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Hairy black holes: Stability under odd-parity perturbations and existence
of slowly rotating solutions
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We show that, independently of the scalar field potential and of specific asymptotic properties of the
spacetime (asymptotically flat, de Sitter or anti—de Sitter), any static, spherically symmetric or planar, black
hole solution of the Einstein theory minimally coupled to a real scalar field with a general potential is mode
stable under linear odd-parity perturbations. To this end, we generalize the Regge-Wheeler equation for a
generic self-interacting scalar field, and show that the potential of the relevant Schrodinger operator can be
mapped, by the so-called S-deformation, to a semipositively defined potential. With these results at hand
we study the existence of slowly rotating configurations. The frame dragging effect is compared with the
corresponding effect in the case of a Kerr black hole.
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I. INTRODUCTION

In light of discoveries during the last decades, such as
cosmic acceleration associated with “dark energy” or more
definitive indications of the existence of “dark matter,”
Einstein’s classical general relativity has appeared again
“on the firing line,” to use Cliff Will’s metaphor from the
October 1972 issue of Physics Today. Numerous modifi-
cations of Einstein’s theory assume the existence of scalar
field(s). Scalar fields are part of the inflationary paradigm
and appear conspicuously in string theory and supergravity.
The reality of a fundamental scalar field appears to be
supported by the discovery of the Brout-Englert-Higgs
boson. The interest in the interaction of scalar fields and
gravity is, however, older than inflation and supergravity
and can be traced back to the Brans-Dicke theory and the
black hole no-hair theorems. The original, and well-known,
no-hair theorem of Bekenstein states that a convex potential
is incompatible with the existence of a static black hole in
an asymptotically flat spacetime [1]. This is also supported
by the fact that massive scalar fields develop a power-law
singularity at the horizon when solved in the Kerr-Newman
background [2]. Bekenstein’s theorem was generalized and
we understand now that the relevant requirement for an
asymptotically flat black hole to exist in the presence of a
regular, nontrivial, real scalar field profile is the existence
of a negative region of the scalar field potential [3,4].

Interest has been revived in black holes in scalar-tensor
theories and their perturbations: for solutions with a real
minimally coupled scalar field, see [5]; for solutions in
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theories with nonminimal derivative coupling, see [6]; for
stability, see [7]. In particular, a Japanese group studied
black hole perturbations in a general gravitational theory
with Lagrangian given by an arbitrary function of the Ricci
scalar and the Chern-Simons pseudoinvariant [8,9]. Most
recently, the authors associated with this group tackled a
technically involved problem of perturbations of black
holes in the most general scalar-tensor theory in which
all field equations are of second order. Their Lagrangian
includes, for example, the Brans-Dicke theory, f(R)
gravity, the nonminimal coupling to the Gauss-Bonnet
term, etc. The odd-parity perturbations have been tackled
first [10]; most recently, the even-parity sector was also
analyzed [11]. The authors concentrate primarily on deriv-
ing perturbation equations from the second-order actions.
In both cases they present general conditions, necessary but
not sufficient, for the (gradient) stability of a static,
spherically symmetric solution.

We remain in the framework of classical four-
dimensional general relativity and consider perturbations
and stability of static, spherically symmetric, planar and
hyperbolic hairy black holes in asymptotically flat or
asymptotically (anti—) de Sitter spacetimes in which a scalar
field is minimally coupled to gravity (for a recent review, see
[12]). Then we analyze their odd-parity perturbations
following the general treatment of the “axial” perturbations
of spherically symmetric (not necessarily vacuum) space-
times by Chandrasekhar [13]. We prove the mode stability
with respect to general perturbations in the odd-parity
sector. It is worthwhile to remark that the situation is rather
different from what happens in the hairy Yang-Mills black
holes which were the first examples of hairy black holes
discovered. In their case there are an infinite number of
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unstable odd-parity modes—see, e.g., the original work [14]
and the review [15], and references therein.

Very recently, Bhattacharya and Maeda [16] arrived at a
conclusion, based on the slow-rotation approximation, that
a Bocharova-Bronnikov-Melnikov-Bekenstein black hole
[17,18] with a scalar field coupled conformally to gravity
cannot rotate (for related discussions see also [19-21]). We
provide examples where the rotation of a general class of
hairy black holes is admissible. Although in the odd-parity
case, the gravitational perturbations are fully decoupled
from the scalar field perturbations, they can be strongly
influenced by the background scalar field. The situation
resembles general perturbations of charged (Reissner-
Nordstrom) black holes where the background electric
field influences gravitational perturbations (cf. [22-24]).
The right-hand side of Einstein’s equations is given in terms
of the energy-momentum tensor of a (possibly strong)
background scalar field and odd-parity perturbations of the
metric. As a consequence, the metric component like g,,;,
which reflects the dragging of inertial frames outside
a rotating black hole, depends on the character of the
background scalar field. We illustrate this effect.

