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Abstract
We present a new approach for averaging in general relativity and cosmology.
After a short review of the theory originally taken from the equivalence problem,
we consider two ways of dealing with averaging based on Cartan scalars. We
apply the theory for two different Lemaı̂tre–Tolman–Bondi models. In the first
one, the correlation term behaves as a positive cosmological constant, in the
second example, the leading correlation term behaves like spatial curvature.
We also show the non-triviality of averaging for linearized monochromatic
gravitational wave.

Keywords: cosmology, Cartan scalars, averaging
PACS number: 98.80.Jk

1. Introduction

In general relativity and cosmology, we often deal with spacetimes that have many symmetries.
We can justify this step by choosing some particular length scale and claim that our simple
spacetime is the average of some more realistic model. The main motivation for the averaging
comes from cosmology. Gravity is well tested within our solar system. On cosmological scales,
we do not need to know the details about a fluctuating gravitational field. In order to obtain
a ‘macroscopic’ theory of gravity, we should perform averaging of Einstein equations. These
equations are strongly nonlinear, so if we want to use averaged metric, we have to add a
correlation term which does not need to satisfy the usual energy conditions and can act as
a dark energy. The problem is that averaging involves integration of the tensor field on the
curved manifold and this operation is not well-defined.

The most popular approach to averaging is scalar averaging and investigation of the so-
called Buchert equations [1, 2], where only the scalar part of the Einstein equations is averaged
(see [3] for a recent review). All Einstein equations are averaged in the context of macroscopic
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gravity (MG) [4, 5], and at the same time the Cartan structure equations which describe the
geometry of spacetime are averaged. A theorem about isometric embedding of a 2-sphere into
Euclidean space is applied for averaging by Korzyñski [6]. In [7] the Weitzenböck connection
for parallel transport is used for the definition of the average value of tensor field.

The theory of Cartan scalars was developed in order to decide if two spacetimes are locally
equivalent [8, 9]. We can use this theory for local characterization of a given spacetime. Then,
inspired by the method given by Coley [10], who investigated averaged scalar invariants
constructed from the Riemann tensor and a finite number of its covariant derivatives, we
average the left-hand side of Einstein equations (which contain a finite number of the Cartan
scalars if rewritten in tetrad form) and we give the prescription for the computation of the
correlation term.

In the first section, we review the theory of Cartan scalars, then after a short introduction
of Lemaı̂tre–Tolman–Bondi (LTB) spacetime, we give two different examples of averaging
by Cartan scalars. The first one utilizes approximation for the areal function R(t, r). In the
second example we investigate backreaction for the LTB metric given by Biswas et al [11].
Then we consider the averaged linearized monochromatic gravitational wave and we end with
the conclusion.

2. Cartan scalars

If we want to specify the geometry of spacetime, we are allowed to choose the n(n+1)

2
components of the metric tensor. There also exists another possibility. It can be shown that the
tetrad projection of Riemann tensor and the finite number of its covariant derivatives (called
Cartan scalars) completely (locally) specify the geometry of Riemannian manifold [8]. Cartan
scalars are true scalars on the bundle of frames F(M), but if we fix the tetrad, they behave
as scalars on the manifold as well. Because it is still not clear how to unambiguously average
a metric tensor, there exists a possibility of describing the geometry with Cartan scalars and
average them (which is straightforward in the case of scalars).

There exists another advantage within this formalism. The left-hand side of the Einstein
equations can be rewritten in the tetrad form, so it consists of the finite sum of Cartan scalars.
Using Cartan scalars we can average not only the spacetime geometry but also the left-hand
side of the Einstein equations. From the Cartan scalars we can easily read off a dimension of
an isometry group and we can obtain an algebra of the Killing vectors [12].

We will review the construction of the Cartan scalars [9], [13], [14]. Let M be an
n-dimensional differentiable manifold with a metric

g = ηi jω
i ⊗ ω j, (1)

where ηi j is a constant symmetric matrix and ωi, i = 1,2. . . ,n form a basis of the cotangent
space at the point xμ. The tetrad (frame) ωi is for a given g and ηi j fixed up to the generalized
rotations.

