)γ

−3
0

N2(gθθgφφ)1/2(1 − ν
φ̂

0 /ν̄(s))
. (2.40)

This relation gives the critical circular velocity ν
φ̂

0 implicitly as a function of the critical radius
r0, but only when one replaces it in terms of b using (2.38) does one get an implicit relationship
determining the critical radius r0 itself as a function of b.

Solving (2.40) for the ratio A/M one finds

sgn(sin β0)
A

M
= N2(gθθgφφ)1/2 a(n)r̂

M
γ 3

0

(
1 − ν

φ̂

0

ν+

)(
1 − ν

φ̂

0

ν−

)(
1 − ν

φ̂

0

ν̄(s)

)
. (2.41)

This formula has zeros at the two geodesic velocities, while the last factor with ν̄(s) is restricted

to positive values, corresponding to ν
φ̂

0 > ν̄(s).
The terms in equation (2.39) from the left-hand side to the right-hand side, respectively,

(once all moved to the right-hand side) may be interpreted as a radial force (per unit mass)
balance relation between the inward gravitational force, a gravitomagnetic force, the outward
centrifugal force, and the outward/inward radiation force [15] as seen by the ZAMOs.
Consider the outgoing photon case sin β0 > 0. Increasing the radiation force from zero
(where the equations of motion describe circular geodesic motion), the additional positive
radial radiation force allows circular orbits at a given radius (greater than that of the photon
circular orbits) to have a smaller centrifugal force term and hence smaller speed than in the
geodesic case. In black hole spacetimes this turns out also to allow critical circular orbits to
occur at smaller radii than in the geodesic case, where timelike geodesics exist only outside
the radius at which the first null circular geodesic orbit occurs as one decreases the radius.

Note that in the limit A → 0 so that the particle moves along a circular geodesic,
solution (2.38) of the constant speed equation (2.39) is no longer relevant since that equation
is identically zero, while the solution of the radial force balance equation (2.39) in terms of ν0

leads to the Keplerian circular orbit azimuthal velocity formula for ν
φ̂

0 = ν± as a function of
r0. However, if left expressed in terms of the photon impact parameter b, which coincides with
the particle impact parameter b(p) when (2.38) holds, one gets the circular orbit particle impact
parameter versus radius relation. In other words, as one increases A from 0, the geodesic
circular orbit relation of particle impact parameter versus radius is continuously deformed to
describe the photon impact parameter versus the critical circular orbit radius. The previous
discussion then explains how this deformation takes place, as will be seen explicitly for the
exterior field of black hole spacetimes.

Note that for an outgoing flux (sin β0 > 0), A > 0 requires the azimuthal critical velocity

to be confined to the interval ν− < ν
φ̂

0 < ν+ between the two geodesic velocities. As one
increases the radius in a black hole spacetime, the remaining factors in expression (2.41) for
A/M go to 1, which leads to A/M ≈ 1 for a critical circular orbit to exist at large radii. It
will turn out that A/M < 1 is necessary for the existence of critical radii not too close to the
horizon. Of course in a physical application, the photon emitting surface must lie somewhere
outside the horizon, so the cut off radius R would have to be introduced, like the radius
R/M = 3 for timelike circular photon orbits in the Schwarzschild case [7], where azimuthally
emitted photons are trapped in circular orbits.

10
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3. Critical orbit radius and velocity relations for black holes

The general relations obtained in the previous section specialize to the Kerr case and then
further to the Schwarzschild case a = 0 using the ZAMO kinematical quantity expressions
listed in table 1. The outer horizon radius and the ergosphere radius in the equatorial plane of
the Kerr spacetime are respectively r(h) = M +

√
M2 − a2 and r(erg) = 2M . We only examine

the region outside the outer horizon.

