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Abstract
Motion of massive test particles in the nonvacuum spherically symmetric
radiating Vaidya spacetime is investigated, allowing for the physical interaction
of the particles with the radiation field in terms of which the source energy–
momentum tensor is interpreted. This ‘Poynting–Robertson-like effect’ is
modeled by a usual effective term describing a Thomson-type radiation
drag force. The equations of motion are studied for simple types of motion
including free motion (without interaction), purely radial and purely azimuthal
(circular) motion, and for the particular case of ‘static’ equilibrium; appropriate
solutions are given where possible. The results—mainly those on the possible
existence of equilibrium positions—are compared with their counterparts
obtained previously for a spherically symmetric test radiation field in a vacuum
Schwarzschild background.

PACS number: 04.20.Cv

(Some figures may appear in colour only in the online journal)

1. Introduction

Test-particle motion in realistic gravitational fields is of obvious astrophysical importance and
at the same time it provides reliable evidence of the properties of those gravitational fields.
However, in many actual astrophysical systems the particles are not moving freely but are
influenced by ambient matter, electromagnetic fields and radiation. In typical situations, these
‘physical’ effects are probably even more important than fine details of the spacetime geometry
alone. The most remarkable conditions, from the point of view of general relativity as well
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as astrophysics, appear near very compact objects where both the pure gravitational and other
‘physical’ effects typically become extraordinarily strong.

In this paper we focus on the motion of test particles in a spherically symmetric
gravitational field, under the action of a Thomson-type interaction with radiation emitted
or accreted by a compact center. This kind of problem was first investigated by Poynting
[1] using Newtonian gravity and then in the framework of linearized general relativity by
Robertson [2]. It involves competition between gravity and radiation drag, which may lead to
interesting types of motion which do not occur in strictly vacuum circumstances. In particular,
there arises a question of whether equilibrium behavior like circular orbit motion or even
‘staying at rest’ is possible in some cases. Theoretical aspects of the Poynting–Robertson
effect as well as its astrophysical relevance in specific situations have been studied by many
authors since the original pioneering work. Recently, we considered this same effect in the
relativistic setting by studying test particles orbiting in the equatorial plane of a Schwarzschild
or Kerr black hole, assuming that the source of radiation is located symmetrically not far from
the horizon (in the case of outgoing flux). We first chose the radiation field to be directed
purely radially with respect to the zero-angular-momentum observers so that it too had zero
angular momentum [3], but then also considered a more general case of radiation having
some (arbitrary) angular momentum [4] (see these papers for a more thorough overview of the
references). While ingoing radiation might at first seem rather unmotivated, its consideration
can give some rough idea about particle motion inside an accretion disc with strong radiation
emanating from it, at least in its plane.

Here, we intend to compare the limiting simpler case of the Poynting–Robertson effect due
to a purely radial (zero-angular-momentum) test radiation flux in a Schwarzschild background
with the treatment using a self-consistent radiation flux in the exact, Vaidya spherically
symmetric spacetime whose source includes a null dust [5–7]. Similarly, one could think
of comparing the general nonzero angular momentum test-flux case in the Kerr spacetime
background with the rotating Kerr–Vaidya spacetime [8], but the energy–momentum tensor
of this latter exact solution was shown not to be interpretable in terms of a null dust alone as
in the nonrotating case [9], so we will not address that issue here. Since the simpler Vaidya
spacetime contains an arbitrary function M which describes a time-dependent mass for the
central object, there is a freedom to choose that function in many ways, but we limit our
attention to a relatively simple evolution of this function in our applications. In particular,
when an appropriate derivative of this function M is constant, one models a phase of evolution
of the central object in which the central mass changes at a constant rate. In this nonstatic
situation, it no longer makes sense to seek radial equilibrium orbits as in the corresponding
static test-flux case, but one can look for some kind of adiabatically changing equivalent orbits.

After summarizing some basic properties of the Vaidya spacetime, we write out and reduce
the equations describing time-like motion (with an effective force term describing the particle–
radiation interaction) in Schwarzschild-like spherical coordinates with retarded/advanced time.
Next we examine the appropriate limit of the Vaidya spacetime which leads to the scenario of
a test flux in the Schwarzschild spacetime, in particular to see how the Schwarzschild radial
equilibrium orbits fit into a more general situation. Then several numerical examples are shown
illustrating typical types of motion.

2. Vaidya spacetime

The gravitational field associated with a spherically symmetric body of variable mass M is
described by Vaidya’s nonvacuum solution of the Einstein equations [5–7], representing an
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algebraically special Petrov-type D spacetime like the Schwarzschild metric it generalizes.
The corresponding line element written in Schwarzschild-like coordinates is given by

ds2 = −
(

M,t

M,r

)2 dt2

1 − 2M/r
+ dr2

1 − 2M/r
+ r2(dθ2 + sin2 θ dφ2), (2.1)

with M = M(t, r), and M,t and M,r denote partial derivatives with respect to t and r,
respectively. A more useful form is obtained by introducing Eddington–Finkelstein-like
coordinates through the transformation to the null coordinate u by

du = ∓ r

r − 2M

dM

M,r
, (2.2)

so that the line element becomes

ds2 = −N2 du2 ∓ 2 du dr + r2(dθ2 + sin2 θ dφ2), (2.3)

where N = √
1 − 2M(u)/r. Hereafter, we will use the Eddington–Finkelstein-like form (2.3).

Its inverse has nonzero components

gur = gur, grr = −guu, gθθ = (gθθ )
−1, gφφ = (gφφ )−1, (2.4)

so the raising or lowering of indices involves the simple relations Xr = gurXu = ∓Xu. In the
case of non-positive/non-negative M,u ≡ dM/du , i.e. for a source losing/gaining energy, u
represents retarded/advanced time and one has gur = ∓1, respectively6. We will allow for both
possibilities—in fact we leave the M(u) evolution completely general—with several important
specific cases treated as examples.

The metric (2.3) has a curvature singularity at r = 0 and a coordinate singularity at
r = 2M which corresponds to an apparent (but not event) horizon. Actually, on the r = 2M
hypersurface the metric reduces to

ds2|r=2M = ∓4M,u du2 + 4M2(dθ2 + sin2 θ dφ2)

which is space-like in both cases, i.e. with ∓M,u > 0. In the M = const limit, the metric (2.3)
reduces to the Schwarzschild metric written in terms of the retarded/advanced time

u = t ∓
[
r + 2M ln

( r

2M
− 1

)]
for which ∂u = ∂t and ∂φ are both Killing vector fields.