ωi = ωi
ν (x

μ, ξϒ ) dxν, (2)

where ξϒ , ϒ = 1, . . . , 1
2 n(n−1), denotes the coordinates of an orthogonal group. For simplicity,

we will define all geometrical objects on the enlarged 1
2 n(n+1)-dimensional space—the bundle

of frames F(M). F(M) is locally isomorphic to the Cartesian product of an open set on the
manifold (spacetime) and the orthogonal (Lorentz) group G—it means that in every point xμ

there exists a fiber with coordinates ξϒ . In the following we will use an enlarged exterior
derivative in the form d = dx + dξ . Cartan structure equations read

2
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dωi = ω j ∧ ωi
j, (3)

dωi
j = −ωi

k ∧ ωk
j + 1

2 Ri
jklω

k ∧ ωl . (4)

with a condition

ηikω
k

j + η jkω
k

i = 0. (5)

From the first equation we can compute the connection 1-form ωi
j, next equation serves as

a definition of the curvature tensor Ri
jkl . To generate covariant derivatives of the Riemann

tensor, we repeatedly apply an exterior derivative:

dRi jkl = Rm jklω
m

i + Rimklω
m

j + Ri jmlω
m

k + Ri jkmωm
l + Ri jkl;mωm,

dRi jkl;n = Rm jkl;nωm
i + Rimkl;nωm

i + · · · + Ri jkl;nmωm,

. (6)

.

.

Let Rp denote the set {Ri jkm, Ri jkm;n1 , . . . , Ri jkm;n1...np} where p is such that Rp+1 contains
no element that is functionally independent of the elements in Rp. Two functions f and g are
functionally independent if the one-form d f and dg are linearly independent. Then the set Rp+1

characterizes the geometry completely and its elements are called Cartan scalars. There exists
an algorithmic way to compute Cartan scalars [15]. It uses the standard form of the Riemann
tensor that can be found by the Petrov and Segre algorithm (and its generalization for tensors
with more indices). However, the tetrad does not need to be fixed completely. There exist
some degrees of freedom which can nontrivially transform the components of other tensors,
but the Cartan scalars remain fixed. This property allows us to integrate Cartan scalars over
some domain D ⊂ M as we will see later.

If we want to specify the geometry of spacetime, we are allowed to choose the n(n+1)

2
components of the metric tensor, which satisfy the Einstein equations. If we want to use the
Cartan scalars instead, there must exist some algebraic and differential equations that they
have to fulfil. In other words, from a given set Rp+1 we have to find the conditions necessary
to construct one-form ωi, which satisfies the equations (3)–(6). These constraints should be
respected also by the averaged Cartan scalars.

To see explicitly the form of the constraints it is easier to rewrite equations (3)–(6) in a
more compact way. The connection one form is defined on the bundle of frames F(M) as

ωi
j = γ i

jkω
k + τ i

j, (7)

where τ i
j = τ i

jϒdξϒ generates the orthogonal group and γ i
jk are the Ricci rotation

coefficients. It means that ωi
j and ωk are independent objects on F(M) and we can denote

them collectively as {ωI} ≡ {ωi,ωi
j}, I = 1, 2, . . . 1

2 n(n + 1). Cartan structure equations can
be rewritten in the simple form as

dωI = 1
2CI

JKωJ ∧ ωK . (8)

CI
JK essentially represents the Riemann tensor on F(M). We will denote a maximal set of

the functionally independent objects in Rp as Iα , α = 1,. . .,k � 1
2 n(n + 1), which can be

thought of as the coordinates on the bundle of frames. It means that all objects in Rp+1 are
functions of Iα only. By applying an exterior derivative we will obtain an analogue of the
equation (6)

3
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dCI
JK = CI

JK,αdIα ≡ CI
JK,αIα |LωL ≡ CI

JK|Lω
L,

dCI
JK|L = CI

JK|LMωM,

. (9)

.

.

Symbol | here denotes the derivative with respect to the vector field dual to the 1-form ωL and
similarly, symbol ‘,’ represents the derivative with respect to the vector field dual to dIα . We
can see from the above equations that Rp+1 can be constructed from the set {CI

JK, Iα |L}. The
constraints that have to be satisfied then read

Iα |K,βIβ |J − Iα |J,βIβ |K + Iα |LCL
JK = 0,

CP
[JK|L] + CP

M[KCM
LJ] = 0. (10)

3. Averaging Cartan scalars

Let us suppose that we have a given manifold M characterized by the set of scalar functions
Rp+1 and a given domain D. We would like to obtain a new manifold 〈M〉—identical as
a set but with a smooth metric structure, which would not recognize quickly fluctuating
inhomogeneities of the gravitational field. The naive approach would consist of the integration
of the scalar function f ∈ Rp+1 according to the rule

〈 f 〉(x) = 1

VD

∫
D

f (x + x′) dNx′, (11)

where dNx is an invariant metric volume element. Following this rule we would obtain a new
set 〈Rp+1〉. The problem is that the elements of 〈Rp+1〉 would not satisfy the constraints (which
can be written as (10)) because of the nonlinearity of the equations.

