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We investigate a class of gravitational pp waves which represent the exterior vacuum field of spinning
particles moving with the speed of light. Such exact spacetimes are described by the original Brinkmann
form of the pp-wave metric including the often-neglected off-diagonal terms. We put emphasis on a clear
physical and geometrical interpretation of these off-diagonal metric components. We explicitly analyze
several new properties of these spacetimes associated with the spinning character of the source, such as
rotational dragging of frames, geodesic deviation, impulsive limits and the corresponding behavior of
geodesics.
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I. INTRODUCTION

In the present work we will study mathematical and
physical properties of the family of spacetimes described
by the (so-called) pp-wave metric

ds2 ¼ δijdxidxj − 2dudrþ 2aiðu; xjÞdudxi
þHðu; xjÞdu2; ð1Þ

which was introduced by Brinkmann in 1925 [1]. It is now
a well-known fact that these pp waves belong to the larger
Kundt family of spacetimes [2,3] which admit a non-
twisting, nonshearing and nonexpanding geodesic null
congruence generated by the vector field ∂r, the coordinate
r ∈ ð−∞;∞Þ being the corresponding affine parameter.
For pp waves such a vector field (representing a repeated
principal null direction of the Weyl tensor) is covariantly
constant, and all the metric functions are independent of r.
Moreover, since for the metric (1) the transverse
Riemannian space spanned by the spatial coordinates xi

on each wave surface u ¼ const is flat, these ppwaves also
belong to the important class of VSI spacetimes for which
all (polynomial) curvature scalar invariants vanish [4]. In
fact, those metrics (1) that are Ricci-flat are “universal
spacetimes” in the sense that they solve the vacuum field
equations of all gravitational theories with Lagrangians
constructed from the metric, the Riemann tensor and its
derivatives of arbitrary order [5,6], for example of quadratic
gravity.
Although the family of pp-wave spacetimes has been

thoroughly studied for many decades and became a
“textbook” prototype of exact gravitational waves in
Einstein’s general relativity (and its various extensions),

there still remain some interesting aspects of the metric (1)
which deserve attention. In particular, here we concentrate
on the physical interpretation and consequences of the off-
diagonal metric functions aiðu; xjÞ, where i; j ¼ 2; 3 in
four-dimensional spacetimes.1 In vacuum regions it is a
standard and common procedure to completely remove
these functions by a gauge (coordinate) transformation.
However, such a freedom is generally only local and
completely ignores the global (topological) properties of
the spacetimes. By neglecting the metric functions aiðu; xjÞ
in (1), an important physical attribute of the spacetime
is eliminated, namely the possible rotational character of
the source of the gravitational waves—its internal spin/
helicity.
This interesting fact was first noticed in 1970 by Bonnor

[7,8] who studied both the interior and the exterior field of a
“spinning null fluid” in the class of axially symmetric
pp-wave spacetimes (see Sec. 18.5 of [3] for a review). In
the interior region the energy-momentum tensor was
phenomenologically described by the radiation density
Tuu ¼ ϱ and by the components Tui ¼ ji representing
the spinning character of the source, encoded in the
corresponding angular momentum. Spacetimes with such
localized spinning sources, which are moving at the speed
of light, were independently rediscovered in 2005 by
Frolov and his collaborators who emphasized their possible
physical application as a model of a particle and thus called
them “gyratons.” These pp-wave-type gyratons were
subsequently investigated in greater detail and also gener-
alized to higher dimensions, supergravity, and various
nonflat backgrounds in a wider Kundt class which may
also include a cosmological constant or an additional
electromagnetic field [9–18].
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1The pp-wave metric (1) has a natural extension to any higher
number of spacetime dimensions D by taking i;j¼2;3;…;D−1,
in which case the transverse flat space is ðD − 2Þ-dimensional.
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In this contribution we complement and extend the
previous studies by explicitly investigating various physical
and mathematical properties of these spacetimes which
have not been looked at before. Thereby we put our
emphasis on a clear geometrical and physical interpretation
of the off-diagonal metric functions and various specific
effects associated with the gyrating nature of the source.
However, our first aim is to give a compact review of the

topic using a unified formalism. In particular, after pre-
senting the metric and the curvature quantities in Sec. II, we
completely integrate the field equations in the vacuum
region in Sec. III, before turning to the delicate point of
gauge issues in subsection IVA. To approach the topic in
this order allows us to uncover the physical and geometrical
meaning of all the integration functions introduced in
Sec. III. Indeed, the whole Sec. IV is devoted to an in-
depth analysis and interpretation of the properties of the
spacetimes (1). After securing the fact that in general it is
necessary to keep the off-diagonal terms in the metric
(subsection IVA) we use these metric functions in
subsection IV B to express the relevant physical parameters
of the spacetimes—energy and angular momentum—in a
transparent way. In subsection IV C we introduce a natural
orthonormal interpretation frame for any geodesic observer
and its associated null frame. After studying their behavior
under gauge transformations we employ these frames in
subsection IV D to analyze the dragging effect exerted on
the spacetime by the gyratonic source. We derive the
Newman-Penrose field scalars in subsection IV E and
determine the Petrov type of the spacetimes. In Sec. V
we further employ the interpretation frame to analyze the
geodesic deviation in an invariant manner. We explicitly
derive the two polarization wave amplitudes describing the
relative motion of test particles, and in subsection VA we
specialize to the case of the simplest gyraton, which is the
axially symmetric one constructed from the Aichelburg-
Sexl solution in [9]. In Sec. VI we briefly analyze geodesic
motion in general gyratonic pp waves before turning to a
deeper discussion of impulsive limits in this class of
spacetimes (Sec. VII). Here we resolve the delicate matter
of the possible coupling of the energy and the angular
momentum density profiles. Finally, in Sec. VIII we
discuss the geodesic equation in impulsive gyratonic pp
waves, deriving a completeness result for these spacetimes.

II. THE METRIC

In our analysis we will concentrate on four-dimensional
pp-wave spacetimes (1), assuming that the flat transverse
two-space spanned by the spatial coordinates x2; x3 is
topologically a plane. The gyratonic sources are considered
to be localized along (a part of) the axis x2 ¼ 0 ¼ x3, or
in a small cylindrical region around this axis. It is thus
convenient to introduce polar coordinates by the usual
transformation

x2 ¼ ρ cosφ; x3 ¼ ρ sinφ; ð2Þ

where ρ ∈ ½0;∞Þ and the angular coordinate φ takes
the full range φ ∈ ½0; 2πÞ eliminating “cosmic strings”
and similar defects along the axis ρ ¼ 0. With the
identification2

a2 ¼ −
J
ρ
sinφ; a3 ¼

J
ρ
cosφ; ð3Þ

implying guρ ¼ 0 and guφ ¼ J, the metric (1) takes the form

ds2 ¼ dρ2 þ ρ2dφ2 − 2dudrþ 2Jðu; ρ;φÞdudφ
þHðu; ρ;φÞdu2: ð4Þ

Of course, for consistency, both the metric functions J and
H must be 2π periodic in φ. In particular, if the functions J
and H only depend on the transverse radial coordinate ρ
and the retarded time u ∈ ð−∞;∞Þ, the spacetimes are
axially symmetric.
The nonzero Christoffel symbols for the metric (4) are

Γr
uu ¼ −

1

2
H;u þ

1

2ρ2
Jð2J;u −H;φÞ;

Γr
uρ ¼ −

1

2
H;ρ þ

1

2ρ2
JJ;ρ; Γr

uφ ¼ −
1

2
H;φ;

Γr
ρφ ¼ 1

2ρ
ð2J − ρJ;ρÞ; Γr

φφ ¼ −J;φ;

Γρ
uu ¼ −

1

2
H;ρ; Γρ

uφ ¼ −
1

2
J;ρ; Γρ

φφ ¼ −ρ;

Γφ
uu ¼ 1

2ρ2
ð2J;u −H;φÞ; Γφ

uρ ¼ 1

2ρ2
J;ρ; Γφ

ρφ ¼ 1

ρ
;

ð5Þ

the nontrivial Riemann curvature components are

Ruρρφ ¼ 1

2ρ
ðρJ;ρρ − J;ρÞ; Ruφρφ ¼ 1

2
J;ρφ;

Ruρuρ ¼ −
1

2
H;ρρ þ

1

4ρ2
ðJ;ρÞ2;

Ruρuφ ¼ −
1

2ρ
ðρH;ρφ −H;φ − ρJ;uρ þ 2J;uÞ;

Ruφuφ ¼ −
1

2
ðH;φφ þ ρH;ρÞ þ J;uφ þ

1

4
ðJ;ρÞ2; ð6Þ

and the Ricci tensor components read

2It eliminates the component dudρ. In fact, this is the most
reasonable choice to represent the physically relevant quantities
in the metric functions, cf. Sec. IV.
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Ruu ¼ −
1

2
▵H þ 2ω2 þ 1

ρ2
J;uφ;