Global properties of the Vaidya spacetime (its conformal structure) are summarized in
section 9.5 of [10] together with the most relevant references. See also [11] where different
definitions of mass (section 4.3.5) and the distinction between apparent and event horizons
(section 5.1.8) are illustrated using the Vaidya spacetime as an example.

Evaluating the Einstein equation Gμν = 8πTμν for this metric, one finds that the energy–
momentum tensor has only one nonzero component in these coordinates

Tuu = T rr = ∓ M,u

4πr2
> 0. (2.5)

Such a T μν can be interpreted as a null dust representing ‘pure radiation’, namely T μν =
�2kμkν , where kμ is a purely radial outgoing/ingoing null vector and �2 depends on the
normalization chosen for kμ. For example, if one takes kμ = ±2−1/2δμ

r , then

T rr = �2

2
�⇒ �2 = ∓ M,u

2πr2
. (2.6)

6 In the entire article, upper signs correspond to M,u � 0 (outgoing radiation), while lower signs to M,u � 0 (ingoing
radiation), so that ±M,u � 0. The advanced null coordinate is conventionally denoted by v, but we keep u in both
cases (distinguishing them by signs).
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This choice for k means that kα = gαμkμ = gαrkr = ∓krδu
α = −2−1/2δu

α; in particular,
the energy of the radiation particles is proportional to −ku = ±kr = 1/

√
2 = E. In the

corresponding Schwarzschild spacetime with this value for E, k agrees with the choice used in
[3]. As in that case, one easily checks that k is tangent to a congruence of affinely parameterized
null geodesics since

kμ;νkν = 
μ
νλkνkλ = 1

2
μ
rr = 0.

This congruence has nonzero expansion kμ;μ = ±√
2/r but zero vorticity.

The most natural test observers suitable for physical interpretation are those at rest in the
spatial coordinate grid at r = const, θ = const and φ = const; their 4-velocity field is

û ≡ eû = 1

N
∂u. (2.7)

A convenient spatial orthonormal triad tied to this observer congruence is

er̂ = N

(
∂r ∓ 1

N2
∂u

)
, e

θ̂
= 1√

gθθ

∂θ , e
φ̂

= 1√
gφφ

∂φ. (2.8)

This observer congruence is accelerated and has nonzero expansion and shear,

a(û)μ ≡ ûμ;ν ûν = MN2 ∓ M,ur

r2N3
eμ

r̂ , (2.9)

θ (û)μν ≡ ûμ;ν + a(û)μûν = θ̂ eμ

r̂ eν
r̂ , θ̂ ≡ ûμ;μ = M,u

rN3
, (2.10)

but its vorticity vanishes,

ω(û)μν ≡ û[μ;ν] + a(û)[μûν] = 0, (2.11)

so it is hypersurface orthogonal. In fact, these observers follow the t coordinate lines orthogonal
to the t coordinate hypersurfaces in the original coordinate system, and in the Schwarzschild
case M,u = 0 they are just the usual static observers.

3. Test-particle motion and the Poynting–Robertson-like effect

When studying motion of massive test particles (rest mass m �= 0) in the Vaidya spacetime,
one can either restrict attention to geodesics, or allow the particles to interact physically with
the radiation in terms of which the energy–momentum tensor is interpreted. A simple way
to model this interaction is to assume that the force on the particle is proportional to the
4-momentum density of radiation observed in the particle’s rest frame. Denoting the particle’s
4-velocity by Uα and acceleration by a(U )α ≡ DUα/dτ , this yields the equation of motion

ma(U )α = −σP(U )αμT μ
νUν ≡ Frad(U )α, (3.1)

where τ and m are particle’s proper time and rest mass, σ is the effective interaction cross
section (its dimension is length squared) and P(U )αμ ≡ δα

μ + UαUμ is the projector to the
particle’s instantaneous rest space. Such a force formula is independent of the direction and
frequency of radiation (and the interaction ‘efficiency’ σ is also independent of the momentum–
density magnitude) and can perhaps be adequate in situations when Thomson scattering is a
dominant interaction mode.

Let us divide equation (3.1) by m (denoting σ̃ ≡ σ/m) and write it out in the (u, r, θ, φ)

coordinates. Since the energy–momentum tensor has only one nonzero component Tuu (2.5),
one has

dUα

dτ
= −
α

κλUκUλ − σ̃ (gαu + UαUu)TuuU
u. (3.2)
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First, the latitudinal component

dU θ

dτ
= −2

r
UrU θ + (Uφ )2 sin θ cos θ − σ̃Tuu(U

u)2U θ (3.3)

confirms that the interaction leaves the motion planar: choosing θ = π/2 and U θ = 0 at
some instant, one sees that at that instant dU θ /dτ = 0 too and so the particle remains in the
(equatorial) plane. Substituting θ = π/2 and U θ = 0 into the other components of (3.2), we
have

dUu

dτ
= ± M

r2
(Uu)2 ∓ r(Uφ )2 − σ̃Tuu(U

u)3 , (3.4)

dUr

dτ
= −

(
M

r
N2 ∓ M,u

)
(Uu)2

r
∓ 2M

r2
UuUr + rN2(Uφ )2 − σ̃ (UuUr ∓ 1) TuuU

u , (3.5)

dUφ

dτ
= − 2

r
UrUφ − σ̃Tuu(U

u)2Uφ. (3.6)

The 4-velocity normalization condition −1 = gμνUμUν , explicitly

− 1 = −N2(Uu)2 ∓ 2UuUr + r2(Uφ )2 , (3.7)

enables the simplification of the longest equation (3.5) to

dUr

dτ
= −M

r2
+ (r − 3M)(Uφ )2 ± M,u

r
(Uu)2 − σ̃ (UuUr ∓ 1)TuuU

u. (3.8)

One could instead use the normalization condition to eliminate one of the three 4-velocity
components from all of the equations trying to make the latter a closed system, but
unfortunately, even with a ‘favorable’ evolution of the mass M = M(u), the exact integration
of such a system is almost never possible due to the a priori unknown dependence r = r(τ ). In
any case, the most important ‘non-Schwarzschild’ feature (besides the interaction terms scaled
by σ̃ ) is the third term ± 1

r M,u(Uu)2 in the radial equation (3.8). It is clearly never positive,
so it always increases the static radial pull −M/r2. In order to balance this inward pull, the
azimuthal velocity Uφ in the ‘centrifugal’ term (r − 3M)(Uφ )2 has to be larger than in the
Schwarzschild field. Finally, the last term of equation (3.8) represents the physical interaction
of the particle with radiation; given that σ̃TuuUu � 0, it is seen that only in the case of outgoing
radiation (upper sign) can this term oppose the gravitational attraction.