The explicit relationship between the orbital velocity ν
φ̂

0 of the critical circular orbits and
the radius r0 is simpler in the Schwarzschild case where the corotating (α0 = 0) and counter-
rotating (α0 = π ) orbits have the same speed ν0. The rotation of the Kerr metric breaks this
symmetry and complicates the relationship, so it is useful to start with the former case. The
force balance equation for the critical circular orbits is then explicitly (with ν− = −ν+)

Nγ 3
0

(
1 − ν2

0

ν2±

)
= sgn(sin β0)

A

M
. (3.1)

Note that as one approaches the horizon, N → 0 and |ν±| → ∞, so to compensate one must

have γ0 → ∞ and thus ν0 → 1 for any nonzero value of A. Hence,
(
r0/M, ν

φ̂

0

) = (2,±1) are
accumulation points for the curves of constant A, because the curves for all possible values of
A converge there. Similarly, at the null circular geodesic radius r0/M = 3 where |ν±| → 1,
one has another such null accumulation point, because γ0 → ∞ for ν0 → 1 irrespectively of
the value of A.

Figure 1 shows the family of curves describing the critical circular orbit parameters ν
φ̂

0
and b/M versus radius r0/M for equally spaced values of A from 0 to 1 at intervals of 0.1
and thereafter values of 1, 2, 3, 4, 5, 10, starting at the horizon r0/M = 2 in horizontal units
of r0/M . Just from the overall sign of both sides of equation (3.1), one sees that for the
outgoing/ingoing photon cases sin β0 > 0, sin β0 < 0, the critical speed is less than/greater
than the geodesic speed. The two thick solid curves are the geodesic velocities corresponding
to A = 0, which confine between them all the curves of constant A for the outgoing photon
case, while the outgoing case curves lie outside this region. The curves of constant A start at
the value 0 at the horizon (vertical axis) and on the geodesic velocity curves and increase in
value in the directions indicated by the arrows, meeting at the saddle point on the separatrix
curve at A/M ≈ 0.647 (shown as a set of three thin small dashed component curves, two
relatively horizontal, one relatively vertical, dividing the region between the geodesic curves
into six sectors), and continuing to increase in value past that point, with the limit A/M → 1
occurring at r → ∞, while A/M increases without limit in the inner sectors near the horizon.
For context the thick dashed curve corresponds to A/M = 1, a value which is never reached
in between the geodesic curves to the right of the vertical component of the separatrix curve.
For outgoing photons as one increases A/M from 0 towards 1, the curves of constant A/M

move farther out to larger radii, moving out to infinity in the limit A/M → 1, corresponding
to the fact that for A/M > 1, test particles are pushed out to infinity in this region. Since

ν
φ̂

0 = bN/r for the Schwarzschild case, the limiting null accumulation points ν
φ̂

0 = ±1 at the
horizon (N → 0) correspond to b → ±∞.

In terms of the photon impact parameter the force balance condition is the following:

A

MN
= 1 − (r0/M)N2 cos2 β0

sin3 β0
= sgn(sin β0)

1 − b2

Mr0

(
1 − 2M

r0

)2

[
1 − b2

r2
0

(
1 − 2M

r0

)]3/2 . (3.2)
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Figure 1. Top: the critical azimuthal velocity ν
φ̂
0 versus critical radius r0/M > 2 for the

Schwarzschild case for selected values of A/M . Physical velocities are confined to the interval

−1 < ν
φ̂
0 < 1, with A/M → ∞ corresponding to |νφ̂

0 | = 1 indicated by the thick dot–dash lines,
and the thick solid curves indicating the geodesic velocities corresponding to A = 0, enclosing
the outgoing photon region, outside of which is the ingoing photon region. The thick closed loop
curves enclosing the shaded regions are explained below. For context the thick dashed curves
correspond to A/M = 1. Arrows indicate the direction of increasing values of A. Note the two
pairs of accumulation points of the family of curves near the horizon at unit velocity. Bottom: the
same figure with the vertical axis transformed by relation (2.38) instead to show the particle impact
parameter b/M , with the accumulation points at the horizon pushed out to infinity. The thick
closed loop curves enclosing the shaded regions join together points corresponding to the critical
points of the constant A curves of b versus r0. For each curve of a given A value, its intersections
with the horizontal line of a given b value locate the radii r0 at which the critical orbits occur.
Those horizontal lines which pass through the interior of the closed loops correspond to the case
in which three critical radii exist, with the unstable orbit of the three lying in the interior, while
those passing outside these loops correspond to the single stable critical radius case.