Ruρ ¼
1

ρ
ω;φ; Ruφ ¼ −ρω;ρ; ð7Þ

where

▵H ≡H;ρρ þ
1

ρ
H;ρ þ

1

ρ2
H;φφ ð8Þ

is the 2D flat Laplace operator and, for convenience, the
function ω was defined as

ωðu; ρ;φÞ≡ J;ρ
2ρ

: ð9Þ

In Cartesian coordinates, i.e., for the metric form (1),
these quantities are given by

Γr
uu ¼ −

1

2
H;u þ δij

�
ai;u −

1

2
H;i

�
aj;

Γr
ui ¼ −

1

2
H;i þ

1

2
δjkðaj;i − ai;jÞak;

Γr
ij ¼ −

1

2
ðai;j þ aj;iÞ; Γi

uu ¼ δij
�
aj;u −

1

2
H;j

�
;

Γi
uj ¼

1

2
δikðak;j − aj;kÞ; ð10Þ

Ruiuj ¼ −
1

2
H;ij þ

1

2
ðai;uj þ aj;uiÞ þ δkla½i;k�a½j;l�;

Rukij ¼
1

2
ðaj;i − ai;jÞ;k; ð11Þ

Ruu ¼ −
1

2
δijH;ij þ δijaj;ui þ

1

2
δijδklðai;k − ak;iÞaj;l;

Rui ¼
1

2
δjkðaj;i − ai;jÞ;k; ð12Þ

respectively.

III. INTEGRATING THE FIELD EQUATIONS

In this section we integrate Einstein’s equations in the
vacuum region outside the gyratonic matter source, whose
energy-momentum tensor we phenomenologically pre-
scribe to be given by the radiation density Tuu ¼ ϱ and
by the terms Tui ¼ ji representing the spinning character of
the gyraton (the remaining components of Tαβ are zero)
[7–18]. When ji ¼ 0, Tαβ reduces to the standard energy-
momentum tensor Tαβ ¼ ϱkαkβ of pure radiation propa-
gating with the speed of light along the principal null
direction k ¼ ∂r.
First, it follows from (7) that the Ricci scalar R vanishes.

The Einstein field equations Rαβ − 1
2
Rgαβ ¼ 8πTαβ (with

vanishing cosmological constant) can thus be written as

ω;φ ¼ 8πρjρ; ω;ρ ¼ −
8π

ρ
jφ; ð13Þ

▵H ¼ 4ω2 þ 2

ρ2
J;uφ − 16πϱ: ð14Þ

In general, by specifying the gyratonic matter source ji one
can first integrate equations (13) to obtain ω, and hence J
using (9). Subsequently, prescribing also the radiation
density ϱ the metric functionH is obtained by solving (14).
In the vacuum region outside the source, i.e., assuming

ji ¼ 0 ¼ ϱ, we employ the following procedure to obtain a
large class of physically interesting explicit solutions. First,
from (13) we immediately conclude that ω must be a
function of u only, and using (9) we thus obtain the general
solution for J in the form

J ¼ ωðuÞρ2 þ χðu;φÞ; ð15Þ

where χðu;φÞ is any function that is 2π periodic in φ. It is
convenient to write

H ¼ ω2ðuÞρ2 þ 2ωðuÞχðu;φÞ þH0ðu; ρ;φÞ; ð16Þ

since the terms involving ωðuÞ in J and H correspond to
rigid rotation (they can be generated by the gauge (22), (23)
for f;u ¼ ω, see below). Substituting (15), (16) into the
remaining field equation (14) we obtain

▵H0 ¼ ρ−2Σ; where Σðu;φÞ≡ 2ðχ;uφ − ωχ;φφÞ: ð17Þ

A general solution of this Poisson equation can be obtained
by Green’s function method.
The simplest class of solutions occurs when the function χ

is independent of the angular coordinate φ, i.e., χ ¼ χðuÞ. In
such a case Σ ¼ 0 and the problem is reduced to obtain a
general homogeneous solution H0,

▵H0 ¼ 0: ð18Þ

In this way, any solution H0 of the Laplace equation (18) in
the flat two-space (and, of course, their superpositions)
generates via (16) a particular metric functionH representing
a possible gyratonic source in the family of pp-wave
spacetimes. A general solution to the Laplace equation (18)
can conveniently be written by introducing an auxiliary
complex variable ζ≡ρeiφ¼x2þix3 in the complete trans-
verse plane, so that the equation becomes ðH0Þ;ζζ̄ ¼ 0. Its
solution can be expressed in the form H0 ¼ Fðu; ζÞ þ
F̄ðu; ζ̄Þ where F is an arbitrary function of u and ζ,
holomorphic in ζ. The physically most interesting case is
given by a combination3

3Terms which are constant and linear in ζ are omitted since
these can be removed by a coordinate transformation.
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Fðu; ζÞ ¼
X∞
m¼2

αmðuÞζm − μðuÞ log ζ þ
X∞
m¼1

βmðuÞζ−m;

ð19Þ

which involves many previously studied nongyratonic
pp-wave solutions. Namely, the term α2 represents well-
known plane gravitational waves [2,3,19], the higher-order
polynomial terms α3; α4;… correspond to nonhomogenous
pp waves which exhibit chaotic behavior of geodesics
[20–23], the exceptional logarithmic term is the
Aichelburg-Sexl-type solution [24] (possibly extended
[25]), while the inverse-power terms β1; β2;… stand for
pp waves generated by sources with multipole structure
moving along the axis [10,26–29].
By putting αmðuÞ ¼ 1

2
AmðuÞe−imφ0

mðuÞ and βmðuÞ ¼
1
2
BmðuÞeimφmðuÞ, where Am, Bm, φ0

m, φm are real
functions of u, the solution of (18) corresponding to
(19) reads

H0ðu;ρ;φÞ¼
X∞
m¼2

AmðuÞρm cos½mðφ−φ0
mðuÞÞ�−2μðuÞ logρ

þ
X∞
m¼1

BmðuÞρ−m cos½mðφ−φmðuÞÞ�: ð20Þ

The functions AmðuÞ; BmðuÞ give the amplitudes of the m
components, while φ0

mðuÞ;φmðuÞ determine their phases.
Observe that the u dependence of φ0

mðuÞ;φmðuÞ enables
one to prescribe an arbitrary polarization to any component
of the field. The component AmðuÞ represents a solution
growing as ρm, while the component BmðuÞ describes a
multipole solution of order m, with the monopole solution
represented by μðuÞ in (20), see also [10]. Indeed, it can be
shown that the source of themth mode is proportional to the
mth derivative of the Dirac delta function δðρÞ with respect
to ρ [26,27].

IV. PHYSICAL INTERPRETATION

As a next step we will analyze the geometrical and
physical meaning of the functions ωðuÞ and χðu;φÞ in
expressions (15), (16) for the vacuum metric coefficients J
and H of (4).
We start by evaluating the components of the Riemann

tensor (6) for the explicit solutions (15) and (16). The only
nonvanishing ones are

Ruρuρ ¼ −
1

2
ðH0Þ;ρρ;

Ruρuφ ¼ −
1

2ρ

�
ρðH0Þ;ρφ − ðH0Þ;φ þ 2ðχ;u − ωχ;φÞ

�
;

Ruφuφ ¼ −
1

2

�
ðH0Þ;φφ þ ρðH0Þ;ρ − Σ

�
: ð21Þ

The spacetimes are thus regular everywhere, except
possibly at ρ ¼ 0 and the singularities of the specific
solution H0.
When χ ¼ χðuÞ implying Σ ¼ 0, H0 is given by (18), in

particular (20). In the case of spinning multipole particles
represented by the terms μ or Bm, a curvature singularity
occurs at ρ ¼ 0 where the sources of the field are located.
For the components Am the curvature singularities occur at
infinity (ρ ¼ ∞) which means that these pp-wave space-
times are not asymptotically flat. It is also interesting to
observe that the function χ;uðuÞ explicitly occurs in (21),
causing a curvature singularity on the axis ρ ¼ 0. On
the other hand, the function ωðuÞ does not occur in the
spacetime curvature, since χ;φ ¼ 0. Moreover, in this
vacuum case, ωðuÞ can always be removed by a suitable
gauge, as we shall see in the next subsection.