To interpret the test-particle 4-velocity, one can express it using the obvious physical
tetrad of equations (2.7) and (2.8) adapted to the ‘static’ observer û,

U = γ (U, û)[û + ν(U, û)âeâ], (3.9)

where γ (U, û) is the Lorentz factor

γ (U, û) =
(

1 − δâb̂ν
(
U, û

)â
ν
(
U, û

)b̂
)−1/2

= NUu ± 1

N
Ur (3.10)

and eâ are defined in equation (2.8). The 4-velocity tetrad components are related to the
corresponding coordinate components by

γ (U, û)ν(U, û)r̂ = 1

N
Ur, γ (U, û)ν(U, û)θ̂ = rU θ , γ (U, û)ν(U, û)φ̂ = rUφ sin θ.

(3.11)

5
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For a particle moving in the equatorial plane θ = π/2, so that ν(U, û)θ̂ = 0 = U θ , the
equations of motion (3.1) become
dν r̂

dτ
= − γ

rN3

(
1 − (ν r̂)2

) [
M

r
N2 ∓ M,u(1 ∓ ν r̂)

]
+ γ N

r
(νφ̂ )2 ± σ̃Tuu

N2
(1 ∓ ν r̂)2 ,

dνφ̂

dτ
= γ

rN3
ν r̂νφ̂

[
M

r
N2 ∓ M,u(1 ∓ ν r̂)

]
− γ N

r
ν r̂νφ̂ − σ̃Tuu

N2
νφ̂ (1 ∓ ν r̂) , (3.12)

with γ (U, û) ≡ γ = 1/

√
1 − (ν r̂)2 − (νφ̂ )2. To complete this system one must add the

evolution equations for u, r and φ, i.e.

du

dτ
= γ

N
(1 ∓ ν r̂),

dr

dτ
= γ Nν r̂,

dφ

dτ
= γ νφ̂

r
. (3.13)

4. Special types of motion

In general, the above system of equations is only solvable numerically, but we will at least
try to reduce it further for several particular, simple cases. First we will restrict to geodesic
motion, then to purely radial (φ = const) and to ‘circular’ (r = const) motion, and finally
we will check whether equilibrium (Ui = 0) between the gravitational pull and the radiation
effect is possible.

4.1. Free motion (σ̃ = 0)

First we check how the central mass change itself affects the free (geodesic) motion of test
particles, not taking the interaction with radiation into account (σ̃ = 0); this problem was
discussed in [14]. The most important simplification arises due to the azimuthal symmetry of
the field: the specific angular momentum L̃ ≡ L/m ≡ Uφ is a constant of the motion as in the
Schwarzschild spacetime, so one has

Uφ = gφφUφ = L̃

r2
(4.1)

immediately and need not to solve the ‘azimuthal’ equation (3.6). Equations for the remaining
two 4-velocity components read

dUu

dτ
= ± M

r2
(Uu)2 ∓ L̃2

r3
, (4.2)

dUr

dτ
= − M

r2
+ (r − 3M)

L̃2

r4
± M,u

r
(Uu)2 (4.3)

in a contravariant form, while the covariant form reduces to
dUu

dτ
= M,u

r
(Ur)

2

(
= ∓dM

dτ

Ur

r
= dM

dτ

Uu

r

)
, (4.4)

dUr

dτ
= − M

r2
(Ur)

2 + L̃2

r3
. (4.5)

Since −Uu represents the particle’s energy, equation (4.4) shows that a free particle
gains/loses energy if M decreases/increases (see [12]). It must be emphasized that this
has nothing to do with the radiation (there is no interaction in the case of geodesics), the
energy increases/decreases simply because the particle’s gravitational binding by the center
weakens/strengthens. Formally, the geodesic equations only differ from the Schwarzschild
case by the M,u term in the radial equation, but one must always remember that M itself
depends on u and thus also changes with τ everywhere.

6
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4.2. Purely radial motion (σ̃ �= 0, Uφ = 0)

If Uφ = 0 at some instant, one sees from equation (3.6) that dUφ/dτ = 0 there as well, so
Uφ (and also Uφ) remains zero along the whole world line. Equations for the time and radial
components of motion are then

dUu

dτ
= ± M

r2
(Uu)2 − σ̃Tuu(U

u)3 , (4.6)

dUr

dτ
= − M

r2
± M,u

r
(Uu)2 − σ̃ (UuUr ∓ 1) TuuU

u. (4.7)

Substituting for Tuu (2.5) and writing it in terms of M,uUu = dM/dτ , the first equation acquires
the form

dUu

dτ
= ± (Uu)2

r2

(
M + σ̃

4π

dM

dτ

)
. (4.8)

Here, all the quantities are treated as functions of τ . In particular, the evolution of the radius
r(τ ) is of course not known a priori, and so the system is analytically unsolvable in general.
One can, however, obtain a solution for particular choices of M(τ ). For example, for an
exponential decay of the mass, M(τ ) = M(0) exp(−4πτ/σ̃ ), the term in parentheses in (4.8)
vanishes, which implies Uu = const. With Ur replaced using the normalization condition, one
finds

dr

dτ
≡ Ur = (2Uu)−1[1 − N2(Uu)2], (4.9)

which can be solved numerically for r(τ ). In particular, for the choice Uu = 1, this is exactly
solved by

r2(τ ) = r0
2 + σ̃

4π
M0

[
1 − exp

(
−4πτ

σ̃

)]

which represents the growth of r from r0 ≡ r(0) to an asymptotic value
√

r0
2 + M0 σ̃ /(4π) .