Rotating black holes and boson stars are known to exist
when a complex scalar field is minimally coupled to
Einstein theory [25]. However, much less is known when
the scalar field is real. To construct the slowly rotating
solutions it is necessary to specify the background. Thus,
we use the static black hole family originally found in
[26]. This family of solutions is the most general four-
dimensional hairy black hole family with a single real
scalar field and contains all other exact black holes
available in the literature. The details can be found in [12].

|

dz?
(1 -kz?)

ds®> = —A(r)df* + B(r)dr* + C(r)

where &, k, and k5 are functions of (¢, r, z). A(r), B(r) and
C(r) are the metric functions parameterizing the most
general static background solution of a scalar-tensor theory.
For asymptotically locally AdS solutions k = +1or 0 [27].
Asymptotically flat or de Sitter solutions have k = 1. The
scalar field is taken to be of the form

¢ = dho(r) + e®(1,r,2), 4)

where ¢, is the background field. The metric perturbations
(ky, ky, k3) are all taken to be first order in e. Since any
surface of constant (¢,r) is of constant curvature, we
consider only axisymmetric perturbations, without any loss
of generality (for more details of the spherically symmetric
case, see [13]). The Einstein field equations are truncated at
first order in €. This yields the vanishing of ®. Indeed, using
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The outline of this article is as follows. In the second
section we present the proof that for minimally coupled
scalar fields with arbitrary self-interaction, the spectrum of
the generalized Regge-Wheeler equation is always positive.
The proof is done in detail for spherical geometries and
generalized to planar trasnversal geometries. The third
section introduces the perturbative frame-dragging compu-
tation for the hairy black hole. We briefly describe the hairy
black hole geometries before the frame draging effect is
compared with the corresponding effect in the case of a
Kerr black hole. Finally we present a discussion of our
main results. Our conventions are such that the Riemann
tensor, Ricci tesor and Ricci scalar of a D-sphere of radius
1 are R =&Y R,=84(D~-1) and R=D(D-1),
respectively. The metric signature is (—, +, +, +) and we
set k = 8nG, ¢ = 1.

II. ODD-PARITY PERTURBATIONS AND
GENERALIZED REGGE-WHEELER EQUATION

Here we follow closely [13]. We shall consider a
minimally coupled real scalar field with an arbitrary
potential, V(¢). The field equations are

E/,w = G;u/ - KTmz =0, (1)

T/w = aﬂ¢8y¢ ~ 9w |:% (8¢)2 + V(¢):| ’ (2)

where G, is the Einstein tensor and a possibly non-
vanishing cosmological constant can be included in V(¢).
The perturbed metric reads

+(1 —kZz)(d§0+kldt+k2dr+k3dz)2:|’ (3)

the notation introduced in Eq. (1) and the zeroth-order
(background) equations, we find that

ddpy O,®
El— eK%Am 0() =0, (5)
o d¢0 az _
Ez dl" B(r) + 0(62) - 07 (6)
. ek (do B
Et —W<War¢+BV1¢> +O(€2) —0, (7)

where V| arises from the expansion of the scalar field
potential around the background configuration,
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dv
Ay,
Equations (5)-(7) imply that 0,8 =0=0,® and

‘%08,(1): —BV,®. This information simplifies the equation
for EI:

EL =2exV ® + O(e?) = 0. 9)
Thus, it follows that & = 0. Using the zeroth-order equa-
tions, it is possible to check that the remaining equations

are satisfied up to linear order in e if the following system
of equations is satisfied:

0 A 0 B
2 ley/osa-om) + 2 ey Bon, -om] <o

(10)

% {%(1 — kz?)*(0:ky — 8rk3):|

F 10—k Dk~ k)] =0, (1)

8% [C\/g(l — kz%)?(0,ky — 8,k3)]

+ % {(1 - kZZ)\/CT—B(arkl - 8:’@)} =0 (12)

Introducing the variable Q = CA'/2B7'/2(1 — kz?)? x
(8.ky — B,k3), Egs. (10)—(11) yield