A. Gauge freedom

We now concentrate on the central issue of the possible
removing of the off-diagonal term Jðu;φ; ρÞ in the metric
(4), or equivalently of the terms aiðu; xjÞ in (1), see
relation (3).
First, we consider the gauge freedom

φ ¼ ~φþ fðuÞ; ð22Þ

resulting in

~J ¼ J þ f;uρ2; ~H ¼ H þ 2Jf;u þ ðf;uÞ2ρ2: ð23Þ

Using definition (9) we immediately conclude that the
function ωðuÞ is gauged as ~ω ¼ ωþ f;u. With an appro-
priate choice of fðuÞ we can thus generate any function
ωðuÞ in J, or remove it by choosing f;u ¼ −ω.
Geometrically, these terms represent the rigid rotation of
the spacetime, where ωðuÞ is the corresponding angular
velocity at different values of u. Without loss of generality,
by a suitable gauge we may thus set ω ¼ 0 in J and H to
simplify the metric functions (15), (16) in the vacuum
region to

J ¼ χðu;φÞ; ð24Þ

H ¼ H0ðu; ρ;φÞ: ð25Þ

In such a most natural “corotating” choice of the gauge, J
becomes manifestly independent of the radial coordinate ρ,
corresponding to ω ¼ 0, see (9).
As the second step, we employ another gauge freedom of

the metric (1), namely

r ¼ ~rþ gðu; xiÞ; ð26Þ

which implies
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~ai ¼ ai − g;i; ~H ¼ H − 2g;u: ð27Þ

To achieve ~ai ¼ 0 for i; j ¼ 2; 3, the function g must be a
potential of ai, i.e., ai ¼ g;i. A necessary condition for this
is that the integrability conditions

2Ωij ≡ aj;i − ai;j ¼ g;ji − g;ij ¼ 0 ð28Þ

are satisfied. It is very convenient to express these quan-
tities and relations using differential forms defined on the
transverse two-space (spanned by x2; x3), namely the one-
form a, and the two-form Ω as

a≡ aidxi; Ω≡ 1

2
da ¼ 1

2
Ωijdxi ∧ dxj: ð29Þ

The integrability conditions (28) then translate to

2Ω ¼ da ¼ 0: ð30Þ

It is useful to express the one-form a in polar coordinates
using (2) and (3) where Jðu; ρ;φÞ is the metric function in
(4). This leads to the simple expression

a ¼ Jdφ; which implies

Ω ¼ 1

2
J;ρdρ ∧ dφ ¼ ωρdρ ∧ dφ; ð31Þ

see (9), so that the integrability conditions (28) turn into the
simple single equation

J;ρ ¼ 0: ð32Þ

Moreover, as we have seen above in (24) this condition
can be assumed to hold without loss of generality in the
entire vacuum region. So by the Poincaré lemma, the closed
form a is locally exact, i.e., locally in the vacuum region
there exists a suitable function g such that a ¼ dg. In view
of (27), the corresponding gauge transformation (26) then
explicitly removes all the components ~ai from the metric of
the form (1), that is a ¼ 0.
However, since we have assumed the source to be

located along (a part of) the axis the vacuum region is
not contractible and hence the closed form a is not globally
exact, which means that even in the vacuum region we
cannot globally remove the off-diagonal terms in the
metric. Clearly, the properties of possible gyratons are
related to the cohomology of the vacuum region.
Summing up, when considering pp-wave spacetimes

with gyratonic sources located along ρ ¼ 0 it is not only
preferable, but in fact necessary, to keep the off-diagonal
terms in the metric and employ them to express the relevant
physical parameter (namely the angular momentum of the
source) in the most efficient way, which we will do next. To
this end we consider the contour integral

I
C
a ¼

I
C
aidxi ¼

I
C
Jdφ; ð33Þ

where C is an arbitrary contour in the transverse two-space
running around the axis ρ ¼ 0 (once and counterclock-
wise). In fact, by (30) it is independent of the choice of the
contour C in the vacuum region, and it is also gauge
independent with respect to (27).

B. Energy and angular momentum of the source

Now, following previous works of Bonnor and Frolov
with collaborators [7,9], we will relate the metric functions
H and J to the principal physical properties of the source,
namely its total energy and angular momentum. In par-
ticular, we will prove that the integral (33) directly
determines the angular momentum density of the gyratonic
source.
In the linearized theory when the gravitational field is

weak the total mass-energyM and total angular momentum
Jμν (relative to the origin of coordinates) on the spacelike
hypersurface of constant time t are given by [30]

M ≡
ZZZ

Tttdxdydz;

Jμν ≡
ZZZ

ðxμTνt − xνTμtÞdxdydz; ð34Þ

respectively, where xμ ¼ ðt; x; y; zÞ are Minkowski back-
ground coordinates. In this section it is assumed that the
energy-momentum tensor Tμν of the source is localized in a
cylindrical region of radius R around the axis ρ ¼ 0, with a
finite length L in the z direction, as shown in Fig. 1. As is
standard, we assume that the cylindrical source region is
matched to the external vacuum region in a C1 way.
For negligible metric functions H and ai the metric (1)

approaches flat Minkowski space with the coordinates
u ¼ 1ffiffi

2
p ðt − zÞ, r ¼ 1ffiffi

2
p ðtþ zÞ, x2 ¼ x, x3 ¼ y. The non-

trivial gyratonic components are Tuu ¼ ϱ and Tui ¼ ji,
yielding Ttt ¼ 1

2
ϱ, Txt ¼ − 1ffiffi

2
p jx and Tyt ¼ − 1ffiffi

2
p jy. Since t

is fixed we can substitute dz by −
ffiffiffi
2

p
du in which, however,

the negative sign is effectively compensated by the fact that
the boundary value z ¼ 0 corresponds to u ¼ 1ffiffi

2
p t while

z ¼ L corresponds to u ¼ 1ffiffi
2

p ðt − LÞ < 1ffiffi
2

p t. Therefore,

M ¼ 1ffiffiffi
2

p
ZZZ

ϱdxdydu;

Jxy ¼
ZZZ

ðyjx − xjyÞdxdydu: ð35Þ

The function

MðuÞ ¼ 1ffiffiffi
2

p
Z Z

S
ϱdxdy; ð36Þ
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where the surface integral is taken over the disc S of radius
R in the transverse space, thus represents the mass-energy
density of the source as a function of the retarded time u
such that M ¼ R

MðuÞdu, while the angular momentum
density of the gyratonic source is given by

J ðuÞ ¼
Z Z

S
ðyjx − xjyÞdxdy; ð37Þ

so that Jxy ¼ R
J ðuÞdu.

It is now seen from the field equation (14) that the mass-
energy density MðuÞ of the source is determined by the
metric function H, namely by the surface integral of ▵H in
the transverse space (in the gauge ω ¼ 0 and for J;φ ¼ 0).
Interestingly, the angular momentum density J ðuÞ is

directly determined by the contour integral of the metric
function J or, equivalently, ai. Indeed, expressing (37) in
polar coordinates and employing the second field equa-
tion (13) it becomes

J ðuÞ ¼ −
Z Z

S
jφρ dρdφ ¼ 1

8π

Z
2π

0

�Z
R

0

ω;ρρ
2dρ

�
dφ:

ð38Þ

Using integration by parts and assuming that ωρ2 vanishes
at ρ ¼ 0, the inner integral can be rewritten as

ωðRÞR2 − 2

Z
R

0

ωρ dρ: ð39Þ

However, ωðRÞ ¼ 0 because on the cylindrical boundary
ρ ¼ R of the gyratonic source the metric function J and its

derivative J;ρ ¼ 2ωρ, cf. (9), are continuously joined to the
external vacuum region in which ω ¼ 0 everywhere (using
the gauge freedom to remove the rigid rotation). We thus
obtain

J ðuÞ ¼ −
1

4π

Z Z
S
ωρ dρdφ; ð40Þ

which can be reexpressed in a geometric way using
expression (31) for the two-form Ω as

J ðuÞ ¼ −
1

4π

Z Z
S
ωρdρ ∧ dφ ¼ −

1

4π

Z Z
S
Ω: ð41Þ

Now, employing (29) and the Stokes theorem we obtain

J ðuÞ ¼ −
1

8π

Z Z
S
da ¼ −

1

8π

I
C
a; ð42Þ

where C ¼ ∂S is the outer contour. Therefore, the gauge-
independent contour integral (33) directly determines the
angular momentum density of the gyratonic source.
Moreover, from (41) we conclude that if Ω ¼ 0 every-

where in the whole spacetime, the integrals (33) vanish for
any closed contour C and there is no gyraton. The presence
of the gyraton is identified by Ω ≠ 0 in some region, for
example along (a part of) the axis. This necessarily implies
J ðuÞ ≠ 0, so that the angular momentum is nonvanishing.
In particular, for the simplest gyraton [7–10,15] located

at ρ ¼ 0 given by J ¼ JðuÞ only, we have a ¼ JðuÞdφ in
the external vacuum region. This closed form a is not
globally exact, hence it can not be globally removed and
J ðuÞ ¼ − 1

4
JðuÞ ≠ 0 for any loop C around ρ ¼ 0 as in

(33). Hence, the source is gyrating.