However, it is clear that this is just one ad hoc, artificial case.
The system is analytically unsolvable even in the geodesic limit (σ̃ = 0), although

it becomes quite compact in that case. The geodesic form of the radial equation is worth
mentioning, in particular: after substituting N2 (Uu)2 = 1 ∓ 2UuUr from the normalization, it
reads

rN2 d2r

dτ 2
= −M

r
N2 − 2

dM

dτ

dr

dτ
± M,u. (4.10)

4.3. Purely azimuthal motion (σ̃ �= 0, Ur = 0)

The second type of ‘symmetric’ motion is that along ‘circular’ orbits, namely with Ur = 0.
This only holds permanently (in order not to speak just of a turning point of the radial motion)
if Ur = 0 makes the right-hand side of (3.8) zero,(

dUr

dτ
=

)
− M

r2
+ (r − 3M)(Uφ )2 ± M,u

r
(Uu)2 ± σ̃TuuU

u = 0. (4.11)

The ‘azimuthal’ equation (3.6) yields, with Ur = 0,

dUφ

dτ
= −σ̃Tuu(U

u)2Uφ = ± σ̃M,u

4π
r2(Uu)2Uφ. (4.12)

Since the coefficient of Uφ is always negative if nonzero, this means that if the particle
interacts with the radiation, Uφ is slowed down to zero, which is the radiation drag effect.

7
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Circular orbits with Uφ �= 0 thus do not seem to be possible, because the above condition
(dUr/dτ )|Ur=0 = 0 can hardly be constantly satisfied if Uφ is variable, unless its variability
were exactly compensated by the effect of the change in Uu. This would require a very special
adjustment of the M, Uφ and Uu evolutions (for given values of r = const and σ̃ ). Substituting
for Tuu and for (Uφ )2 from the normalization (3.7), condition (4.11) for r = const becomes

0

(
= dUr

dτ

)
= − M

r2
+ (r − 3M)(Uφ )2 ± M,uUu

r

(
Uu ∓ σ̃

4πr

)
(4.13)

= − M

r2
+ r − 3M

r2
[N2(Uu)2 − 1] ± M,uUu

r

(
Uu ∓ σ̃

4πr

)
. (4.14)

The positive solution of this last equation reads

Uu =
rσ̃M,u +

√
(rσ̃M,u)2 + 64π2r(r − 2M)

[
(r − 2M)(r − 3M) ± r2M,u

]
8π

[
(r − 2M)(r − 3M) ± r2M,u

] , (4.15)

plus the normalization condition r2(Uφ )2 = N2(Uu)2 − 1 must hold. (Remember that the
upper signs correspond to M,u < 0 and the lower signs to M,u > 0.) These conditions ensure
that at some instant of u, the test particle moves along r = const; the variation of M with u
however makes them u-dependent, so the respective values of Uu, Uφ and r change with u as
well.

It is also possible to use the normalization in the remaining time equation (3.4) to obtain

dUu

dτ
= ±1

N2

[
M

r2
− (r − 3M)(Uφ )2

]
− σ̃Tuu(U

u)3, (4.16)

where one can in turn substitute from the above dUr/dτ = 0 condition and rewrite the result
in terms of the u-dependence (divide by Uu),

dUu

du
= M,u

rN2

[
Uu ± σ̃ r

4π
(Uφ )2

]

= M,u

rN2

{
Uu ± σ̃

4πr
[N2(Uu)2 − 1]

}
. (4.17)

In the geodesic limit (σ̃ = 0) solution (4.15) and respective Uφ reduce to

(Uu)2 = r(r − 2M)

(r − 2M)(r − 3M) ± r2M,u
, (4.18)

(Uφ )2 = 1

r2

M(r − 2M) ∓ r2M,u

(r − 2M)(r − 3M) ± r2M,u
. (4.19)

The latter has to equal L̃2/r4, which yields

±r2(r2 + L̃2)M,u − (r − 2M)[Mr2 − L̃2(r − 3M)]

= ±M,ur4 − Mr3 + (2M2 + L̃2 ± L̃2M,u)r
2 − 5ML̃2r + 6M2L̃2 = 0. (4.20)

This can be understood either as a quartic equation for r, or as a ‘compatibility condition’ for
M,u , with the solution

± M,u = (r − 2M)[Mr2 − L̃2(r − 3M)]

r2(r2 + L̃2)
. (4.21)

8
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The left-hand side ±M,u is never positive, so the condition is only consistent if L̃2(r − 3M) >

Mr2. In such a case, its integration gives

M(u) = r
(r − 2M0)L̃2 +

[
M0r2 − L̃2(r − 3M0)

]
e±u/r

(r − 2M0)(r2 + 3L̃2) + 2
[
M0r2 − L̃2(r − 3M0)

]
e±u/r

, (4.22)

where the integration constant has been chosen so that M(0) = M0. Thus one must have a very
particular complicated mass function which depends on the special orbit parameters (radius
and angular momentum) to allow circular geodesic orbits to exist.

For such a special orbit, knowing that (Uφ )2 must equal L̃2/r4, one can of course express
(Uu)2 in terms of L̃2 from the normalization, as an alternative to (4.18):

(Uu)2 = r2 + L̃2

r2N2
. (4.23)

The square of the energy of the particle on this circular geodesic is then

(−Uu)
2 = (−guuU

u)2 = (r − 2M)3

r(r − 2M)(r − 3M) ± r3M,u
= N2

(
1 + L̃2

r2

)
. (4.24)

4.4. Quasi-equilibrium locations (Ui = 0)

Finally, it is natural to ask whether it is possible for the particle to remain with Ui = 0 at some
radii. Staying in equilibrium is a limiting case of purely radial motion (if in addition Ur = 0)
as well as of purely azimuthal motion (if in addition Uφ = 0). The normalization condition
(3.7) then implies

Uu = N−1, (4.25)

the only other constraint being the fulfillment of (4.13), namely compensation of the radial
gravitational pull, modified by the change of the central mass M, by the force exerted on the
particle through the radiative flux,

− M

r2
± M,uUu

r

(
Uu ∓ σ̃

4πr

)
= 0. (4.26)

Substituting for Uu from above leads to

− M ± M,ur

N2
− σ̃M,u

4πN
= 0 . (4.27)