We will deal with the problem in a similar way as Coley did [10]. First we will restrict
ourselves to the smallest possible set of independent functions R′p+1 ⊆ Rp+1 (with the help
of the constraints it would be possible to generate the whole set Rp+1) and proceed with
averaging of R′p+1. We will obtain a new set 〈R′p+1〉. In the next step, we have to suppose that
the constraints will have the same form (they are not modified by correlation terms) and as
a result we can generate the whole set 〈Rp+1〉 from 〈R′p+1〉. The theory then guarantees that
there exists the metric tensor 〈gμν〉 (or equivalently the 1-forms 〈ωi〉). With the help of the
equations (3)–(6) it will give rise to the known functions 〈Rp+1〉.

If we apply averaging to R′p+1, the number of independent functions will be usually
decreasing as a consequence of an enlarged isotropy group of the new spacetime 〈M〉. We
can also obtain an algebra of the Killing vectors [12].

In practice there are two goals of averaging—the first is an averaging of the spacetime
geometry and the second is an averaging of the Einstein equations. We can see that the left-
hand side of the Einstein equations (rewritten in the tetrad form when the frame is fixed by the
Cartan–Karlhede algorithm) contains the sum of the Cartan scalars and these can be integrated
simply as scalar functions. Einstein equations are nonlinear in metric tensor, so we can expect
that after averaging we will obtain equations in the form

Rμ
ν (gαβ ) − 1

2 R(gαβ )δμ
ν + Cμ

ν = 8πT μ
ν (gαβ ). (12)

Here we suppose that Rμ
ν (gαβ ) is the macroscopic Ricci tensor, which is obtained from the

averaged metric gαβ . The same holds for T μ
ν (gαβ ). In several cases we explicitly suppose

the form of the metric structure on the averaged manifold M—for example in cosmology it

4
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is usual to suppose homogeneous and isotropic FRW models. It is questionable whether this
kind of ansatz is adequate. It is straightforward to create perturbations from the symmetric
spaces but the inverse procedure is not so clear. By averaging inhomogeneous metric we could
also obtain a situation where the averaged spacetime has a nonzero Weyl tensor or where the
correlation term is not in the form of a homogeneous and isotropic perfect fluid. It is also
ambiguous how to interpret the correlation term.

First we could use the averaging of Cartan scalars described above and obtain a new
macroscopic metric tensor 〈gαβ〉 (in general not very simple). Einstein tensor is created from
〈gαβ〉. The correct averaging procedure is guaranteed, but the macroscopic metric is gained
by a rather difficult method (how to obtain the one-form ωi from the Cartan scalars Rp+1 is
shown e.g. in [14]). The correlation term is equal to zero—or more precisely, the geometrical
correction is hidden into the macroscopic Ricci tensor 〈Rμ

ν〉 (〈Rμ
ν〉 is constructed using

Cartan scalars averaged according to the definition (11)). The advantage of this approach is
the possibility to see how the symmetry is increasing after averaging.

More straightforward and, for its simplicity, more acceptable is the second approach:
suppose the averaged (macroscopic) metric tensor gαβ is given (e.g. spherical symmetric,
homogeneous, Friedmann–Robertson–Walker (FRW), . . . ). Then compute the averaged
Cartan scalars and compare it with the Cartan scalars for the macroscopic metric—it is
possible to see if the form is the same and under which conditions these two are comparable.
Now we have two Ricci tensors—the first one is the macroscopic Rμ

ν (gαβ ) (built from the
known gαβ) and the second one is 〈Rμ

ν〉 (in the previous paragraph these two were the same).
We can define the correlation term as

Cμ
ν = 〈Rμ

ν〉 − 1
2 〈R〉δμ

ν − Rμ
ν (gαβ ) − 1

2 R(gαβ )δμ
ν. (13)

The Ricci tensor Rμ
ν (gαβ ) satisfies the contracted Bianchi identities and as a consequence

the locally conserved object is not the tensor T μ
ν (gαβ ) but the expression T μ

ν (gαβ ) − Cμ
ν .