A1/2 aQ
CB'/?(1 - kzz)zg = ~0ik; + 0,0:k1. (13)
vVAB 1 00

o 9 = 0Ok Otky.  (14)

The combination 0,(13) + 0,(14) can be written in terms

of O,
c* 0[A2 0 9, 1 9
Sl vt e
z (1 — kz*) Oz
C
=400 (15)

This equation can be solved by separation of variables.
Writing Q = ¢(r,t)D(z), we obtain

c* 0 {AW dq

_C 2
Vs T [t BRI
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8[( 1 oD

e L R
(1 kz)az 1 —kz%) Oz

} ——D.  (17)

Let us now concentrate on the case with k = 1; we shall
briefly comment on the other cases later. Setting z = cos 8
in Eq. (17) allows to identify Cl_féz(ﬁ) = D(z) with a
Gegenbauer polynomial with A= (I —1)(/+2) where
I > 1 holds." The master variable in this case is U(r*, 1) =
q(r,1)C™Y/? where % = ﬁ:—;i%. Inserting all this informa-
tion in Eq. (16) yields the master equation

2
PO (LEC 3 (0 Ny gy

ar? " \2Cdr?  ac* \dr* C
The mode stability can be studied using the Fourier
decomposition of the master variable, ¥ = f U, el dt,
which yields

> A 3 [dC\? 1 d&°C
H\IJwE— @ A=+ — — _ = \I,w

dr? ( C+4C2 (dr*) 2Cdr*2>

= o?V,,. (19)

The scalar field perturbation vanishes; however, Eq. (19)
depends on the background scalar field through its influ-
ence on the background metric. In vacuum, A = 1 —2m/r,
C = r?, and Eq. (19) becomes the Regge-Wheeler equa-
tion. The operator H is not manifestly positive, however, its
spectrum is positively defined as follows from?

[artun,
= [[ar D + Vel = (0D Vo) iy
(20)
where D = %—i— S and
A 3 [dC\* 1 &C dS
Ve=atq 2 A O3
s=Act e (dr*) 2wcart tar 21)
Choosing § = 5=45, we find
A
Ve=41—. 22
=il @)

Therefore [>1=1>0= Vy¢>0 whenever A > 0,
namely in any static region of the spacetime. From
Egs. (20)—(22) it follows that all the spherically symmetric

"That [ > 1 follows from the definition of the Gegenbauer
polynomials in terms of the Legendre polynomials:

—-3/2 o dP,(0
Cr02(0) = sindg 4 L 400

%For a more detailed discussion, see [28].
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four-dimensional hairy configurations are mode stable
under odd-parity perturbations. To reach this conclusion
it is necessary that

(\I’(I)D\I/w”Boundary =0, (23)

which requires that the perturbation vanishes at the horizon.
This is not a very strong requirement, as follows from [29];
linear stability under the boundary condition ¥ = 0 at the
horizon implies stability under boundary conditions with ¥
taking a finite value at the horizon.

Note that k goes into the perturbation equation (19) only
through 4. When k = 0 the requirement that the perturba-
tions are everywhere well defined is satisfied only if 1 > 0
which implies V¢ > 0. The equation for the angular part is
just the equation for the harmonic oscillator with frequency
V2. When k = —1, further analysis is required.
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where ¢; and ¢, are two integration constants. To warm
up, let us consider now the case of the Schwarzschild
black hole. We have VAB = 1 and C = 72, so it follows
that

91

O = ——=
33

+ Cy. (25)

Hence, choosing ¢, = 0 and ¢; = 3Ma, we find that the
perturbed metric is the Schwarzschild metric plus the
perturbation g, = w which, when terms propor-
tional to a” are neglected, coincides exactly with the Kerr
metric in Boyer-Lindquist coordinates.