This is a quartic equation for r which depends on the function M of u, which means if M is
not constant, there is no true equilibrium in general, but in the quasi-stationary case in which
M changes sufficiently slowly, the roots of this equation will also change sufficiently slowly
so as to be called quasi-equilibrium radii that will certainly influence the qualitative behavior
of the orbits in a way similar to the actual equilibrium radii in the stationary case in which M
is constant. However, one can also express the solution of this condition in terms of M,u:

± M,u = MN2

r ∓ σ̃
4π

N
. (4.28)

This equation also gives the condition for a particular limiting case: the quasi-equilibrium can
only be ‘permanent’, namely the corresponding radius remains at a given value r for every u, if
M evolves with u so that the condition is constantly satisfied for that fixed value of r. Clearly,
the condition can only hold with the upper sign, thus for M,u < 0 (outgoing flux)—namely
when the interaction term with σ̃ is larger than the first term r in the denominator to make the

9
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right-hand side negative. A necessary condition for equilibrium to be possible at some given
fixed r is therefore

σ̃ >
4πr

N
. (4.29)

The solution of (4.28) can be written implicitly as

u ± r ln

(
r − 2M

M

)
− σ̃

2π
arctanh N = const. (4.30)

‘Switching off’ the physical radiation–particle interaction (σ̃ = 0), one finds the condition
for geodesic equilibrium,

± M,u = M

r
N2 (> 0). (4.31)

This condition can never be satisfied, because the left-hand side is non-positive. This is
due to the fact that the change of mass always makes the combined gravitational pull
−M/r2 ± M,u/(rN2) stronger (more negative) than the first term alone, irrespectively of
the sign of M,u (see equation (3.8) with Uφ = 0 and σ̃ = 0).

5. Equilibrium solutions and the Schwarzschild limit with test radiation

Let us discuss the special, lower dimensional types of motion of the previous section in more
detail and compare the Vaidya results with those obtained in a Schwarzschild background with
a test radiation flux. The test-flux case has been treated both in the Schwarzschild [3] and Kerr
[4] backgrounds as a relativistic generalization of the classic Poynting–Robertson effect. The
test particles moving in these spacetimes were subjected to a Thomson-type interaction with
a superimposed test radiation field; hence their motion was described by equation (3.1) with
T μν = �2kμkν as in this paper, but this null dust was taken there to be a test field. In contrast,
in the present discussion the radiation is self-consistent, being a source in the Vaidya exact
solution of the Einstein equations. Since general test motion has to be solved numerically
in both cases, we are mainly interested in the comparison of conditions for special types of
motion which were obtained analytically. In particular, we will focus on the possibility of
equilibrium locations, as noted in section 4.4, or perhaps more appropriately in the present
case, quasi-equilibrium locations.

In the Schwarzschild spacetime with purely radial test flux, the equilibrium condition
takes the form (see equation (3.22) of [3])

A

M
= ±N, where A = σ̃

√
gθθ gφφ �2(−ku)

2. (5.1)

(We have added the ± sign here in order to include both the outgoing- and ingoing-radiation
cases, but it is immediately clear that it can only hold with outgoing radiation, i.e. with the plus
sign.) To verify whether this form of the equilibrium condition is consistent with condition
(4.28) we derived above for the Vaidya field, we must translate the notation of that article.
Substituting into (5.1)

√
gθθgφφ|θ=π/2 = r2, �2 = 2Tuu = ∓ M,u

2πr2
, (−ku)

2 = 1

2
,

and noting that A = σ̃Tuur2 = ∓σ̃M,u/(4π), the equilibrium condition becomes

∓ σ̃M,u

4πM
= ±N ⇐⇒ M,u = −4πM

σ̃
N. (5.2)

This coincides exactly with the condition following from equation (4.26) if the term describing
the gravitational effect of mass change (namely the one proportional to M,u but not containing

10
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σ̃ ) is omitted. Actually, this term corresponds exactly to the r term in the denominator of (4.28),
so without it that condition reduces exactly to (5.2). Expressed the other way round, switching
from the Schwarzschild spacetime with a test radiation flux to the exact Vaidya spacetime
with a self-consistent flux brings that r term into the equilibrium condition (4.28). This term
makes the necessary equilibrium M,u more negative, namely bigger in absolute value. In order
to understand this, it is convenient to look once more at the equilibrium condition (4.27),

− M

r2
+ M,u

r

1

1 − 2M
r

− σ̃

4π

M,u

r2

1√
1 − 2M

r

= 0 (5.3)

(limited to the upper sign since equilibrium is only possible in that case). It is seen that the
second term, describing the gravitational effect of mass change M,u , falls off more slowly
than the third term which describes the physical effect of the flux corresponding to that M,u

(and also more slowly than the first, Schwarzschild term). Therefore, it is difficult to reach
equilibrium at very large radii, because the second term dominates there and the third term
can only balance it with a very large value of σ̃ .

It is very useful to express the solution of the above equilibrium equation as

r = N

(
σ̃

4π
− MN

|M,u|
)

. (5.4)

It is seen from here that if the central mass were to turn completely into radiation (M → 0+,
thus N → 1−), there would be two possibilities for the quasi-equilibrium radius: either it
decreases to zero together with the mass or it approaches the value

r → σ̃

4π
− M

|M,u| ≡ rfin. (5.5)

In particular, if M/M,u vanished in this limit, rfin would be σ̃ /(4π) and would surely represent
the maximum reached during the entire evolution of r(u), because regardless of how M and r
would behave precisely, one has (for r > 0 of course) 0 � N � 1 and so

r = N

(
σ̃

4π
− MN

|M,u|
)

� N
σ̃

4π
� σ̃

4π
.

It is also seen from (5.4) that when M,u is so large that the second term is negligible, the
quasi-equilibrium radius evolves according to r ≈ Nσ̃ /(4π).

Specific choices for M(u)

To illustrate properties of the equilibrium condition, we choose a few particular mass functions
M(u). We consider the case where A/M = const (which implies exponential decay of M), the
case where the mass M decreases linearly, and the case of a hyperbolic tangent mass profile
often used in the literature (see, e.g., [13]).