Correlation term can be interpreted as a part of the conserved stress–energy tensor

(e f )T μ
ν = T μ

ν (gαβ ) − Cμ
ν. (14)

We can divide averaging into several steps: guess the right macroscopic metric, compute
an averaged Cartan scalars and find the correlation term, which can modify the macroscopic
metric.

The question is how to decide between these two approaches [10]. In the first one, the
procedure is unambiguous and the averaged metric tensor can be constructed (despite technical
difficulty). The second one is much easier—it remains to be clarified whether it is possible
to use the simplified metric without losing important information about the inhomogeneous
metric. In cosmology, the question is under which circumstances it is possible to characterize
the spacetime by only one scale function a(t) and how the form of a(t) is changed by the
correlation term. It would cause a problem, if the correlation term did not satisfy the form of
stress–energy tensor of the ‘guessed’ metric (a homogeneous and isotropic perfect fluid in the
case of FRW spacetime) and its magnitude would not be negligible. Then we have to use the
first approach.

A similar situation presents itself in the theory of MG [4, 5]—it is necessary to choose
which averaged object will be considered as fundamental. In MG the main geometrical objects
used in the averaging procedure are Christoffel symbols. In our case, the first possibility is to
choose the Riemann tensor (and it’s covariant derivatives) because we average Cartan scalars,
the second one is the macroscopic metric.

So far, we were dealing with scalars averaged at a single point. If we want to obtain
a unique prescription for the averaged scalar field, we should have a rule how to choose a

5
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domain at the point x′ from a given domain at x. This problem was discussed by Zalaletdinov
in the context of MG [16], where the definition of the averaged geometrical objects depends
on the choice of the bilocal operators. We will leave this rule unspecified but we will be guided
by the symmetries of spacetime. In the next chapter we will assume thick spherical shells for
averaging Cartan scalars in a LTB spacetime.

The problem that remains is how to practically use the constraints (10). For making some
explicit calculations, we usually use the fixed frame formalism [14], where Iα |K correspond to
the gradients of coordinates and Ricci rotation coefficients {xμ|k, γ m

kn} and we have to deal
with the difficulty of how to average tetrad. In the next chapters we will use the minimal set
of Cartan scalars introduced by MacCallum and Åman [17] and implemented in the algebraic
program SHEEP [18].

Next, remark should be added. The whole averaging procedure strongly depends on the
choice of the frame. In some spacetimes the tetrad can be chosen in a well-defined way. This
usually works well for spacetimes with an additional symmetry (as will be the case for the
spherically symmetric LTB metric discussed in the next section), but the method is not suited
e.g. for the general perturbations of FRW, where the frame is restricted only by the algebraic
property of spacetime. Another possibility would be to choose the frame by minimizing a
certain kind of functional as done by Behrend [19] in the context of averaging.

Correct averaging should not change the metric structure of the space with a constant
curvature. In this case there is only one nonzero Cartan scalar (Ricci scalar or lambda term in
NP formalism), which is constant and the averaging does not change its value. If we have a
constant curvature space and perform averaging by Cartan scalars, we obtain the same space.

4. Cartan scalars of FRW spacetime

It is most common to use, for its simplicity, the FRW model as a template for interpreting the
cosmological data. It is believed that it is a good approximation of the universe over the large
scales. We will consider a flat FRW metric

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2). (15)

The following computations are performed using the algebraic program SHEEP [18]. Nonzero
Cartan scalars are

φ00′ = φ22′ = 2φ11′ = −1

2
a−1a,tt + 1

2
a−2(a,t )

2, (16)

� = 1

4
a−1a,tt + 1

4
a−2(a,t )

2, (17)

Dφ00′ = Dφ33′ = 3Dφ11′ = 3Dφ22′ = − 1

2
√

2
a−1a,ttt + 5

2
√

2
a−2a,ta,tt −

√
2a−3(a,t )

3, (18)

D�00′ = D�11′ = 1

4
√

2
a−1a,ttt + 1

4
√

2
a−2a,ta,tt − 1

2
√

2
a−3(a,t )

3. (19)

Now, if we have an inhomogeneous model, we can compare the averaged Cartan scalars with
the FRW case. By comparing two different sets of scalars, we can see under which conditions
we can obtain an effective FRW metric by averaging.