C. Interpretation frame

To support this conclusion—and to enable a further
analysis—it is convenient to introduce a suitable interpre-
tation orthonormal frame feaðτÞg. At any point along an
arbitrary (future-oriented) timelike geodesic γðτÞ, where τ
is the proper time, this defines an observer’s framework in
which physical measurements are made and interpreted.
The timelike vector is identified with the velocity vector of
the observer, eð0Þ ¼ u, while eð1Þ; eð2Þ; eð3Þ are perpendi-
cular spacelike unit vectors which form its local Cartesian
basis in the hypersurface orthogonal to u, ea · eb≡
gαβeαae

β
b ¼ diagð−1; 1; 1; 1Þ. It is also convenient to intro-

duce an associated null frame fk; l; eð2Þ; eð3Þg by the
relations

k ¼ 1ffiffiffi
2

p ðuþ eð1ÞÞ; l ¼ 1ffiffiffi
2

p ðu − eð1ÞÞ: ð43Þ

Thus k and l are future-oriented null vectors, while eðiÞ for
i ¼ 2; 3 are spatial unit vectors orthogonal to them:

FIG. 1. Schematic picture of the localized gyratonic source
generating a vacuum sandwich gravitational wave. It also
indicates the dragging effect which causes the parallelly propa-
gated interpretation Cartesian frames feð1Þ; eð2Þ; eð3Þg to rotate
inside the gyraton with the angular velocity _uωðu; ρ;φÞ with
respect to the background frames fēð1Þ; ēð2Þ; ēð3Þg. In the region
outside the source it is always possible to set ω ¼ 0.
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k · l ¼ −1, eðiÞ · eðjÞ ¼ δij, k · k ¼ 0 ¼ l · l, k · eðiÞ ¼
0 ¼ l · eðiÞ. In view of definition (43), the spatial vector
eð1Þ ¼

ffiffiffi
2

p
k − u is privileged, and we will refer to it as the

longitudinal vector. The vectors eð2Þ; eð3Þ will be called the
transverse vectors.
For the pp-wave metric (1) such an interpretation null

frame, adapted to any geodesic observer with the four-
velocity u ¼ _r∂r þ _u∂u þ _x2∂x2 þ _x3∂x3, reads

k ¼ 1ffiffiffi
2

p
_u
∂r;

l ¼
� ffiffiffi

2
p

_r −
1ffiffiffi
2

p
_u

�
∂r þ

ffiffiffi
2

p
_u∂u þ

ffiffiffi
2

p
_x2∂x2 þ

ffiffiffi
2

p
_x3∂x3 ;

eðiÞ ¼
�
ak þ

_xj

_u
δjk

�
ekðiÞ∂r þ e2ðiÞ∂x2 þ e3ðiÞ∂x3 ; ð44Þ

where δklekðiÞe
l
ðjÞ ¼ δij, and the dot denotes differentiation

with respect to τ. In view of (5) or (10) it immediately
follows that _u ¼const along any geodesic. Notice that k is
proportional to the privileged null vector field ∂r which is
covariantly constant. Its spatial projection is oriented along
the longitudinal vector eð1Þ, which thus represents the
propagation direction of gravitational waves and the
gyratonic source, whereas eð2Þ, eð3Þ span the transverse
two-space at any τ.
Let us investigate the behavior of the interpretation frame

under the gauge (22), φ ¼ ~φþ fðuÞ with f;u ¼ −ω,
followed by the gauge (26). The latter, expressed in polar
coordinates with ρ ¼ ~ρ, takes the form r ¼ ~rþ gðu; ~φÞ,
implying ~J ¼ J − g; ~φ and ~H ¼ H − 2g;u. Using the rela-
tions (2), (3), and taking the most convenient choice

e2ð2Þ ¼ cosφ; e3ð2Þ ¼ sinφ;

e2ð3Þ ¼ − sinφ; e3ð3Þ ¼ cosφ ð45Þ

in (44), we obtain

k ¼ 1ffiffiffi
2

p
_u
∂~r; ð46Þ

l ¼
� ffiffiffi

2
p

_~r −
1ffiffiffi
2

p
_u

�
∂~r þ

ffiffiffi
2

p
_u∂u þ

ffiffiffi
2

p
_ρ∂ρ þ

ffiffiffi
2

p
_~φ∂ ~φ;

ð47Þ

eð2Þ ¼
_ρ

_u
∂~r þ ∂ρ; ð48Þ

eð3Þ ¼
�
~J
ρ
þ ρ

_~φ

_u

�
∂~r þ

1

ρ
∂ ~φ; ð49Þ

where

~J ¼ J − ωρ2 − g; ~φ: ð50Þ

This gives the interpretation frame adapted to the polar
coordinates of the metric (4), for which ∂ρ and 1

ρ ∂ ~φ are the
natural radial and axial unit vectors in the transverse space.
The form of the interpretation frame is clearly gauge
invariant, with the physical part of the off-diagonal metric
function determined by (50). In fact, we can always fix
the most suitable gauge of coordinates (and thus the
“canonical” frame) in such a way that ~J does not contain
the rigid rotation and the trivial part generated by the
potential g.
For static geodesic observers with _ρ ¼ 0 ¼ _~φ, the

expressions (48), (49) simplify to

eð2Þ ¼ ∂ρ; eð3Þ ¼
1

ρ
ð ~J∂~r þ ∂ ~φÞ: ð51Þ

Interestingly, the single function ~J directly enters (only) the
expressions (49) or (51) for the axial vector eð3Þ, distin-
guishing thus the usual pp-wave case ~J ¼ 0 from the case
~J ≠ 0 that involves the spinning gyraton source. Indeed, for
the simplest gyraton [7,9,10] given by ~J ¼ χðuÞ ≠ 0, the
invariant contour integral (33) around ρ ¼ 0 gives the
angular momentum density J ðuÞ ¼ − 1

4
χðuÞ, see the end

of subsection IV B.

D. Analysis of the dragging effect

Now we will demonstrate that the off-diagonal metric
functions ai in (1), or equivalently the function J in (4),
directly encode the rotational “dragging” effect of the
spinning source on the spacetime. To this end we employ
the canonical orthonormal frame feag adapted to a (time-
like) geodesic observer and the associated null frame
fk; l; eð2Þ; eð3Þg. Using their mutual relation (43), we can
prove that the interpretation null frame (44) is parallelly
transported along a timelike geodesic γðτÞ in the spacetime
(1) if, and only if,

dekðiÞ
dτ

¼ Ωk
lelðiÞ; ð52Þ

i; k; l ¼ 2; 3, in which Ωk
l are elements of the antisym-

metric 2 × 2 matrix

Ωk
lðτÞ≡ _uδkjΩjl; ð53Þ

where Ωjl ¼ 1
2
ðal;j − aj;lÞ are the components of the

two-form Ω ¼ 1
2
da, see (28), (29). The only nontrivial

matrix element is Ω2
3 ¼ −Ω3

2, so that Ω2
3ðτÞ ¼ _uΩ23 ¼

1
2
_uða3;2 − a2;3Þ, evaluated along γðτÞ, where _u ¼ const.

Moreover, using (2), (3), (9) we see that

Ω23 ¼
J;ρ
2ρ

¼ ωðu; ρ;φÞ: ð54Þ

To prove (52), we use the fact that the vector k is
covariantly constant and thus parallelly transported, and
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therefore l ¼ ffiffiffi
2

p
u − k is also parallelly transported. It only

remains to ensure that
DeμðiÞ
dτ ¼ 0 for i ¼ 2; 3. By using (44),

(10) we obtain
DeuðiÞ
dτ ¼ 0. The spatial components yield the

condition (52), (53). Finally, from the derivative of the

condition u · eðiÞ ¼ 0 it follows that gαβuα
DeβðiÞ
dτ ¼ 0. Since

DeuðiÞ
dτ ¼ 0 ¼ DekðiÞ

dτ we obtain gαruα
DerðiÞ
dτ ¼ − _u

DerðiÞ
dτ ¼ 0 ⇒

DerðiÞ
dτ ¼ 0, which completes the argument (recalling that
when _u ¼ 0 the geodesic cannot be timelike).
If Ω ¼ 0 everywhere in the spacetime, the metric

functions ai can be globally removed by (26) and (27),
hence there is no gyraton. From (52), (53) it then follows
that the coefficients ekðiÞ of the parallelly propagated

interpretation frame are just constants. It is thus natural
to consider a reference Cartesian basis ēð2Þ, ēð3Þ given by the
simplest choice ēkðiÞ ¼ δki . The corresponding null reference

frame fk; l; ēð2Þ; ēð3Þg, where

ēðiÞ ≡
�
ai þ δij

_xj

_u

�
∂r þ ∂xi ; ð55Þ

is parallelly propagated along all timelike geodesics in any
nongyratonic pp-wave spacetime and, in particular, in
Minkowski background (with the usual choice ai ¼ 0).
It is possible (and useful) to introduce the reference

frame (55) along any geodesic in the general pp-wave
spacetime with a gyraton encoded by nontrivial functions ai.
Of course, it remains parallelly propagated in the flat
Minkowski regions in front and behind the sandwich/
impulsive wave. Interestingly, this is also true in the
vacuum region outside the gyratonic source [after removing
the global rigid rotation function ωðuÞ by a suitable gauge
(22), cf. the canonical choice allowed by (50)], as indicated
in Fig. 1. On the other hand, inside the gyratonic source the
metric components ai are such that Ω ≠ 0. The reference
frame (55) thus does not propagate parallelly in the source
region of the spacetime because the right-hand side of (52)
is nonzero. Instead, it is the frame fk; l; eð2Þ; eð3Þg given by
(44) that is parallelly transported, provided (52) is satisfied.
Because both the bases ēð2Þ; ēð3Þ and eð2Þ; eð3Þ in the

transverse two-space are normalized to be perpendicular
unit vectors, they must be related by a linear transformation

eðiÞ ¼ Aj
iēðjÞ; ð56Þ

where Aj
iðτÞ are elements of an orthonormal 2 × 2 matrix.