• A/M = const: exponential decrease of M. Let us choose A/M to be some positive constant
(call it a), which corresponds to the case when the luminosity at infinity equals the constant
fraction a of the Eddington value (see section 3.2 of [3] and equation (2.33) in [4]). The
particular behavior of mass which ensures this, M,u = −4πMa/σ̃ , namely the exponential
decay M(u) = M0 exp(−4πua/σ̃ ), makes the equilibrium condition yield

r = σ̃

4π

N (a − N)

a
. (5.6)

11
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Figure 1. Evolution of the quasi-equilibrium radius r with time u for exponential mass decrease
M(u) = M0 exp(−4πua/σ̃ ) (which yields a = const) with σ̃ = 104, as given by (5.6). The curves
(going from top to bottom along the vertical axis) correspond to a = 0.95, 0.9, 0.85, 0.8, ..., 0.1,
0.05. The axes are in the units of M0. (The decrease of r below 2M0 does not mean that it is below
the apparent horizon radius, because the actual M also decreases.)

Note that in this case
M

|M,u| = σ̃

4πa
�= 0;

hence the ultimate value of the quasi-equilibrium radius (reached at u → ∞ here) is certainly
not σ̃ /(4π). Its behavior at final stages of the center’s ‘evaporation’ can be inferred by
linearizing the equilibrium condition (and then again its solution r) in M which yields

r(u → ∞) = 2 − a

1 − a
M.

Hence the quasi-equilibrium radius tends to zero exponentially together with M. figure 1
shows an example of the dependence of the equilibrium curves r(u; a) on the parameter a for a
given σ̃ .

• Linear decrease of M. Another natural possibility is a linear decrease of mass,
M(u) = M0 − βu. In such a case the equilibrium condition (5.4) reads

r = N

(
σ̃

4π
− MN

β

)
(5.7)

and the ultimate value of the quasi-equilibrium radius is rfin = σ̃ /(4π). This radius is a
global maximum of r(u); actually r(u) has an overall tendency to grow. This is expected since
the linear decrease of mass corresponds to the increase of the effective interaction parameter
A
M = σ̃ β

4πM . The quasi-equilibrium radius in fact need not increase all the time (for small
σ̃ , it rather decreases initially and later remains more or less constant), but finally (at times
u ∼ M0/β) it always grows with u. The rate of this growth is again obtained by restricting just
to linear terms in M in the above equation; this yields

r(u → M0/β) = rfin − 1 + β

β
M.

The quasi-equilibrium r(u) dependence is parameterized by β and σ̃ , with M0 playing
the role of a scale factor. For illustration, one can either choose a certain fixed σ̃ and plot

12
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Figure 2. Evolution of the quasi-equilibrium radius r with time u for linear mass decrease
M(u) = M0 − βu with β = 10−6, as given by (5.7); 3/10 of the center’s lifetime M0/β are
covered. On plot (a), the curves correspond (going from top to bottom) to a0 = 0.975, 0.95, 0.925,
0.9, ..., 0.55, 0.525. On plot (b), the curves obtained for smaller values of a0, namely (from top to
bottom) 0.7, 0.65, 0.6, 0.55, ..., 0.1, 0.05, are shown in more detail. The axes are in the units of
M0. (The decrease of r below 2M0 does not mean that it is below the apparent horizon, because
the actual M also decreases.)

r(u) for different possible β, but it is more suitable to do it the other way round, because
the ‘lifetime of the star’ is given by M0/β and it is better to have the latter the same for all
the curves. See figure 2 for an example of the dependence of such quasi-equilibrium curves
r(u; a0) on a0 ≡ A

M0
= σ̃ β

4πM0
, for a given β. In accord with formula (5.13) derived below, the

quasi-equilibrium radius first drifts up/down if a0 is bigger/smaller than 1/
√

3 .
Figures 1 and 2 show that the r(u) behavior is rather different for the exponential and

linear decrease of M with u: in absolute measures (in units of the initial mass M0), the
exponential decrease of M leads to the decrease of r, whereas the linear decrease of M leads
to the increase of r with u. If expressed in units of the actual mass M, the quasi-equilibrium
radii of course have stronger tendency to grow in time, and actually they (slightly) do so even
in the exponential case. On a more general level, this reminds us that it is delicate (if at all
possible) to compare locations in a non-stationary spacetime at different moments (and even
harder to compare them in different spacetimes, i.e. with different M(u)).

• Hyperbolic tangent mass profile. Finally, one can assume that the mass smoothly
decreases/increases between some two fixed values M1, M2. This situation can be modeled by
the mass profile

M(u) = M1 + (M2 − M1)

2
(1 + tanh βu) , M,u = β

2
(M2 − M1) sech2βu (5.8)

for the outgoing (M1 > M2) and ingoing radiation (M1 < M2) cases, where the constant rate
parameter β governs the timescale of the transition between the two asymptotic Schwarzschild
spacetimes (the smaller the value of β, the longer the transition). The behavior of the quasi-
equilibrium radius as a function of u is shown in figure 3 in the outgoing case for selected
values of σ̃ . Interestingly, during the transition phase the quasi-equilibrium radius can reach
large values when the interaction with the radiation field is very strong.
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Figure 3. Evolution of the quasi-equilibrium radius r with time u for the mass profile M(u) =
M1 + (M2 − M1)(1 + tanh βu)/2 with the following parameter choice: M1 = 1, M2 = 0.65,
β = 10−2 and different values of σ̃ = [3, 5, 5.5] × 103, with the axes given in units of M1. The
black dashed curve corresponds to the apparent horizon. During the transition phase the quasi-
equilibrium radius is even more enhanced for increasing values of σ̃ , i.e. when the interaction with
the radiation field becomes stronger.

Approximate solution for very slow steady mass decay

To compare with the corresponding Schwarzschild test radiation case, consider a linear mass
decrease M(u) = M0 − βu with a constant and very small β (0 � β 
 1). The interaction
parameter and its dimensionless counterpart are then

A = σ̃ β

4π
, a0 ≡ A

M0
= σ̃ β

4πM0
. (5.9)

Let us stress that a0 is not necessarily small (in contrast to β) since σ̃ can be large. Actually,
the necessary condition for the equilibrium to be at all possible, (4.29), requires

a0 >
βr

M0N
. (5.10)

By rewriting (5.7) as

a0 = βr

M0N
+ N

M

M0
,

one sees that the above condition can also be understood as the requirement of the positivity
of the mass M (which is here ensured at times u < M0/β).