Now let us consider the hairy black hole family [12,26].
The following configurations are exact background
solutions of the Einstein equations3 (1):

: 2d 2 d 2
III. SLOWLY ROTATING HAIRY BLACK HOLES ds> = Q(x) [_ F(x)dP + n-dx n v4 ;
Here we want to establish the existence of slowly fe)  T—kz
rotating hairy black holes. To this end we shall consider ™ g2
only stationary perturbations with &k, =k3 =0 and + (1 —kz%)do?|. (26)
k; = w(r). In this case Eq. (12) yields
2., v-1
VAB Qx) = 27
w=—c / o dr+ ¢y, (24) (x) P =12 (27)
|
X (x = 1)k 1 x? X xv 1
= -1+ —- =, 28
) 2 +<1/2—4 1/2< +1/—2 v+2>>a+lz 28)
with energy-momentum tensor given by Eq. (2), scalar field potential and background scalar field by
-1 1 21
V(g) = K% [: 5 sinh(gl, (v + 1)) - Z f Ssinh(@l, (v = 1)) + 452 — sinh(qbl,,)]
(VP —4)[v—1 v+ 1 -1
T Fexp(—qﬁl,,(v +1)) + P zexp(qﬁl,,(v -1)+ 41/2 - 4eXP(—¢ZD) ; (29)
[
and region is at x = 1 which can be seen from the pole of order
two in Q(x). There are two solutions, depending on
¢o = ;' Inx, (30) whether the scalar field is negative, x € (0, 1), or positive,

where parameter # is the unique integration constant; it
arises in a nonstandard form which allows us to write the
solution in terms of a dimensionless radial coordinate x and

I;' = /%=1 The metric and the potential are invariant

under the change v — —v, therefore, it is possible to take
v > 1. Furthermore, it should be noted that the asymptotic

*For a single real scalar field, the scalar field equation is a
consequence of the Einstein equations through the conservation
of the energy-momentum tensor.

x € (1, ), which allows us to cover all the values of the
scalar field potential. The metric is regular for any value of
x # 0 and x # oo as can be seen from the introduction of
advanced and retarded coordinates, u; = 1F [ %dx. The

scalar field and the geometries are singular at x = 0 and
x = oo but these singularities can be covered by event
horizons. The metric reduces to the Schwarzschild-(A)dS
solution in Schwarzschild-Droste coordinates when we set
v=1and x =1+ 1/(yr). The mass of the spherically
symmetric solution, computed with the Hamiltonian
method [30], yields
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FIG. 1. The ratio w/w,—; versus the square root of the areal

function, \/Q(x), for different values of v. The plots are for v =
1.2,v=2.1,v =3 and v = 4 (from down up).

2

M=+ (31)
6n°G

where the £+ depends on whether one is considering the

branch where x > 1 or x < 1.

In analogy with the Kerr solution, the slowly rotating
hairy black hole is a deformation of the static one plus
91y = 0,(1 — 22)Q(x). The metric component g,, deter-
mines the frame dragging potential (see e.g. [31] Ex. 3.4).
We find that

x2—1/

Vg (D G =20 4

w,=7C

(32)

requiring that w,(x = 1) =0 fixes w up to an overall
multiplicative constant,

w, = C <m (v=2)x*+ (4 =1*)x* =2 —v)

- 4). (33)

To measure the deviation of the dragging effects from
those from the slowly rotating Kerr solution we plot the
ratio w/w,—; versus the square root of the areal function
/Q(x). The integration constant # has units of inverse
length squared. Hence the x axis is measured in units of 7!
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(e.g. km, parsec, etc.). In Figure 1 it can be seen that there is
a smooth departure from the Kerr frame dragging as both
coincide when v approaches 1 or asymptotically for large

\/Q(x). It should be noticed that the departure from Kerr
dragging can be important and that the horizon can be
located at any point in the graph. Indeed, the location of the
horizon is defined by the equation f(x, ) = 0, which has a
solution for any x, by adjusting the value of a in
expression (28).

IV. CONCLUSIONS

In this paper we addressed the issue of odd-mode
stability in a rather general class of scalar-tensor theories.
We proved that for a minimally coupled real scalar field,
independently of its self-interaction and of the asymptotic
properties of the spacetime (asymptotically flat, de Sitter or
anti— de Sitter), any static black hole solution is mode stable
under these perturbations. The situation is such that the
scalar field only contributes through the backreaction of
the background solution and the dynamics is dictated by the
linearized Einstein equations. This is in contrast of what
happens with the spherically symmetric mode where the
only propagating mode is the scalar one [7]. The linearized
Einstein-scalar field equations allowed us to study the
existence of slowly rotating hairy black hole solutions.
Using the hairy black hole family [12,26], we have shown
that there is no obstruction for the existence of rotating
hairy black holes and that they can have a behavior that
strongly departs from the Kerr solution. Indeed, it would be
very interesting to study the even modes outside the
spherically symmetric regime, namely when the scalar
and the tensor perturbations interact nontrivially. We leave
this question open to further research.
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