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Linear perturbations of a Schwarzschild black
hole by thin disc - convergence

P. Čížek, O. Semerák

Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in
Prague; E-mail: ciz@matfyz.cz

Abstract. In order to find the perturbation of a Schwarzschild space-time due to a rotating thin
disc, we try to adjust the method used by [4] in the case of perturbation by a one-dimensional
ring. This involves solution of stationary axisymmetric Einstein’s equations in terms of spherical-
harmonic expansions whose convergence however turned out questionable in numerical examples.
Here we show, analytically, that the series are almost everywhere convergent, but in some regions
the convergence is not absolute.
Keywords: general relativity, black holes, perturbation techniques, accretion discs
PACS: 04.70.Bw, 04.25.-g, 02.30.Lt , 04.20.-q >

LINEAR PERTURBATION OF BLACK HOLE

The orthogonally transitive, stationary and axisymmetric space-time can be described
by the metric [1]

ds2 =−e2νdt2+ r2B2e−2ν sin2 θ(dϕ−ωdt)2+ e2ζ−2ν
(
dr2+ r2dθ2

)
, (1)

wwhere t, φ are Killing coordinates and r, θ are isotropic coordinates covering the
meridional planes; B, ν , ω and ζ denote functions of r and θ which are determined
by Einstein’s equations. In the thin-disc case, the energy-momentum tensor reads
To calculate them we must specify the energy-momentum tensor. In the case of thin

dust disc it can be expressed as

Tα
β = σe2ζ−2νuαuβ

1
r

δ (cosθ), (2)

where σ is a surface density and uα is the disc-matter four-velocity which can be
expressed as

uα =
e−ν

1− v2 (1,0,0,Ω) (3)

in terms of linear velocity with respect to the zero-angular-momentum observer v =
r sinθBe−2ν(Ω−ω) (Ω = dφ/dt is the corresponding angular velocity at infinity).
The field equation for B reads

∇ · (r sinθ∇B) = 0, (4)
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where ∇ and ∇· denote gradient and divergence in a Euclidean 3D space (represented in
spherical coordinates r, θ , φ ). Otherwise B can be chosen arbitrarily1.
The most important Einstein equations are those for the dragging and gravitational

potentials, ν and ω ,

∇ · (B∇ν)− 1
2
r2 sin2θe−4ν ∇ω ·∇ω = 4πBσ

1+ v2

1− v2
1
r

δ (cosθ), (5)

∇ · (r2 sin2θB3e−4ν ∇ω
)

= −16πB2σe−2ν v
1− v2δ (cosθ). (6)

Knowing B, ν and ω , the last function ζ can be obtained by line integration of the
remaining two relevant field equations.
We are interested in a perturbation of the Schwarzschild metric which in isotropic

coordinates reads

ds2 =−
(
2r−M
2r+M

)2
dt2+

(
1+

M
2r

)4 (
dr2+ r2dθ2+ r2 sin2 θdφ2

)
(7)

also it corresponds to ν = ln 2r−M2r+M and ω = 0. We start from choosing B= 1−M2/(4r2).
Then one can rewrite the equations (5), (6) using the perturbation expansions

ν = ln
(
2r−M
2r+M

)
+

∞

∑
n=0

δνn(x)Pn(cosθ)+O(ε2), (8)

ω =
∞

∑
n=0

δωn(x)C
3/2
n (cosθ)+O(ε2), (9)

(with the O-remainders omitted), where ε = disc mass/M is mass expansion parameter,
x≡ r

M

(
1+ M2

4r2

)
new "radial" coordinate and Pn andC

3/2
n are Legendre and Gegenbauer

polynomials, respectively, while decomposing the source terms on the r.h. sides in the
same manner. Demanding equality in each n-order, the equations (5), (6) leads to

d
dx

[
(x2−1) d

dx
δνn

]
−n(n+1)δνn = 2(2n+1)πPn(0)rσ(r)

1+ v2

1− v2 (10)

d
dx

[
(x+1)4

d
dx

δωn
]
− (x+1)3

x−1 n(n+3)δωn =−πC3/2n (0)(2n+3)(2r+M)3

8M2(n+1)(n+2)(2r−M)

σ(r)v
1− v2 .

(11)
This set can be solved to obtain expansions of the linear perturbation of functions ν and
ω which are induced by the chosen source (thin disc) and which can be made regular
both at the horizon and at radial infinity2; see e.g. [2].