Substituting for M(u) in the lapse function yields

N2 = 1 − 2M0

r
+ 2βu

r
≡ N2

0 + 2βu

r
,

so the equilibrium condition MN2 + βr − M0a0N = 0 becomes(
1 − β

u

M0

) (
N2

0 + 2β
u

r

)
+ β

r

M0
− a0

√
N2

0 + 2β
u

r
= 0. (5.11)
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Expanding this now only up to terms linear in β, one obtains the dimensionless equation

N0(N0 − a0) + β

[
r

M0
− u

M0

(
1 − 4M0

r
+ a0

N0

M0

r

)]
= 0, (5.12)

whose relevant solution (linearized in β) reads

r = 2M0

1 − a2
− 2β

(1 − a2
0)

3

[
4M0 + u

(
1 − a2

0

)(
1 − 3a2

0

)]
. (5.13)

In the limit when even the linear term can be neglected (β → 0), we get the familiar
Schwarzschild equilibrium solution for a test flux, r = 2M0/(1 − a2

0) ≡ r0, which only exists
when 0 � a0 < 1. Writing the above solution in a dimensionless form (ρ ≡ r/M),

ρ = ρ0(1 − βρ2
0 ) − β

2
ρ2

0

(
1 − 3a2

0

) u

M0
, (5.14)

one sees that if β cannot be neglected completely but the linear approximation is sufficient,
the quasi-equilibrium radius starts from a slightly lower value ρ = ρ0(1 − βρ2

0 ) than in the
Schwarzschild case and drifts with time u toward even smaller values when a0 < 1/

√
3 ≈

0.577, whereas toward larger values when a0 > 1/
√

3; this initial behavior is clearly shown
in figure 2(b) in the zone before the total mass loss becomes comparable to the initial value
and the curves quickly rise. During this initial phase, the quasi-equilibrium radius provides a
slowly moving target near the corresponding Schwarzschild value.

Note that assuming the mass profile as in equation (5.8) also leads to a constant rate of
loss of energy that occurs in the test radiation field. In fact, for small values of β, i.e. for a
very slow transition between a past asymptotic Schwarzschild spacetime with mass M1 and
a future asymptotic Schwarzschild spacetime with mass M2, we have in the outgoing case
M,u ∼ −β(M1 − M2)/2 < 0, so that the same considerations as above apply too.

Condition for purely azimuthal motion

One can also be interested in circular equilibrium orbits, i.e. with only ν r̂ = 0. In this case,
equations (3.12) reduce to

0 = − γ

rN3

[
M

r
N2 ∓ M,u

]
+ γ N

r
(νφ̂ )2 ± σ̃Tuu

N2
, (5.15)

dνφ̂

dτ
= − σ̃Tuu

N2
νφ̂ . (5.16)

Re-expressing Tuu in terms of M,τ , the second equation can be solved for γ = 1/

√
1 − (νφ̂ )2

leading to

γ (τ ) = γ0 + tanh
[±σ̃ (N(τ )−N0)

4πr

]
1 + γ0 tanh

[±σ̃ (N(τ )−N0)

4πr

] , (5.17)

where γ0 = γ (0) and N0 = N(0). Solving then the latter equation for νφ̂ and substituting into
equation (5.16) gives a first-order equation for M(τ ). Therefore, circular equilibrium exists
only if M evolves with u according to this equation for r = constant. This condition selects
a particular mass profile. Assuming instead a given mass profile, one obtains the evolution of
the radius such that the orbit is momentarily circular, i.e. a quasi-equilibrium state.

Figure 4 shows the evolution of such a quasi-equilibrium radius r with time u for the mass
profile (5.8) in the outgoing case and the corresponding behavior of the azimuthal velocity νφ̂ .
In the case of geodesic motion νφ̂ = constant and

(νφ̂ )2 = M

rN2
− M,u

N4
, (5.18)
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(b)(a)

Figure 4. The evolution with time u of the quasi-equilibrium radius r corresponding to circular
quasi-equilibrium orbits is shown in plot (a) for the mass profile M(u) = M1 + (M2 − M1)(1 +
tanh βu)/2 with the following parameter choice: M1 = 1, M2 = 0.65, β = 10−2 and selected
values of σ̃ = [0, 3, 5, 5.5] × 103, with the axes given in units of M1. The initial value of the
radius is taken to be 6M1. The corresponding behavior of the azimuthal velocity νφ̂ is shown in
plot (b). In the geodesic case (thick black curves) the constant value of the azimuthal velocity is
set to 1/2, which corresponds to the Keplerian value νK = √

M1/(r0 − 2M1) for r0 = 6M1 in the
past asymptotic Schwarzschild spacetime. The asymptotic value of the quasi-equilibrium radius
after the transition is 6M2 = 3.9M1.

according to equations (5.15)–(5.16) (see also equations (4.18)–(4.19)), which is an equation
for r. The first term represents the Keplerian one. Since in the outgoing case M,u is always
negative, the second term in equation (5.18) is always positive, so that the radius has to be
greater than the Keplerian one. If the transition between the two asymptotic Schwarzschild
spacetimes occurs very slowly, the second term is negligible so that the actual behavior of
r(u) is practically indistinguishable from the Keplerian one. The effect of the interaction with
the radiation field is the growth of the quasi-equilibrium radius for purely azimuthal motion
during the transition phase just as in the case of quasi-equilibrium at rest.

6. Examples of numerical orbits

In order to numerically integrate the equations of motion (3.12), we must specify the mass
function M(u). We adopt the mass profile (5.8), so that the mass smoothly decreases/increases
between the value M1 corresponding to the past asymptotic Schwarzschild spacetime and the
value M2 of the future asymptotic Schwarzschild spacetime. Another possibility that we will
not consider for numerical study would be a mass function which decreases/increases linearly
with u over a finite interval of time (see previous section).

As typical solutions, we consider the numerical examples shown in figures 5–8, where the
geodesic behavior is compared with the motion of a particle interacting with the background
radiation field in the case of outgoing radiation. The same analysis can be easily repeated for
the ingoing case. We choose β = 10−2 and fix the value of the friction parameter obtained
by dividing σ̃ by the mass M1 of the past asymptotic Schwarzschild spacetime to be 104,
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(b)(a)

Figure 5. The behavior of r(τ ) is shown in (a) in the case of outgoing radiation with the following
parameter choice: M1 = 1, M2 = 0.65, β = 10−2 and σ̃ = 0 (geodesic, thick dashed line) and
σ̃ = 104 (solid line), with the axes given in units of M1. The initial conditions are u(0) = −1000,
r(0) = 4, φ(0) = 0, ν r̂(0) = 0, νφ̂ (0) ≈ 0.707, which correspond to a circular geodesic in the
past asymptotic Schwarzschild spacetime with mass M1. The corresponding orbits are shown in
(b). In the geodesic case, the orbit escapes outward after a few loops. In contrast, the accelerated
particle spirals toward the apparent horizon, which is reached in a finite proper time interval at
r ≈ 2. The asymptotic inner apparent horizon at r ≈ 1.3 is also shown.

indicating a strong interaction of the test particle with the background radiation field. For
small values of σ̃ , deviations from geodesic motion are not significant.