5. LTB metric

The LTB metric [20–22] is a spherically symmetric exact solution of the Einstein equations.
It corresponds to an inhomogeneous dust with the stress–energy tensor

Tμν = ρuμuν, (20)

6
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where uμ is 4-velocity of a dust with a density ρ. For a recent review of LTB metric see e.g.
[23, 24]. The line element reads

ds2 = −dt2 + (R′)2

1 + 2E(r)
dr2 + R2(t, r)(dθ2 + sin2(θ ) dφ2), (21)

where E(r) is an arbitrary function and the prime denotes partial derivative with respect to r.
Function R(t, r) obeys the Einstein equations if

R2
,t = 2E + 2M

R
+ �

3
R2, (22)

where M = M(r) is another arbitrary function of integration. The energy density ρ is
determined by the equation

4πρ = M′

R′R2
. (23)

The function E(r) determines a curvature of the space t = const. (which is flat for E(r) = 0)
and the function M(r) is the gravitational mass contained within the comoving spherical shell
at any given r. Equation (22) can be integrated to give the result∫ R

0

dR̃√
2E + 2M

R̃
+ 1

3�R̃2
= t − tB(r), (24)

tB(r) is the third free function of r (called the bang-time function). In the LTB model, in
general, the big bang is not simultaneous as in the FRW case, but it depends on the radial
coordinate r. The given formulas are invariant under transformation r̃ = g(r). We can use this
freedom to choose one of the functions E(r), M(r) and tB(r). For � = 0 the above equation
can be solved explicitly—when E < 0 (elliptic evolution)

R(t, r) = M

(−2E )
(1 − cos η),

η − sin η = (−2E )3/2

M
(t − tB). (25)

If E = 0 (parabolic evolution)

R(t, r) = [
9
2 M(t − tB)2

]1/3
, (26)

when E > 0 (hyperbolic evolution)

R(t, r) = M

2E
(cosh η − 1),

sinh η − η = (2E )3/2

M
(t − tB(r)). (27)

6. Averaging LTB spacetime

For simplicity we will consider the situation when E = 0. Unfortunately Cartan scalars for the
exact solution listed above are too complicated. We will deal only with an areal function R(t, r).
The first guess would be to investigate the separated form R(t, r) = A(t)B(r). However, by
the simple radial transformation dr′ = B′(r) dr we obtain flat FRW spacetime (the result is
easily checked by computing the Cartan scalars, which depend only on the t coordinate).

Next, we will assume the ansatz

R(t, r) = A(t, r) exp ψ(t, r), (28)

7
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where ψ(t, r) is a quickly varying function, ψ � ψ,x ∼ ψ,xy ∼ ψ,xyz, where x, y and z denote
time or radial coordinate. ψ,x is also much bigger than A(t, r) and its derivatives. In order to
compute the Cartan scalars we will use the null tetrad

ω0 = 1√
2
(dt + R,r dr),

ω1 = 1√
2
(dt − R,r dr),

ω2 = 1√
2
(R dθ + iR sin θ dφ),

ω3 = 1√
2
(R dθ − iR sin θ dφ). (29)

Nontrivial zero-order Cartan scalars are

ψ2 = − 1
6 (R,r)

−1R,ttr + 1
6 R−1R,t (R,r)

−1R,tr + 1
6 R−1R,tt − 1

6 R−2(R,t )
2, (30)

φ00′ = φ22′ = 1
2 R−1R,t (R,r)

−1R,tr − 1
2 R−1R,tt, (31)

φ11′ = − 1
4 (R,r)

−1R,ttr + 1
4 R−2(R,t )

2, (32)

� = 1
12 (R,r)

−1R,ttr + 1
6 R−1R,t (R,r)

−1R,tr + 1
6 R−1R,tt + 1

12 R−2(R,t )
2. (33)

We plug the form (28) into the spinors. The most important terms are the ones with higher
powers of various derivatives of the function ψ . Function A(t, r) appears in the same power
in the numerator and in the denominator and is canceled. If we assume the condition
ψ � ψ,x ∼ ψ,xy ∼ ψ,xyz, in the leading order all quantities are equal to zero except

� = 1
2ψ2

,t . (34)

Averaging � over the domain D of the shape of the thick shell (times a certain time interval)
gives a nonzero contribution which can be constant by a suitable choice of ψ and D. The
first order Cartan scalars contain more terms (higher order Cartan scalars are equal to zero).
A lengthy but straightforward calculation shows, that in this approximation they are (in the
leading order) all equal to zero. For example the simplest one is