The antisymmetric matrix Ωk
lðτÞ introduced in (53) is

thus the angular velocity of rotation of the parallelly
transported interpretation basis eðiÞ, given by (44), with
respect to the reference basis ēðkÞ, introduced in (55).
Indeed, for ēkðjÞ ¼ δkj it follows from (56) that ekðiÞ ¼ Ak

i.

Differentiating this relation with respect to τ and using (52)

we get d
dτA

k
i ¼ Ωk

jAj
i. Multiplication by the inverse matrix

ðA−1Þil ¼ ðATÞil yields

Ωk
l ¼

�
d
dτ

A

�
k

i
ðATÞil: ð57Þ

It is well known [31,32] that this is the antisymmetric
angular velocity matrix corresponding to the rotation
described by A.
This enables us to physically interpret the metric

component J in the pp-wave metric (4): inside the
gyratonic source it causes the “rotation dragging effect”
on parallelly propagated frames, as shown in Fig. 1.
Specifically, the parallelly transported frame (44) rotates
in the two-space spanned by eð2Þ; eð3Þ with the angular
velocity of rotation Ω2

3ðτÞ ¼ _uωðuðτÞ; ρðτÞ;φðτÞÞ, where
ω ¼ J;ρ=2ρ. Such rotation is measured with respect to the
background reference frame fk; l; ēð2Þ; ēð3Þg, where k; l are
the same as in (44) while ēð2Þ; ēð3Þ are defined in (55), which
is the most natural choice when J ¼ 0.
Since we are primarily interested in impulsive or

sandwich pp waves which have compact supports (finite
duration), the frames ēðiÞ are well defined both “in front”
and “behind” the wave, see Fig. 1. Moreover, when the
gyratonic source is localized in a cylindrical region of
radius R around ρ ¼ 0, the vacuum region outside such a
source globally admits the parallelly transported frame
fk; l; ēð2Þ; ēð3Þg. It forms the reference frame of distant
observers, with respect to which the parallelly transported
frame (44) inside the source rotates.
Within the gyratonic source it follows from (13) that

ωðu; ρ;φÞ ¼ −8π
Z

jφ
ρ
dρ: ð58Þ

At any fixed u and φ, the function ω is depending on ρ, so
that the angular velocity _uω depends on the radial distance
from the axis. It is thus a differential rotation which (in
contrast to the rigid one) cannot be removed by a gauge.
For the Bonnor solution [7] there is ω ∝ ðR − ρÞ inside the
cylindrical gyratonic source, i.e., ω linearly decreases to
zero at its outer boundary ρ ¼ R, and ω ¼ 0 everywhere in
the external vacuum region. This is fully consistent with the
integrability conditions (28) for the two-form Ω ¼
ωρdρ ∧ dφ, see (31). Such conditions are obviously valid
in the external vacuum region ρ ≥ R, but inside the
gyratonic source 0 ≤ ρ < R there is Ω ≠ 0, and by (41)
the gyratonic source has a nonvanishing angular momen-
tum density given by J ðuÞ ≠ 0.

E. The field scalars

To determine the algebraic structure of the general
spacetime (4), it is important to evaluate the nontrivial
Newman-Penrose scalars which are components of the
gravitational and gyratonic matter fields in a suitable null
frame. We employ the frame
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k ¼ ∂r; ð59Þ

l ¼ ∂u þ
1

2
H∂r; ð60Þ

m ¼ 1ffiffiffi
2

p ðeð2Þ þ ieð3ÞÞ ¼
1ffiffiffi
2

p
�
∂ρ þ

i
ρ
ð∂φ þ J∂rÞ

�
; ð61Þ

which is a particular case of (46)–(49) with _ρ ¼ 0 ¼ _φ,
_u ¼ 1ffiffi

2
p , where we have dropped the tildes. Projecting the

Weyl tensor components [using (6), (7) and R ¼ 0] we
obtain

Ψ4 ¼ −
1

4

�
H;ρρ −

1

ρ
H;ρ −

1

ρ2
H;φφ

�
−

1

2ρ2
J;uφ

þ i
2ρ2

ðρH;ρφ −H;φ − ρJ;uρ þ 2J;uÞ; ð62Þ

Ψ3 ¼ −
1

2
ffiffiffi
2

p
�
1

ρ
ω;φ þ iω;ρ

�
¼ −

4πffiffiffi
2

p
�
jρ −

i
ρ
jφ

�
; ð63Þ

while the nonvanishing Ricci tensor components read

Φ22 ¼ −
1

4
▵H þ ω2 þ 1

2ρ2
J;uφ; ð64Þ

Φ12 ¼ −Ψ̄3; ð65Þ

generalizing the results presented in Sec. 18.5 of [3]. The
spacetime inside the gyratonic source is thus of Petrov
type III. Notice the interesting fact that the gyrating matter
component Φ12 is uniquely connected to the gravitational
field component Ψ3. In particular, they vanish simulta-
neously, so that the spacetime is of type N if, and only if,
there is no gyratonic matter in the given region. In such a
case, the only nontrivial Newman-Penrose scalars are Ψ4

and Φ22 (representing pure radiation matter field).
Moreover, in the vacuum region outside the gyratonic

source the field equations (13), (14) with ji ¼ 0 ¼ ϱ
guarantee that Φ12 ¼ 0 ¼ Φ22 and Ψ3 ¼ 0. The gravita-
tional field is of type N with the scalarΨ4, which simplifies
using (15)–(17) to

Ψ4 ¼ −
1

2
ðH0Þ;ρρ

þ i
2ρ2

�
ρðH0Þ;ρφ − ðH0Þ;φ þ 2ðχ;u − ωχ;φÞ

�
: ð66Þ

It can be observed that the real part of this curvature
component is given by the second derivative of the function
H0 in the radial direction ρ, while the imaginary part is
determined by its derivative in the angular direction φ and
the specific derivatives of χ.

V. GEODESIC DEVIATION

Further physical properties of the gyratonic pp-wave
spacetimes can be obtained by studying the specific
deviation of nearby (timelike) geodesics. Such relative
motion of free test particles is described by the equation
of geodesic deviation [30]. To obtain invariant results, we
employ the natural orthonormal frame introduced in
subsection IV C. As summarized, e.g., in [33], the geodesic
deviation equation then takes the form

Z̈ðiÞ ¼ RðiÞð0Þð0ÞðjÞZðjÞ; ð67Þ

where ZðiÞðτÞ≡ eðiÞ · Z for i; j ¼ 1; 2; 3 are spatial
(Cartesian) frame components of the separation vector
ZðτÞ determining the relative spatial position of two test
particles, the physical relative acceleration is given by
Z̈ðiÞðτÞ≡ eðiÞ · ðD2

dτ2 ZÞ, and the relevant frame components

of the Riemann tensor are RðiÞð0Þð0ÞðjÞ ¼ RðiÞð0Þð0ÞðjÞ≡
Rμαβνe

μ
ðiÞu

αuβeνðjÞ.
In view of (21) with (18), the only nontrivial components

RðiÞð0Þð0ÞðjÞ in the reference frame (46)–(49) where eð0Þ ¼
u ¼ 1ffiffi

2
p ðkþ lÞ, simplified by the gauge (22), (26), are

Rð2Þð0Þð0Þð2Þ¼−Rð3Þð0Þð0Þð3Þ≡Aþ, Rð2Þð0Þð0Þð3Þ≡A×, in which

Aþ ¼ 1

2
_u2ðH0Þ;ρρ;

A× ¼ 1

2
_u2

1

ρ2

�
ρðH0Þ;ρφ − ðH0Þ;φ þ 2ðχ;u − ωχ;φÞ

�
: ð68Þ

Recall thatω ¼ 0 in the vacuum region outside the gyratonic
source. The invariant equation of geodesic deviation (67) in
the interpretation frame, evaluated along the chosen timelike
geodesic γðτÞ, thus takes the explicit form

Z̈ð1Þ ¼ 0;

Z̈ð2Þ ¼ AþZð2Þ þA×Zð3Þ;