We have investigated two different conditions for the initial radius of the orbit: r(0) = 4M1

and r(0) = 6M1. The typical feature is that an initially circular orbit in the past asymptotic
Schwarzschild spacetime spirals inward if its velocity is smaller than the Keplerian one;
instead for greater values both the geodesic and accelerated particles escape outward. If the
initial velocity equals the Keplerian one, instead, the geodesic particle escapes, whereas the
accelerated one spirals toward the apparent horizon (see figure 5). Increasing the initial value
of the radius enriches the situation, as shown in figure 6. In fact, the initially circular orbit in the
past asymptotic Schwarzschild spacetime undergoes a transition to a quasi-circular geodesic
in the future asymptotic Schwarzschild spacetime if its velocity equals the Keplerian one, i.e.
the motion turns out to be confined in a region close to such a geodesic orbit, because the path
oscillates between a minimum and a maximum radius. If the interaction is not so strong the
contribution of mass variation dominates with respect to that due to the acceleration, leading
to an oscillating behavior of the accelerated orbit around an asymptotic radius as in the case of
geodesic motion (see figure 7). Finally, if the path is initially radial, it remains radial, and the
particle can eventually escape if it is directed outward with a large enough initial speed (see
figure 8). Note that in this case geodesic and accelerated orbits are practically indistinguishable
even for strong interaction.

It is worth recalling that in the original works on the Poynting–Robertson effect the
main concern was a situation outside the normal star, where it is only relevant to consider
the outgoing-radiation case. In this paper, we are also—actually mainly—interested in
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(b)(a)

(c)

Figure 6. The behavior of r(τ ) is shown in the case of outgoing radiation with the same parameter
choice as in figure 5, with the axes given in units of M1. The initial conditions are u(0) = −1000,
r(0) = 6, φ(0) = 0, ν r̂(0) = 0 and νφ̂ (0) = [0.49, 0.5, 0.51], in (a)–(c) respectively. The value
νφ̂ (0) = 0.5 corresponds to a circular geodesic in the past asymptotic Schwarzschild spacetime
with mass M1. In this case, shown in (b), the geodesic orbit exhibits an oscillating behavior while
approaching the circular geodesic of the future asymptotic Schwarzschild spacetime with mass M2
at Keplerian radius r ≈ 17 and Keplerian speed νK = √

M2/(r − 2M2) ≈ 0.2. In contrast, the
accelerated particle spirals toward the apparent horizon at r ≈ 2 and reaches the latter in a finite
proper time interval. Before falling into the apparent horizon, the value νφ̂ (0) = 0.49 (and smaller
values) corresponds to a spiraling behavior toward the apparent horizon in both the geodesic and
accelerated cases. The value νφ̂ (0) = 0.51 shows oscillations outside the initial radius, from which
the accelerated particles then escape. Further increase of νφ̂ (0) would lead to particle escape in
both cases.
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Figure 7. The behavior of r(u) is shown in the case of outgoing radiation with the same parameter
choice and initial conditions as in figure 6(b), but for different values of the friction parameter σ̃ .
For very small values of σ̃ , the accelerated orbit is close to the geodesic one. As the interaction with
the background radiation field becomes stronger, i.e. for increasing values of σ̃ , the asymptotic
radius decreases to even smaller values. Further increase in σ̃ causes the particle to cross the
apparent horizon.

(b)(a)

Figure 8. The behavior of r(τ ) is shown in the case of outgoing radiation with the same
parameter choice as in figure 5, with the axes given in units of M1. The initial conditions
are u(0) = −1000, r(0) = 4, φ(0) = 0, νφ̂ (0) = 0 and purely radial motion with (a)
ν r̂(0) = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] (outward), (b) ν r̂(0) → −ν r̂(0) (inward). In
the case of (a), the bigger the initial value of the velocity, the longer the interval of the proper time
spent by the particle before reaching the apparent horizon or eventually escaping outward if the
speed is large enough. In the case of (b), it is just the opposite, with the particle always reaching
the apparent horizon (faster and faster for ν r̂(0) increasingly negative).
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ultracompact center like black hole, when the ingoing-radiation case is also relevant. Namely,
a black hole does not itself radiate (if not taking quantum effects into account), it also does not
allow any stable accretion configuration (as a radiating source) near the horizon, and finally,
even if such a source was there, most of its radiation would fall below the horizon. Therefore,
at least in the vicinity of the horizon the ingoing radiation occurs more probably than outgoing.

In the case of ingoing radiation, the dominant effect for both geodesic and accelerated
particles is a push toward the apparent horizon. An initially circular orbit in the past asymptotic
Schwarzschild spacetime always spirals inward, eventually reaching the apparent horizon after
a few revolutions in a finite proper time interval. The coupling with the background radiation
field causes accelerated particles to cross the apparent horizon before the corresponding
geodesics. The radial motion is characterized by the same feature as in the case of outgoing
radiation.

7. Concluding remarks

The Vaidya spacetime with a Thomson interaction of its null dust with test-particle motion
provides an arena for the investigation of a Poynting–Robertson-like effect in a self-consistent
way without the requirement that the null dust itself be a test field. One should admit that using
the exact, Vaidya solution, where the radiation flux is tied consistently to the mass loss/gain
by the center, has only a theoretical importance in most situations, because the mass change is
almost always negligible with respect to the mass itself. (This may only be false in final stages
of black hole evaporation.) However, the properties of this effect evident in the simpler case of
a test radiation field in the Schwarzschild spacetime are reflected by those of the appropriate
limit of the Vaidya case, but the latter case allows one to see how they change under more
extreme conditions where the outgoing radiation itself contributes to the gravitational field.
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