This last equation determines the critical radius in terms of the photon impact parameter and
then through (2.38) in terms of the critical angular speed. For fixed values of b and A, one or
more values of r0 may satisfy it. For the curve of fixed values of both A and sgn(sin β0) in the
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bottom plot of figure 1, the number of its intersections with the horizontal line at each value
of b indicates the number of critical radii which exist for that case. The thick loop curves in
figure 1 enclose the shaded region of unstable intermediate radius orbits for those values of b
for which three critical radii exist. The appendix discusses the stability of the critical orbits.

In the lower diagram of figure 1, as one increases the value of |b| from 0 where the constant
A curves have no critical points (at which db/dr0 = 0) and are cut by a single horizontal line,
at a certain point when the loop curve is encountered, such a critical point develops (leading
to one additional critical radius) and bifurcates into a pair of local extrema (one to the left,
one to the right but for distinct values of A as one moves along the loop curve away from the
horizontal axis); the local extremum is then cut an additional two times by each horizontal
line for a total of three distinct radii at which critical orbits exist for a given value of A.
These additional extrema disappear when b reaches the value corresponding to the r0 = 3M

accumulation point at the farthest point on the loop curve from the horizontal axis.
Naively speaking using the space plus time language of spatial forces and only considering

the outgoing photon case, the net outward radial force profile as a function of r decreases
from positive to negative values through a single stable equilibrium radius where it vanishes
(balancing the outward force of the outgoing radiation with the inward gravitational force), so
that at nearby radii the radial force pushes the test particle towards the equilibrium radius. As
one changes the parameters of the problem, when this radial force profile function drops to
the horizontal axis and crosses to create two more equilibrium radii, the intermediate radius
has the opposite behavior of the sign of the net force as one increases the radius through it,
pushing the test particle away from the equilibrium point, so it must be unstable. This is
confirmed by the detailed stability analysis of the appendix which shows that when three such
equilibrium radii exist, the intermediate value corresponds to an unstable orbit, while the outer
ones correspond to stable orbits.

In the case b = 0 and sin β0 > 0 of purely radial outward photon motion, equation (3.2)
reduces to the result

A

M
= N =

(
1 − 2M

r0

)1/2

(3.3)

of Bini et al [4], which requires A/M < 1 for a solution to exist. This is the simple situation
near the horizontal axis in figure 1 where increasing A/M from 0 to 1 moves the single critical
radius from the horizon out to infinity. For |b/M| less than about 2 this situation persists, but
as |b/M| reaches a value near 2 (just before reaching the dotted separatrix crossing point at
A/M ≈ 0.647 near r0/M = 3.4), the number of critical radii for a given value of A jumps
from 1 to 3, making the qualitative behavior of the orbits much more complicated. Two radii
occur inside (left of) the vertical component of the separatrix curve, while the third moves
out to larger values of r0 as A increases in the zone between the geodesic curves. Numerical
sampling of initial data indicates that the innermost and outermost radii of the three represent
(locally) stable radial equilibrium points, but the intermediate critical orbit is unstable, and the
innermost critical orbit wins out if the particle does not have suitable initial data to be injected
into the outer critical orbit. Thus, some particles will fall into the outer critical orbit and others
into the inner critical orbit, or in the case of a cut-off radius R larger than the critical orbit,
into the emitting surface. The appendix briefly discusses the stability of the critical orbits,
confirming the numerical results.

Figures 2 and 3 show how turning on the Kerr rotation parameter a from 0 to the extreme
value M distorts the Schwarzschild case diagram. This parameter introduces an asymmetry
between positive and negative azimuthal velocities, clearly shown in the deformation of
the shaded regions of unstable intermediate critical orbits, with the comoving such region
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disappearing into the outer horizon as the extreme value a = M is reached. As a/M is
increased from 0 to 1, the outer radius of the ergosphere remains at r/M = 2 while the
outer horizon moves from that radius to r/M = 1, while the upper corotating null geodesic
accumulation point moves from r/M = 3 to the outer horizon and the lower counter-rotating
null geodesic accumulation point and the inner counter-rotating null accumulation point move
away from the horizon. This latter point is connected to the horizontal axis at the horizon by
the new thick, solid curve representing the zero of the equilibrium condition factor at ν̄(s), on
and below which there are no relevant equilibrium solutions.