Z̈ð3Þ ¼ A×Zð2Þ −AþZð3Þ; ð69Þ

where the functions Aþ and A× obviously determine the
two “þ” and “×” polarization amplitudes of the transverse
gravitational waves propagating along eð1Þ, respectively.
It is now straightforward to calculate the explicit forms

of these wave amplitudes for the large family of exact
solutions (20) when χ ¼ χðuÞ,

Aþ¼ _u2
�
μðuÞ
ρ2

þ1

2

X∞
m¼1

mðmþ1ÞBmðuÞ
ρmþ2

cos½mðφ−φmðuÞÞ�

þ1

2

X∞
m¼2

mðm−1ÞAmðuÞρm−2cos½mðφ−φ0
mðuÞÞ�

�
;

ð70Þ
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A× ¼ _u2
�
χ;uðuÞ
ρ2

þ1

2

X∞
m¼1

mðmþ1ÞBmðuÞ
ρmþ2

sin½mðφ−φmðuÞÞ�

−
1

2

X∞
m¼2

mðm−1ÞAmðuÞρm−2 sin½mðφ−φ0
mðuÞÞ�

�
:

ð71Þ

The first terms μ and χ;u in each amplitude represent the
gravitational field of axially symmetric “extended”
Aichelburg-Sexl solution [24,25] with an ultrarelativistic
monopole gyratonic source located along the axis ρ ¼ 0,
which we will describe in more detail in the next
subsection VA. The terms Bm correspond to asymptotically
flat pp-wave solutions with multipole gyratonic sources
located along ρ ¼ 0 [10,26–28]. For example, the gyrating
dipole source is given by the profile function B1 and
χ;u. The gravitational field of the plane wave is described by
A2, in which case the wave amplitudes Aþ and A× are
independent of the radial coordinate ρ. Nonhomogeneous
pp waves with directional curvature singularities at ρ ¼ ∞
(where Aþ, A× diverge) are given by higher-order terms
Am with m ¼ 3; 4;… [20–23]. With χ;u ≠ 0 we obtain
their gyrating versions which manifest themselves in the
amplitude A× of geodesic deviation (69).

A. The axially symmetric case

The simplest vacuum pp-wave solution with a gyratonic
source is the axially symmetric one. It can be written in the
form (4) with the metric functions (24) and (25) indepen-
dent of the angular coordinate φ. Since the only axially
symmetric solution of (18) is H ¼ H0 ¼ −2μðuÞ log ρ, see
(20), we are thus left with

JðuÞ ¼ χðuÞ; Hðu; ρÞ ¼ −2μðuÞ log ρ: ð72Þ
The case J ¼ 0 represents the extended Aichelburg-Sexl

solution because in the distributional limit when μðuÞ→δðuÞ
we obtain the spacetime [24] describing the specific impul-
sive gravitational wave generated by a nonrotating ultra-
relativistic monopole point source located at ρ ¼ 0 ¼ u.
The case J ≠ 0 describes the Frolov-Fursaev gyraton

investigated in [9]. There is a curvature singularity at ρ ¼ 0
whenever μ ≠ 0. This can be immediately seen from the
gravitational wave amplitudes (70), (71), which for (72)
simplify considerably to

Aþ ¼ _u2
μ

ρ2
; A× ¼ _u2

χ;u
ρ2

: ð73Þ

Moreover, we conclude that the functions μðuÞ and χ;uðuÞ
directly determine the þ and × polarization amplitudes of
the gravitational waves, respectively, as seen by the trans-
verse deviations (69) between the geodesic observers.
Interestingly, both these physically relevant functions in
the metric coefficientsH and J (determining the energy and

angular momentum density of the null source) are thus
directly observable by a detector of gravitational waves as
the distinct polarization states. For the nonspinning
Aichelburg-Sexl source, the corresponding gravitational
pp wave is purely þ polarized since in the case χ;u ¼ 0
there is A× ¼ 0.
Notice that for (72) the mass-energy density (36) of the

source can be explicitly evaluated. Using (14) we obtain
ϱ ¼ − 1

16π▵H ¼ 1
8π μ▵ log ρ ¼ 1

4
μδð2Þ, so that

MðuÞ ¼ 1

4
ffiffiffi
2

p μðuÞ: ð74Þ

The metric function μðuÞ thus directly determines the mass-
energy density MðuÞ of the gyratonic source. Since the
source propagates with the speed of light, its rest mass must
be zero, which means that MðuÞ ¼ 1

4
ffiffi
2

p μðuÞ also equals to

the density of momentum while J ðuÞ ¼ − 1
4
χðuÞ is the

density of angular momentum of the gyraton.

VI. GEODESICS

In this part we are going to analyze geodesics u ≠ const
in gyratonic pp waves. Since all Christoffel symbols (5) of
the form Γu

αβ vanish we may choose u as an affine
parameter. Setting _u ¼ 1 we arrive at the following set
of equations for the metric (4):

̈r −
1

2
H;u þ

1

2ρ2
Jð2J;u −H;φÞ −

�
H;ρ −

1

ρ2
JJ;ρ

�
_ρ

−H;φ _φþ 1

ρ
ð2J − ρJ;ρÞ_ρ _φ−J;φ _φ2 ¼ 0;

ρ̈ − ρ _φ2 −
1

2
H;ρ − J;ρ _φ ¼ 0;

φ̈þ 2

ρ
_ρ _φþ 1

2ρ2
ð2J;u −H;φÞ þ

1

ρ2
J;ρ _ρ ¼ 0; ð75Þ

where . ¼ d
du. The equation for r is clearly decoupled and

can be simply integrated once the rest of the system has
been solved. Applying the vacuum field equations and the
gauge leading to the form (24), (25), the transverse part
simplifies to

ρ̈ − ρ _φ2 −
1

2
H0;ρ ¼ 0;

φ̈þ 2

ρ
_ρ _φþ 1

ρ2

�
χ;u −

1

2
H0;φ

�
¼ 0: ð76Þ

In the case of axial symmetry, by (72) the equations further
reduce to

ρ̈ − ρ _φ2 þ μ

ρ
¼ 0; φ̈þ 2

ρ
_ρ _φþ χ;u

ρ2
¼ 0: ð77Þ
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We observe that the mass-energy density proportional to
μðuÞ only occurs in the radial ρ equation, while the
derivative χ;u of the angular momentum density propor-
tional to χðuÞ only appears in the φ equation. An analysis of
(77) as in [10] shows that positive energy qualitatively
exerts an attractive force which leads to a focusing effect of
the geodesics. On the other hand, angular momentum exerts
a rotational effect on the geodesics. Note that we have
already encountered the analogous separation of effects in
the geodesic deviation amplitudes (73). Due to the axial
symmetry we also have a conserved quantity χ0 associated
with the Killing vector ∂φ which enables us to rewrite the
Eqs. (77) as

ρ̈ ¼ −
μðuÞ
ρ

þ ½χ0 − χðuÞ�2
ρ3

; _φ ¼ χ0 − χðuÞ
ρ2

: ð78Þ

The first term in the equation for radial acceleration ρ̈
represents the focusing due to the positive energy density
μðuÞ of the source, while the second term is the nonlinear
coupling to its angular momentum. The equation for
the speed of rotation _φ clearly involves the influence
of the angular momentum density of the source J ðuÞ
proportional to χðuÞ, effectively adding to the conserved
quantity χ0.

VII. IMPULSIVE LIMIT

In [9,10] impulsive versions of gyratons have been
introduced along with their extended versions and have
been used prominently in [15]. Here we give a somewhat
broader discussion of possible impulsive limits in the class
of gyratonic pp-wave spacetimes. We consider the vacuum
line element (4) with (24), (25), that is

ds2 ¼ dρ2 þ ρ2dφ2 − 2dudrþ 2χðu;φÞdudφ
þH0ðu; ρ;φÞdu2; ð79Þ

where χðu;φÞ is an arbitrary function whileH0ðu; ρ;φÞ is a
solution of (17). There are now two distinct cases that have
to be treated separately.