1 With the exception of the B= 1/(r sinθ ) case which leads to plane-wave space-times.
2 One can choose freely one constant which represents angular velocity of the horizon. We will omit it
since it is not important for convergence. Besides that the system is determined.
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TABLE 1. Coefficients of Green functions of the problem

α β γ δ Nn(x,x′) Ln(x,x′) Σ(r)

G ν
n 0 0 1/2 0 1 −2π(2n+ 1)Cγ

n(0) rσ(r) 1+v
2

1−v2
G ω
n 1 3 3/2 1 (x− 1)(x′ − 1) n+3n

π(2n+3)(n+3)Cγ
n(0)(x−1)

√
x′−1(x′+1)3/2

2Mn(n+1)(n+2) rσ(r) v
1−v2

However, numerical illustrations of the results revealed unsatisfactory behaviour in
the region close to the axis, mainly of the ω function. Suspecting bad convergence
of the employed perturbation series, we have tried to check this issue analytically. As
briefly summarized below, we found that the ω-expansion does not converge absolutely
in certain regions and that its convergence may become problematic at certain parts of
the axis.

CONVERGENCE OF THE SERIES

The general disc solution can be obtained convolving rings of matter. This ring solution
(see [4]) corresponds (up to the numerical factor) to the Green function of equation,

Gn(x,x′) = Nn(x,x′)

{
P(α,β )
n−δ (x)Q(α,β )

n−δ (x′) x< x′

P(α,β )
n−δ (x′)Q(α,β )

n−δ (x) x′ < x
, (12)

where P(α,β )
n ,Q(α,β )

n are Jacobi functions of the first and second kind and the coefficients
α , β , δ and the function N(x,x′) are written explicitly in the table 1.
The whole disc solution takes form

f (r,θ)=
∞

∑
n=0

∫
disc
Cγ
n(cosθ)Ln(x,x

′)Σ(x′)P(α,β )
n−δ (min(x,x′))Q(α,β )

n−δ (max(x,x′))dx′, (13)

where f (r,θ) is ν or ω and functions and constants are chosen in accordance to the table
1. It should be notedCγ

n(0) = 0 when n is odd so in the rest of this paper we will consider
only "even" contributions to the Green functions.
To analyze asymptotic behaviour (with respect to n→ ∞) it is convenient to express

Jacobi function in terms of Legendre functions:

P(1,3)n (x)Q(1,3)
n (x′) = H(x,x′)

4

∑
k=0

4

∑
l=0
Xk l

[
1+O

(
1
n

)]
Pn+k(x)Qn+l(x′), (14)

where H(x,x′) is rational function of x and x′ and Xk l are constants.
Using relations for modified Bessel functions I0 and K0 (see [3]) we can write

Pn+k(coshζ )Qn(coshξ ) =
√

ξζ
sinhξ sinhζ I0

(2n+2k+1
2 ζ

)
K0

(2n+1
2 ξ

)[
1+O

(1
n
)]

=(15)

= 1
2n
√
sinhξ sinhζ

eζke(ζ−ξ )(n+ 1
2)

[
1+O

(1
n
)]
.
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We will also need to know asymptotic behaviour of the "spherical harmonics"

Cγ
n(cosθ) =

⎧⎨
⎩
2nγ−1[cos((n+γ)θ− π

2 γ)+O( 1n)]
Γ(γ) when 0< θ < π

n2γ−1
Γ(2γ)

[
1+O

(1
n
)]

when cosθ = 1
. (16)

This expression can be also used to find properties of Ln(x,x′) when n→ ∞.
Taking all together we can conclude that

• At radii, where σ(r) = 0 (i.e. without matter) the exponential in (15) will dominate
remaining terms and so there is exponential convergence.

• At the radii with σ(r) �= 0 the behaviour depends on the actual position.
– Between axis and equatorial plane there will be conditional convergence (as
n−1) in the case of ring and absolute convergence (as n−2) in the case of disc.

– At the equatorial plane there will be logarithmic divergence in the case of ring
and absolute convergence (as n−2) in the case of disc.

– On the axis the situation is much more complicated. When the source is ring,
there is conditional convergence (as n−1/2) when considering gravitational
potential and divergence (as n1/2) for dragging. In the disc case convergence is
one order faster, i.e. absolute for ν (as n−3/2) and conditional for ω (as n−1/2).

CONCLUSIONS

The method used by Will [4] when considering perturbation of a Schwarzschild black
hole by a light slowly rotating ring can be extended to also enable disc perturbation.
On the other hand, it involves expansions which do not behave well numerically. We
have shown here that the series used in the first perturbation order are convergent almost
everywhere, but the convergence is indeed slow at radii where the source is present (in
the equatorial plane).
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