4. Orbits for Kerr black holes

For small enough values of b where there is only one unique critical radius, the situation is
not much different from the b = 0 case qualitatively, apart from the nonzero critical velocity
equal to the photon azimuthal velocity at the critical radius. However, as one increases b there
comes a point where there are three distinct critical radii, apparent from the intersection of
horizontal lines with the curves of a given A in figure 3.

Figure 4 shows a pair of oppositely directed particles initially on the positive horizontal
axis at the bullet point just inside the outermost (counterclockwise) critical orbit in a a/M = 0.5
Kerr black hole with photon parameters b/M = 3, A/M = 0.3, with a bit more than the critical
azimuthal speed. The initially clockwise directed particle settles into the counterclockwise
critical orbit, but the initially clockwise directed particle quickly drops into the innermost
critical orbit. If one has a cut-off radius R for the photon emission surface which is larger than
the innermost critical orbit radius, this means some particles will drop into that surface while
others will find their way into the outer critical orbit. The outer critical orbit appears to be
only locally stable in the sense that a test particle at that critical radius must have its velocity
in a certain interval about the critical velocity, or else it either escapes the system or falls to the
innermost critical orbit, or hits the emitting surface if that critical orbit lies within the radius
R of that surface.

5. Critical azimuthal velocity

The first condition (2.38) that a critical circular orbit exist with constant azimuthal velocity

ν
φ̂

0 can be restated in terms of the photon energy–momentum tensor. It simply requires that
the azimuthal component of the photon azimuthal velocity as seen by the test particle vanish,
which is equivalent to requiring that the azimuthal component of the energy–momentum tensor
as seen by the test particle (namely the flux) vanish:

0 = σ−1γ −3F(rad)(U)φ̂ = T 0̂φ̂ν
φ̂

0
2 − (T φ̂φ̂ + T 0̂0̂)ν

φ̂

0 + T 0̂φ̂ . (5.1)

When T 0̂φ̂ = 0, this forces ν
φ̂

0 = 0, but otherwise this condition is a quadratic equation for the
critical velocity, namely

0 = T 0̂φ̂
(
ν

φ̂

0
2 − W−1ν

φ̂

0 + 1
) = T 0̂φ̂

(
ν

φ̂

0 − V
)(

ν
φ̂

0 − V −1), (5.2)

where

W = T 0̂φ̂

T 0̂0̂ + T φ̂φ̂
, V = 1

2
W−1[1 − (1 − 4W 2)1/2]. (5.3)
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Figure 2. The critical azimuthal velocity ν
φ̂
0 versus critical radius r0/M for the Kerr case for

equally spaced values of A, with the same conventions as in figure 1, for r0 > r(h). Top: the case
a/M = 0.5. Middle: the case a/M = 0.8. Bottom: the extreme case a/M = 1.
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Figure 3. The Kerr case showing the photon impact parameter b/M versus radius r0/M instead
of the azimuthal velocity, to be compared with the a = 0 case in figure 1, again for r0 > r(h). Top:
the case a/M = 0.5. Middle: the case a/M = 0.8. Bottom: the extreme case a/M = 1.
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Figure 4. The spacetime and photon parameters are a/M = 0.5, A/M = 0.3 and b/M = 3,
showing two orbits moving initially from the bullet point on the horizontal axis in the two
azimuthal directions just inside the outer critical radius with 1.2 times the critical speed for
that counterclockwise critical orbit. The unit velocity direction field ν̂(k, n) of the radiation with
respect to the ZAMOs is superimposed on the plot, showing the additional counterclockwise
rotation of the photon trajectories with respect to the counterclockwise rotating ZAMOs. The
dashed circles are the two null circular geodesics orbits. The gray filled circle extends to
the horizon. The counterclockwise moving orbit settles down to the outermost critical orbit,
while the clockwise moving orbit quickly falls into the innermost critical orbit near the horizon.
The gray circle between the null orbits is the unstable critical orbit. The axes show units
of r/M .