Dφ00′ = 1

2
√

2
R−1R,t (R,r)

−1R,ttr − 3

2
√

2
R−1R,t (R,r)

−2(R,tr)
2

+ 1

2
√

2
R−1R,t (R,r)

−2R,ttr − 1

2
√

2
R−1R,t (R,r)

−3R,trR,rr

− 1

2
√

2
R−1R,ttt + 3

2
√

2
R−1(R,r)

−1R,ttR,tr − 1

2
√

2
R−1(R,r)

−1R,ttr

+ 1

2
√

2
R−1(R,r)

−2(R,tr)
2 − 1

2
√

2
R−2(R,t )

2(R,r)
−1R,tr

+ 1

2
√

2
R−2R,tR,tt − 1

2
√

2
R−2R,t (R,r)

−1R,tr + 1

2
√

2
R−2R,tt . (35)

Now we suppose that the macroscopic metric is a flat FRW spacetime. To have a correct
averaging procedure we should have the spinors (16), (18) and (19) equal to zero. If we
also assume the class of LTB spacetimes (in our approximation given by ψ(t, r)) and the
domain D, where the average of � is constant, these conditions are fulfilled by (anti-)de Sitter
space. Correlation term is in the form of a positive cosmological constant, so the averaged

8
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LTB spacetime behaves (in the leading order) as an FRW model with a positive cosmological
constant—de Sitter spacetime.

In the flat solution without cosmological constant we know the explicit form of R(t, r)
(26). If we choose the coordinates where the mass function reads M(r) = 4

3πM4
0r3 we can

relate the bang-time function tB(r) to our ansatz

tb(r) = t − [A(t, r) exp ψ(t, r)]3/2

(9/2)3/2
√

4/3πM2
0r3/2

, (36)

that gives (together with our conditions) big restrictions on the form of A(t, r) and ψ(t, r). This
requirement could be relaxed if we allow LTB solution with cosmological constant, where the
solutions for R(t, r) involve elliptic functions. This does not give us a very strict formula for
areal function R(t, r) as in the flat LTB spacetime without cosmological constant. Regularity
conditions in the origin r = rc, where time derivatives of R(t, rc) have to be equal to zero, and
no shell crossing condition R′(t, r) �= 0 has to be also fulfilled. Other constraints which would
be difficult to satisfy are Bianchi identities.

We can compare our result with a different approach to averaging in LTB spacetime.
Paranjape and Singh [25] showed that in the Buchert equations the backreaction term is
equal to zero for a general flat LTB metric (which they call marginally bound LTB)—see
[3] for a generalization of this result. We obtained a different result. The first reason is that
they used only spatial averaging while we have used a spacetime one. But most importantly,
different objects were averaged. Paranjape and Singh [25] averaged a subset of Ricci rotation
coefficients for orthogonal frame, namely optical scalars. On the other hand, we average all
scalars made from the Riemann tensor and its covariant derivatives. As already mentioned
in [25] one can expect an additional influence coming from objects not considered in the
averaging procedure. Moreover, the problem of directly comparing these results is rather
difficult due to the nonlinear relation between curvature scalars and Ricci rotation coefficients
(as can be seen from Newmann–Penrose equations) which would again introduce correlation
terms during averaging. Both approaches have their value, the one used in [25] is better suited
for direct cosmological application, but the method presented here takes more effects into
account.

7. Onion LTB model

As the next example we investigate the onion model used in [11] by Biswas et al who
computed the corrections to luminosity distance–redshift relation. It represents spacetime
with radial shells of overdense and underdense regions. The curvature of three-dimensional
spaces is nonzero (E(r) > 0), so the evolution of LTB model is hyperbolic. For convenience
we will use the rescaled function a(t, r) := R(t,r)

r which is suitable for comparison with the
FRW model. It reads

a(t, r) :=
(

6

π

)1/3

t2/3(1 + Lt2/3 1

r
sin πr sin πr). (37)

If we take the trace of the Einstein equations we will find that Ricci scalar (which is proportional
to � term in the NP formalism) behaves in the same way as the matter density (assuming zero
cosmological constant and the equation of state p = (γ − 1)ρ). The metric function a(t, r)
looks like perturbation of the flat dust FRW spacetime, where density scales like ρ ∝ 1

a(t)3γ

and we assume that L is a small parameter. From the form of the metric we demand that the
averaged spacetime is Einstein-de Sitter (EdS). The Ricci spinor of LTB spacetime is in the
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form of the perfect fluid. If we perform averaging, the condition for the Ricci spinor to describe
perfect fluid does not change. Weyl spinor and higher order Cartan scalars will be discussed
later. The most important Cartan scalar is � term which reads