A. The case Σ ¼ 0

With the constraint Σðu;φÞ≡ 2ðχ;uφ − ωχ;φφÞ ¼ 0, the
remaining vacuum field equation reduces to the Laplace
equation ▵H0 ¼ 0. In the natural global gauge ω ¼ 0, the
constraint implies that the function χ;u is independent of φ,
so that χðu;φÞ ¼ χðuÞ þ ΦðφÞ. In such a case we see that
the field equations put no restriction on the u dependence
ofH0 and χ. In analogy with the usual (nongyratonic) class
of sandwich and impulsive pp waves in Minkowski space
(and corresponding models with a nonvanishing cosmo-
logical constant [28,29]) we now consider the metric
functions of the form

H0ðu; ρ;φÞ ¼ ~H0ðρ;φÞχHðuÞ;
χðu;φÞ ¼ Jðu;φÞ ¼ ~χχJðuÞ þ ΦðφÞ; ð80Þ

where ~χ is a constant and we call the functions χHðuÞ and
χJðuÞ profile functions of the energy and angular momen-
tum densities, respectively. Here we assume

R
χHðuÞdu ¼

1 ¼ R
χJðuÞdu but otherwise these functions are com-

pletely arbitrary. In particular, these profiles can be chosen
independently of each other—we have a complete separa-
tion of χHðuÞ and χJðuÞ. From (21) it then follows that

Ruρuρ ¼ −
1

2
ð ~H0Þ;ρρ χHðuÞ;

Ruρuφ ¼ −
1

2ρ

�
ρð ~H0Þ;ρφ − ð ~H0Þ;φ

�
χHðuÞ −

~χ

ρ
χJ;u ðuÞ;

Ruφuφ ¼ −
1

2

�
ð ~H0Þ;φφ þ ρð ~H0Þ;ρ

�
χHðuÞ; ð81Þ

which in the axisymmetric case (72) with χHðuÞ ¼ μðuÞ
and χðuÞ ¼ ~χχJðuÞ reduce to

Ruρuρ ¼ −
1

ρ2
μðuÞ; Ruρuφ ¼ −

1

ρ
χ;uðuÞ;

Ruφuφ ¼ μðuÞ:
ð82Þ

We thus observe that the energy profile χHðuÞ explicitly
shows up in the curvature, and so does the angular
momentum profile χJðuÞ in term of its derivative χJ;uðuÞ.
This is in accordance with (68) where the energy profile
determines the amplitude Aþ, while the angular momentum
profile determines the amplitude A×, which then also
contains the derivative of the profile. The same effect
becomes visible in the only nonvanishing field scalar Ψ4

(66), which in the axially symmetric case takes the form

Ψ4 ¼ −
1

ρ2
μðuÞ þ i

ρ2
χ;uðuÞ: ð83Þ

All this suggests that—in accordance with the usual
definition of impulsive wave—one may take the energy
profile χHðuÞ to be δ shaped (the Dirac δ distribution) but
one should rather confine oneself with a boxlike profile
for the angular momentum χJðuÞ. Indeed, a δ-shaped
angular momentum profile would introduce a δ0 term in
the curvature, the amplitude A× and the filed scalar Ψ4.
This seems to be less physical.
Indeed in [9] such a box-shaped profile for both energy

and angular momentum densities was considered, i.e.,
χHðuÞ ¼ χJðuÞ ¼ ϑLðuÞ where

ϑLðuÞ≡ 1

L

�
ΘðuÞ − Θðu − LÞ

�
; ð84Þ

in which L > 0 is the “length” of the profile and Θ denotes
the Heaviside step function, see the left part of Fig. 2.
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In [15] the energy profile was changed to be impulsive,
more precisely χHðuÞ ¼ δðuÞ, as shown in the middle
part of Fig. 2, or alternatively χHðuÞ ¼ δðu − LÞ, see the
right part of Fig. 2. This is possible since arbitrary and
independent profile functions χHðuÞ and χJðuÞ can be
prescribed in the Σ ¼ 0 case.

B. The case Σ ≠ 0

If the metric function J ¼ χðu;φÞ nontrivially depends
on the angular coordinate φ then Σ ≠ 0 and the field
equations naturally lead to a coupling of the profiles. More
precisely, the vacuum equation (17) with ω ¼ 0 then
reduces to

▵H0ðu; ρ;φÞ ¼
2

ρ2
χ;uφðu;φÞ; ð85Þ

and the splitting generalizing (80) to admit ~χ ¼ ~χðφÞ,

H0ðu; ρ;φÞ ¼ ~H0ðρ;φÞχHðuÞ;
χðu;φÞ ¼ ~χðφÞχJðuÞ þ ΦðφÞ; ð86Þ

gives

▵ ~H0ðρ;φÞχHðuÞ ¼
2

ρ2
~χ;φðφÞχJ;uðuÞ: ð87Þ

If the supports of χHðuÞ and χJðuÞ are disjoint, then
separately ▵ ~H0 ¼ 0 and ~χ;φ ¼ 0, implying Σ ¼ 0. Thus,
for solutions with Σ ≠ 0, both the supports must agree, in
which case the box profile (84) in the angular momentum
density, χJðuÞ ¼ ϑLðuÞ, naturally leads to two Dirac deltas
in the energy density, namely χHðuÞ ¼ δðuÞ − δðu − LÞ [to
satisfy the relation χHðuÞ ∝ χJ;uðuÞ in (87)], see the left part
of Fig. 3. Assuming (86) we thus obtain an impulse in
energy on each edge of the box, one positive and the other
negative. Hence, the energy distribution in such a gyratonic
source would have a dipole character. Moreover, the
corresponding spatial Poisson equation

▵ ~H0ðρ;φÞ ¼
2

L

~χ;φðφÞ
ρ2

; ð88Þ

also has to be solved.

The drawback of the particular solution χHðuÞ ¼
δðuÞ − δðu − LÞ is that it involves a negative energy
distribution located at u ¼ L. However, physically more
relevant solutions can be constructed by superimposing
this particular solution with specific homogeneous sol-
utions proportional to a positive profile δðu − LÞ [and
also possibly δðuÞ], effectively leading to a general
energy density profile function χH ¼ αδðuÞ þ βδðu − LÞ
with positive parameters α and β, see the right part
of Fig. 3.
In fact, as suggested by the referee, a more general

solution of the linear equation (85) takes the form

H0 ¼ HðhÞ
0 ðu; ρ;φÞ þHðpÞ

0 ðu; ρ;φÞ, where ▵HðhÞ
0 ¼ 0 and

▵HðpÞ
0 ¼ 2ρ−2χ;uφ with the additional requirement

I
HðpÞ

0 ðu; ρ;φÞdφ ¼ 0: ð89Þ

The corresponding energy profiles χðhÞH ðuÞ and χðpÞH ðuÞ are
independent. We can choose χðhÞH ðuÞ in such a way that the
energy is positive (the case Σ ¼ 0). Due to the additional

constraint (89) the energy of the complete solution H0 ¼
HðhÞ

0 þHðpÞ
0 remains positive because the contribution from

HðpÞ
0 becomes zero after the φ integration.

FIG. 2. Schematic representation of possible profiles χHðuÞ for energy and χJðuÞ for angular momentum densities: a box-shaped
profile ϑLðuÞ for both χH and χJ (left); the choice χH ¼ δðuÞ with χJ ¼ ϑLðuÞ (middle); an alternative choice χH ¼ δðu − LÞ with
χJ ¼ ϑLðuÞ (right).

FIG. 3. Possible profiles χHðuÞ for energy density in the case of
a general Σ and the box-shaped angular momentum profile
χJðuÞ ¼ ϑLðuÞ: the natural choice χH ¼ δðuÞ − δðu − LÞ (left);
a more general choice χH ¼ αδðuÞ þ βδðu − LÞ (right).
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VIII. COMPLETENESS OF GEODESICS
IN THE IMPULSIVE LIMIT

Finally, we analyze the geodesic equations in the
impulsive limit of the Σ ¼ 0 case, i.e., the models extend-
ing those of [15], also discussed in subsection VII A.
Specifically, we consider the metric (79), (80) with

χHðuÞ ¼ αδðuÞ þ βδðu − LÞ; χJðuÞ ¼ ϑLðuÞ; ð90Þ
where the box profile ϑLðuÞ is defined in (84) and α, β are
arbitrary real parameters, indicated in the right part of
Fig. 3. They enable us to set the respective impulsive
components to any values (including turning them off).
Using (76) we find that the spatial part of the geodesic
equations takes the form

ρ̈ − ρ _φ2 −
1

2
~H0;ρðρ;φÞ

�
αδðuÞ þ βδðu − LÞ

�
¼ 0; ð91Þ

φ̈þ 2

ρ
_ρ _φþ 1

ρ2
~χ

L

�
δðuÞ þ δðu − LÞ

�

−
1

2ρ2
~H0;φðρ;φÞ

�
αδðuÞ þ βδðu − LÞ

�
¼ 0: ð92Þ

These equations have a form similar to the geodesic
equations in impulsive waves with parallel rays, which
have recently been analyzed rigorously in [34,35]. This is
best seen by looking at the geodesic equations in Cartesian
coordinates xi of the metric (1), which using (10) are

ẍi þ δij
�
aj;u −

1

2
H;j

�
þ δikðak;j − aj;kÞ_xj ¼ 0: ð93Þ

In view of (3), in the present case they are of the form

ẍðuÞ þG1ðxÞδðuÞ þG2ðxÞδðu − LÞ þG3ðx; _xÞϑLðuÞ ¼ 0;