The only physical root satisfying
∣∣νφ̂

0

∣∣ < 1 is ν
φ̂

0 = V . Thus, given a value of the critical
radius for a given system, the critical azimuthal velocity (with the same sign as the azimuthal
photon flux) follows immediately from this equation if one can evaluate the components of
the radiation energy–momentum tensor at that radius. Note that in the limit |W | → 0 of small
velocities, then V → W , which is the slow rotation limit result noted by Miller and Lamb [9]
in their equation (2.18) taking into account finite size effects of the radiation source, and later
investigated numerically by Oh et al [11].

If we re-examine the full equations for the radiation force, one sees different contributions
to the Poynting–Robertson effect for T 0̂φ̂ 
= 0:

σ−1γ −3F(rad)(U)r̂ = γ −2(T 0̂r̂ − T r̂φ̂νφ̂) − νr̂P ,

σ−1γ −3F(rad)(U)φ̂ = −T 0̂φ̂(νφ̂ − V )(V −1 − νφ̂) − νr̂Q ,
(5.4)

where

P = T 0̂0̂ + T r̂r̂ − 2T 0̂φ̂νφ̂ + (−T r̂r̂ + T φ̂φ̂)(νφ̂)2 ,

Q = [T r̂φ̂ − 2T 0̂r̂ νφ̂ + T r̂φ̂(νφ̂)2] + [T 0̂φ̂ + (T r̂r̂ − T φ̂φ̂)νφ̂]νr̂ − T r̂φ̂(νr̂ )2 .
(5.5)

Consider only outgoing photons. The first term in the radial force is the flux seen by the test
particle and responsible for the outward radiation pressure force, which combines with the
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gravitational force contributions and the centrifugal force to rebalance the net radial force for
circular orbits, while the second term is a radial drag force when P > 0 as happens in our case.
However, as noted earlier, this coefficient decreases roughly like 1/r2 at large distances and so
may render the drag force ineffective in preventing some particles with sufficient initial energy
from escaping to infinity. The corresponding equation of motion then determines the critical
radius of the radial equilibrium when that velocity goes to zero. Since T 0̂φ̂(V −1 −νφ̂) > 0, the
first term in the azimuthal force is an azimuthal drag towards the terminal azimuthal velocity
V (or towards νφ̂ = 0 when T 0̂φ̂ = 0), while the second term couples the radial velocity to
this degree of freedom until the radial velocity goes to zero.

6. Concluding remarks

We have studied the behavior of test particles moving in a gravitational background of a black
hole while subject to a Thomson-type interaction with a superimposed test radiation field (the
Poynting–Robertson effect). In a previous paper we considered a radiation flux outgoing in a
purely radial direction with respect to the ZAMO family of observers in the equatorial plane
of a Kerr background. We found that particles in motion in this plane which do not escape are
attracted to a unique critical radius outside the horizon where they stay in radial equilibrium
at rest with respect to the ZAMOs. In this paper, we have extended the problem to a coherent
photon flux propagating in a general direction within the equatorial plane by allowing a nonzero
photon angular momentum, which leads to an interesting interplay of gravitational dragging
with the azimuthal drag exerted by the radiation. For an outgoing photon flux, bound particles
end up in circular orbits with the same azimuthal velocity with respect to the ZAMOs as the
photons. However, the critical radius is not unique for sufficiently large values of the impact
parameter b as well as of the interaction parameter A. An additional pair of critical orbits occur
near the black hole, which remain relevant to a model of some massive object with a cutoff in
the radius at its surface even if they occur inside that cutoff since the innermost critical orbit
is an attractor causing particles to fall into the emitting surface unless they have special initial
data to end up in the outermost critical orbit. The gravitational dragging of course introduces
an asymmetry into this system.

The present study is complementary to the previous work on this problem taking into
account the finite size of the radiation source, which leads to complicated integrals over the
source in the rotating source case involving numerical ray tracing of the photons which arrive
at the position of the test particle. This latter work is limited severely by the slow rotation
condition on the radiation source. Our model allows some hint of strong rotation effects by
ignoring the finite size of the radiation source.