�(r, t, L) = 1

12

1

a2(a + a,r)r
[3a2a,tt + a2ra,ttr + 3a(a,t )

2

+2a,ttaa,rr + 2a,t raa,tr + (a,t )
2ra,r + a,rrK + 3Ka + aK,r]. (38)

Function K(r, L) is related to curvature function E(r) by

K(r, L) = −2E(r)

r2
= −L

πr
sin πr sin πr. (39)

Here we perform averaging on the constant time surface. We choose one point and the
domain � and denote a new averaged function 〈�〉 which is only time dependent. Next, we
expand an averaged � term in powers of L and we obtain a series that looks like

〈�〉 ≈ A

t2
+ B

t4/3
L + C

t2/3
L2 + D

t0
L3. (40)

The coefficients in front of different powers of L depend on the chosen point and the domain
� and can be calculated as follows. In the definition of the average value of � (11) (but here
D denotes three-dimensional surface), we expand in powers of L the integrated expressions
in the numerator and the denominator separately and compute coefficients in front of the
time-dependent terms. Then we expand the whole expression and obtain equation (40). Now,
we have an averaged EdS background, so the scale factor a(t) is proportional to t2/3 and the
density scales like ρ ∝ 1

t2γ . Now let us assume that we can use this expression for the additional
terms in 〈�〉 that deviate from EdS. The dominant term describes the dust as expected. The
expression proportional to L has an equation of state p = − 1

3ρ and behaves like curvature (as
interpreted in [26]). Next term can already cause acceleration with the dependence of density
on pressure p = − 2

3ρ and the term proportional to L3 behaves like cosmological constant.
We can play the same game with nonzero Weyl scalar ψ2 and we can see that the first

nonzero contribution to 〈ψ2〉 is proportional to L. In order to obtain an EdS background, we
need to have 〈ψ2〉 = 0. Also, all higher order Cartan scalars should be comparable with the
averaged spacetime up to the corrections in powers of L.

8. Linearized gravitational wave

In the last simple example, we will show the non-triviality of averaging. We assume
monochromatic linearized gravitational wave with selected polarization propagating in the
direction z on the Minkowski background

ds2 = −dt2 + (1 + A sin(t − z)) dx2 + (1 − A sin(t − z)) dy2 + dz2. (41)

A is a small parameter describing the amplitude of the gravitational wave. Non-zero lowest-
order Cartan scalars read

�4 = (
1
2 sin(t) cos(z) − 1

2 sin(z) cos(t)
)

A + O(A3),

�22 = (
1
4 − 3

4 cos(z)2 − 3
4 cos(t)2 + 3

2 cos(t)2 cos(z)2
)

A2

+ (
3
2 sin(t) cos(z) sin(z) cos(t)

)
A2 + O(A4). (42)

If we integrate over several wave lengths, the Weyl scalar vanishes and nonzero Ricci scalar
�22 is constant. Now we assume that averaged spacetime is Minkowski background. �22

can be put into the right-hand side of the Einstein equation and interpreted as the correlation
term which behaves like a null fluid and serves as an effective stress–energy tensor of the
gravitational wave. If we would like to determine its influence on the background we would
need to consider the next-order Cartan scalars.
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9. Conclusion

Theory of Cartan scalars is commonly used for equivalence problem. We have applied this
theory in the context of averaging in GR and cosmology. There are two different ways to
perform averaging. In the first one, the correlation term is equal to zero, but the averaged
geometry is explicitly constructed. In the second approach we assume the form of the smooth
metric tensor and compute the correlation term. We used the second approach for computation
of backreaction in two different LTB models. Correlation term behaves as a cosmological
constant in the first example and the curvature term plus small terms causing acceleration
in the second example. Thus the inhomogeneity of spacetime may serve as a reason for
accelerated expansion when viewed in averaged picture of standard cosmological models.
This is in contrast with the solutions of [26] and [10] where correlation term behaves as a
curvature term and does not lead to acceleration. We have also shown the non-triviality of
averaging in the case of monochromatic linearized gravitational wave.
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