ð94Þ
where for simplicity we have collected all dependencies on
the spatial variables x ¼ ðx2; x3Þ, spanning the transverse
plane, in the functions G1; G2; G3. In particular, assuming
these functions to be smooth, the technical result derived in
Lemma A2 of [34] [with minor modifications, namely
replacing F1ðxϵ; _xϵÞ by F1ðxϵ; _xϵÞΘϵ] also applies in the
present situation and we obtain a completeness result. More
precisely, if one regularizes the profile functions replacing δ
by a standard mollifier δϵðxÞ≡ ð1=ϵÞϕðx=ϵÞ (ϕ a smooth
function supported in ½−1; 1� with unit integral) and
replacing Θ by ΘϵðxÞ≡ R

x
−1 ϕϵðtÞdt one obtains the follow-

ing completeness statement: For any geodesic starting long
before the shock, say at u ¼ −1, there exists an ϵ0 such that
it passes the shock region u ∈ ½0; L� provided ϵ ≤ ϵ0. The
geodesics will be straight lines up to u ¼ 0 where they will
be refracted with their r-component suffering an additional
jump. During the support of the angular momentum profile
u ∈ ½0; L� an angular motion is exerted. Another break

occurs at u ¼ L and after that the geodesics return to be
straight lines.
In the more realistic case where the G1; G2; G3 are

nonsmooth on the axis ρ ¼ 0 (including the Aichelburg-
Sexl solution) the result still applies with the exception of
those geodesics which are directly heading into the curva-
ture singularity at u ¼ 0, ρ ¼ 0 and those which are
refracted to directly hit the singularity at u ¼ L, ρ ¼ 0.
A more detailed analysis of the geodesic motion in these
and more general models is subject to current research.

IX. CONCLUSIONS

We have studied the complete family of pp waves with
flat wavefronts in Einstein’s general relativity. Thereby
we have kept all terms in the original Brinkmann form of
the metric (1), in particular, the off-diagonal ones
aiðu; xjÞdudxi. In almost all prior investigations of this
famous family of exact spacetimes the functions a2 and a3
have been ignored because (in any vacuum region) it is
always possible locally to set ai ¼ 0 by a suitable gauge.
However, it was only Bonnor in 1970 and, independently,
Frolov and his collaborators in 2005 who pointed out the
physical significance of these off-diagonal terms. In gen-
eral, they cannot be removed globally, and in such a case
they encode angular momentum. For a localized matter
distribution the spacetime metric can be interpreted as the
gravitational field of a spinning source moving at the speed
of light, called gyraton [9,10]. Here we have significantly
extended and complemented the previous studies
[7,9,10,15] explicitly investigating various mathematical,
geometrical and physical properties of these spacetimes.
We have fully integrated the vacuum Einstein equations

in Sec. III, yielding the general metric functions J and H,
see (15) and (16). Then we have used the complete gauge
freedom4 to understand the geometrical and physical
meaning of all the integration functions ωðuÞ, χðu;φÞ
and H0ðu; ρ;φÞ. We showed that the function ωðuÞ
represents angular velocity of a rigid rotation of the whole
spacetime, which can always be set to zero in the vacuum
region by using (22). With ω ¼ 0 it is then possible to
employ the second gauge (26) to set the function J ¼
χðu;φÞ to zero since the integrability conditions Ω ¼
1
2
J;ρdρ ∧ dφ ¼ 0 are satisfied, see (31), (32). However,

this can be done only locally. In fact, the key two-form Ω is
given by Ω ¼ 1

2
da, where a≡ aidxi, cf. (29), and in

general the closed one-form a need not be globally exact.
This happens, in particular, if a gyratonic source is located
along the axis ρ ¼ 0, so that the external vacuum region is

4Let us remark that our approach differs from those in
[7,9,10,15]. There, the gauge freedom was considered before
solving the field equations which somehow obscures the signifi-
cance and meaning of the integration functions ω and Σ.

GYRATONIC pp WAVES AND THEIR IMPULSIVE LIMIT PHYSICAL REVIEW D 90, 044050 (2014)

044050-13



not contractible. Then it is necessary to keep the off-
diagonal metric terms even in the vacuum region.
Moreover, as shown in [7,9] and subsection IV B, the

function H is related to the mass-energy density MðuÞ
while J encodes the angular momentum density J ðuÞ of
the gyratonic source via the gauge-independent contour
integral J ðuÞ ¼ − 1

8π

H
C a ¼ − 1

8π

H
C Jdφ, cf. (42), (33).

This yields a clear physical interpretation of the metric
functions.
To analyze further aspects of the gyratonic sources

represented by the metric functions ai that have not been
studied before, we introduced in subsection IV C a natural
orthonormal frame for any geodesics observer and its
associated null frame (44). After studying their gauge
freedom, in subsection IV D, we analyzed the rotational
dragging effect of parallelly propagated frames caused
by the spinning gyratonic matter. Specifically, we proved
that the angular velocity of the spatial rotation of such
frames is given byΩ2

3 ¼ _uωðu; ρ;φÞ, whereω ¼ 1
2
J;ρ=ρ ¼

1
2
ða3;2 − a2;3Þ is the only nontrivial component of the key

two-formΩ. Therefore, in the external vacuum region there
is no such dragging while inside the gyratonic source,
where Ω ≠ 0, we have rotation of frames, see Fig. 1.
In subsection IV E we analyzed the Newman-Penrose

scalars (62)–(65). The spacetime inside the source is of
Petrov type III, with the gyrating matter component Φ12

coupled to the gravitational component Ψ3 so that they (do
not) vanish simultaneously. The gravitational field in the
exterior vacuum region is thus of type N with Ψ4 given
by (66).
As a further new application of the interpretation frame,

in Sec. V we investigated the invariant form of the geodesic
deviation. This allows to clearly separate the longitudinal
direction, in which the gravitational wave propagates, and
the transverse two-space where its effect on relative motion
of test particles is observed (69). We explicitly evaluated
the two polarization amplitudes Aþ and A×, see (68),
which turn out to be proportional to the real and the
imaginary part of Ψ4, respectively. In the axisymmetric
case with J ¼ χðuÞ, H ¼ −2μðuÞ log ρ (the Frolov-Fursaev
gyraton constructed from the Aichelburg-Sexl solution),
which we have studied in subsection VA, the amplitudes
are given byAþ¼μ _u2ρ−2 andA×¼χ;u _u2ρ−2. Interestingly,
both physical profile functions μðuÞ and χðuÞ of H and J
(determining the energy and angular momentum densities)
are thus observable by a detector of gravitational waves as
distinct þ and × polarization states, with the wave being
purely þ polarized in the absence of a gyraton. It follows
from (70), (71) that a similar behavior also occurs for
nonaxisymmetric gyratons with multipole sources.
It is important to observe that it is the derivative χ;u of the

metric function J ¼ χðu;φÞ which appears in the curvature

Ψ4 and in the wave amplitude A×. Moreover, χ;u directly
influences the behavior of geodesics, studied in Sec. VI,
namely the axial acceleration φ̈. On the other hand, the
mass-energy density of the gyraton encoded in H ¼
H0ðu; ρ;φÞ determines the radial acceleration ρ̈, causing
a focusing of the geodesics.
We have studied impulsive limits of gyratonic pp waves

in Sec. VII. There we emphasized that (unlike in previous
works) it is necessary to distinguish the cases Σ ¼ 0 and
Σ ≠ 0, when solving the Poisson equation (17). If Σ ¼ 0 it
reduces to the Laplace equation and the field equations put
no restriction on the u dependence of H0 and J. Hence the
corresponding profiles χHðuÞ and χJðuÞ of the energy and
the angular momentum densities can be chosen independ-
ently of each other. Since by (81) the curvature is propor-
tional to χH and χJ;u, it is natural to consider impulsive
waves by setting the profile χHðuÞ to be proportional to the
Dirac δ but using a boxlike profile ϑLðuÞ for χJðuÞ, see (84)
and Fig. 2.
On the other hand, when Σ ≠ 0 the supports of χHðuÞ

and χJ;uðuÞ must coincide. In particular, the box ϑLðuÞ
in the angular momentum density profile χJðuÞ naturally
leads to two Dirac deltas in the energy density, χH ¼
δðuÞ − δðu − LÞ. These two (opposite) impulses on
each edge of the box are shown in the left part of
Fig. 3. Physically more relevant solutions can be con-
structed by superimposing such a particular solution with
specific homogeneous solutions. This effectively leads to a
general energy density profile χH ¼ αδðuÞ þ βδðu − LÞ
with positive parameters α and β, see the right part of
Fig. 3.
Finally, in Sec. VIII we analyzed the geodesic equations

in the impulsive limit. We considered the Σ ¼ 0 case and
the generic profiles χH ¼ αδðuÞ þ βδðu − LÞ and χJ ¼
ϑLðuÞ where α, β are arbitrary constants. We showed that
any geodesic starting long before such a wave passes the
shock region u ∈ ½0; L�, considering regularizations of
the Dirac deltas and the box by standard smooth mollifiers.
In other words, we proved geodesic completeness of
impulsive gyratonic pp-wave spacetimes.
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