The most natural directions for possible further refinement of this toy model include the
choice of a more complex and astrophysically relevant radiation field, a more sophisticated
and realistic description of the particle–flux interaction, and possibly allowing for a more
complicated structure for the test particle (higher multipole moments). Two improvements
of the particle–flux interaction were studied by [3], for example. They argued that at higher
frequencies the interaction cross section is dominated by Compton scattering, which is not
frequency independent as assumed here. The Compton scattering, in turn, tends to transfer
energy to the test particle (the particle does not radiate all the acquired thermal energy away),
thus effectively increasing its inertial mass. It would also be of interest to compare the results
obtained for a test radiation field with those obtained for the flux involved in the exact radiating
solution of the Einstein equations due to Vaidya [19–21].
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Appendix. Stability of the critical orbits

For the general Kerr equatorial plane case considered here, the equilibrium solutions
representing the critical circular orbits can be analyzed for their stability properties under
small first-order linear perturbations. Let

r = r0, φ = φ0(τ ), ν = ν0 
= 0, α = α0 (cos α0 = ±1) (A.1)

be the parametric equation of an equilibrium solution, or symbolically Xα = Xα
0 (α =

r, φ, ν, α). Recall that the sign cos α0 = ±1 appearing here distinguishes the corotating and
counter-rotating circular orbits. Note that this analysis will not check for stability against
perturbations away from the equatorial plane.

Consider the linear perturbations of this solution Xα = Xα
0 + Xα

1 , namely

r = r0 + r1(τ ) , φ = φ0(τ ) + φ1(τ ), ν = ν0 + ν1(τ ) , α = α0 + α1(τ ),

(A.2)

which leads to the following linear system of constant coefficient homogeneous linear
differential equations:

dXα
1

dτ
= Cα

βX
β

1 , (A.3)

which can easily be solved in terms of the eigenvalues and eigenvectors of the coefficient
matrix. The real parts of all eigenvalues must be non-negative for stability. The explicit
expressions for these coefficients in the Kerr case and their subsequent analysis are too
complicated to reproduce here so we limit ourselves to the Schwarzschild case, where for
ν0 
= 0 the nonzero coefficients are

C1
4 = ±γ0ν0r0ζK

νK

, C2
1 = ∓γ0ν0

r2
0

, C2
3 = ±γ 3

0

r0
,

C3
1 = γ 2

0 ν0ζK

γ 2
KνKr0

(
ν2

0 − ν2
K

)
[sgn(sin β0)] , C3

3 = γ 2
0 ζK

νK

(
ν2

0 − ν2
K

)
[sgn(sin β0)] ,

C3
4 = ∓γ0ν

2
0ζK

γ 2
KνK

, C4
1 = ∓ γ 3

0 ζK

νKν0r0

[
ν4

K + 2ν2
Kν2

0

(
ν2

0 − 2
)

+ ν2
0

(
2ν2

0 − 1
)]

,

C4
3 = ±2γ 3

0 ζK

γ 2
KνK

, C4
4 = 2γ 2

0 ζK

νK

(
ν2

0 − ν2
K

)
[sgn(sin β0)] .

(A.4)

Here νK = √
M/(r0 − 2M) is the circular geodesic speed and ζK =

√
M/r3

0 is the
corresponding coordinate time angular velocity. The associated eigenvalues are

λ0 = 0 , λ1 = γ 2
0 ζK

νK

(
ν2

0 − ν2
K

)
[sgn(sin β0)] ,

λ2 = λ1 + i�, λ3 = λ1 − i�, � ≡ γ 2
0

(±ν0)

r0

√
ν2

0 − ν2
K +

r2
0 �2

(ep)

γ 4
Kν2

K

,

(A.5)

where �(ep) =
√

M/r3
0

√
(r0 − 6M)/(r0 − 3M) is the corresponding proper time normalized

version of the well-known time coordinate epicyclic frequency governing the radial
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perturbations of circular geodesics. Note that the last term in the square root expression
appearing in � can be rewritten as

r2
0 �2

(ep)

γ 4
Kν2

K

=
(

�(ep)

γK�(orb)

)2

= (r0 − 3M)(r0 − 6M)

r0(r0 − 2M)
, (A.6)

where �(orb) = γKνK/r0 is the proper time orbital angular velocity of the geodesics. Thus,
when ν0 = νK one has λ1 = 0, whereas λ2 = −λ3 = ±i�(ep). Therefore, the eigenvalues all
vanish for the circular geodesics at r0 = 6M and ν0 = 1/2 = νK |r=6M . Finally observe that
λ1 � 0 since the outgoing/ingoing photon case (sgn(sin β0) = ±1) correlates with νK being
greater/less than ν0 when A 
= 0.

While the above coefficient matrix is singular for ν0 = 0 (a case for which therefore
sgn(sin β0) = 1), it turns out that the limiting values of the above eigenvalue formulas remain
valid, with λ0 = 0 and λ1 = λ2 = λ3 = −νKζK all negative, so this case is always stable.
However, to show this in detail it is convenient to perform the previous linearization around the
equilibrium solution using the signed radial and azimuthal linear velocities, i.e. νr̂ = ν sin α

and νφ̂ = ν cos α, respectively. Then

r = r0 + r1(τ ), φ = φ0 + φ1(τ ), νr̂ = νr̂
1(τ ), νφ̂ = ν

φ̂

1 (τ ) (A.7)

leads to the linearized differential equations:

dr1

dτ
= r0ζK

νK

νr̂
1 ,

dνr̂
1

dτ
= −νKζK

(
ν2

K

r1

r0
+ 2νr̂

1

)
,

dφ1

dτ
= ν

φ̂

1

r0
,

dν
φ̂

1

dτ
= −νKζKν

φ̂

1 (A.8)

whose coefficient matrix has exactly the eigenvalues stated above.
For the two geodesic curves A = 0 (thick black curves) representing b versus r0 for the

circular geodesic orbits shown in the lower graph of figure 1, the single local extremum at
r0 = 6M divides the stable orbits at larger r0 from the unstable orbits at smaller r0. This is
the so-called last stable circular orbit as one approaches the black hole horizon. For nonzero
values of A, one finds similarly that the unstable critical orbits lie entirely within the simple
closed curves of local extrema of the family of b versus r0 curves of constant A shown as the
shaded region in figure 1; the two bounding curves for this region are λ2 = 0 and λ3 = 0. For
a fixed value of A whose curve passes through this region and for each value of |b| between its
minimum and maximum value on the boundary of this shaded region, there are three critical
orbits, and the intermediate one whose radius lies within this region is unstable, while the
other two which lie outside are stable, as is the single critical orbit which occurs outside this
region for values of b outside this range.

To establish this, consider the equilibrium condition (3.2), i.e.

A

MN
= sgn(sin β0)

1 − b2

Mr0

(
1 − 2M

r0

)2

[
1 − b2

r2
0

(
1 − 2M

r0

)]3/2 , (A.9)

which in principle can be solved for b = b̃(r0). One can easily show by implicit differentiation
when ν0 
= 0 that

db̃

dr0
= λ2λ3

r8
0

b̃γ 4
0 (r0 − 2M)

1[
(r0 − 2M)2b̃2 + r3

0 (2r0 − 7M)
]

= λ2λ3
±ν3

K

r0ν0γ
2
0 ζ 3

K

1(
ν2

0 − 3ν2
K + 2

) , (A.10)
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taking into account that ν0 = ±(b/r0)(1 − 2M/r0)
1/2. Therefore, the boundary of the

instability region, which is enclosed by the two curves λ2 = 0 and λ3 = 0, coincides exactly
with the curve of critical points of the constant A curves of b versus r0.

Turning on the Kerr rotation parameter a, the generalization of the present analysis is
straightforward though it involves much more complicated formulas. Again the region of
unstable critical orbits is a simple closed curve joining together the critical points of the
constant A curves in the b versus r0 diagram. This is the pair of shaded regions shown
in figures 2 and 3, which are asymmetrically deformed by increasing values of the rotation
parameter a until the upper region disappears at the outer horizon where the corotating circular
geodesic radius squeezes to that outer horizon, leaving only one stable critical orbit radius for
all values of b � 0 of the corotating outgoing photon case.

References

[1] Will C 2009 Phys. Rev. Lett. 102 061101
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