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We present a general method to reconstruct static spherically symmetric metrics in general relativity
based on the 1þ 1þ 2 covariant approach. This method allows a more complete exploration of the
properties of these metrics in the case of a generic fluid and in the presence of a scalar field. A number of
new exact solutions are reconstructed in these cases.
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I. INTRODUCTION

It is well known that in solving the Einstein equations
one can proceed in two ways. A first one in which the
gravitational field is deduced assigning some symmetries
for the metric and giving the thermodynamics of the
sources, and a second one in which the gravitational field
is assigned and one finds the sources that generate such
field. Because of the structure of the Einstein equations, the
second approach is normally much more simple than the
first one: since the stress energy tensor contains in general
derivatives of order lower than the Einstein tensor one needs
to solve easier differential equations to find a solution.
In Friedmannian cosmology the idea to solve for the

sources generating a certain behavior of the scale factor
(i.e. the metric) is called reconstruction and has been
exploited for a long time. The main advantage is that by
assigning the desired evolution of the scale factor one can
deduce in a relatively easy way the form of a certain
unknown function in the model. For example, in the context
of inflation one can reconstruct inflation potentials able to
realize a given scenario and/or match observational con-
straints [1]. More recently, reconstruction methods have
been used in the attempt to resolve the degeneracy implicit
in the additional unknown functions appearing in exten-
sions of general relativity [2]. Research in this sector has
produced very interesting models, some of which are still
under exploration.
It is then natural to ask if the reconstruction technique

can be used as a solution generator in other frameworks,
like the static spherically symmetric metrics. A quick scan
through the key equations reveals that, differently from the
Friedmannian case, in which one has to deal only with two
equations (Friedmann and matter conservation equations),
in the (nonvacuum) static spherically symmetric case one
needs to deal with three equations, which bring in addi-
tional complications. In addition, even if the reconstruction
technique can be performed it is difficult to control the
physical properties of the solutions one tries to reconstruct.
The aim of this paper is to propose a more effective

reconstruction technique in general relativity in the static

spherically symmetric case. This technique is based on
the 1þ 1þ 2 covariant approach presented in [3]. The
covariant approaches constitute a powerful method for
investigating the properties of many different classes of
spacetime in Einsteinian gravity. In particular, in cos-
mology the 1þ 3 covariant approach has been very
successful, leading to interesting insights in determining
the features of Bianchi and nonhomogeneous cosmologies
and their perturbations [4]. The 1þ 1þ 2 formalism
instead was applied to the study of linear perturbations
of a Schwarzschild spacetime and to the interaction
between electromagnetic radiation and gravitational waves
[3]. More recently, both the covariant formalisms have
proven to be particularly useful also in dealing with
modified gravity [5–8].
The paper is organized in the following way: Section II

summarizes the 1þ 1þ 2 covariant approach; Sec. III the
general equations for the most general class of spacetime
that can admit spherical symmetry: the LRS-II spacetime;
Sec. IV introduces new key variables on which the
reconstruction will be based. Section V shows how to
perform the reconstruction in the case of general relativity
plus a perfect fluid. Section VI deals with the implemen-
tation of the energy conditions and the asymptotic flatness
in the new reconstruction method. In Section VII we prove
that the new formalism can be also used to attempt a direct
resolution of the Einstein equations. In Section VII we
consider the case in which matter is represented by a scalar
field. Finally, Section IX is dedicated to the conclusions.
Unless otherwise specified, natural units (ℏ ¼ c ¼ kB ¼

8πG ¼ 1) will be used throughout this paper; Latin indices
run from 0 to 3. The symbol ∇ represents the usual
covariant derivative and ∂ corresponds to partial differ-
entiation. We use the −;þ;þ;þ signature and the Riemann
tensor is defined by

Ra
bcd ¼ Γa

bd;c − Γa
bc;d þ Γe

bdΓa
ce − Γe

bcΓa
de; ð1Þ

where the Γa
bd are the Christoffel symbols (i.e. symmetric

in the lower indices), defined by
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Γa
bd ¼

1

2
gaeðgbe;d þ ged;b − gbd;eÞ: ð2Þ

The Ricci tensor is obtained by contracting the first and the
third indices

Rab ¼ gcdRacbd: ð3Þ

The symmetrization and the antisymmetrization over the
indexes of a tensor are defined as

TðabÞ ¼
1

2
ðTab þ TbaÞ; T ½ab� ¼

1

2
ðTab − TbaÞ: ð4Þ

Finally the Hilbert-Einstein action in the presence of matter
is given by

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ 2Lm�: ð5Þ

II. 1+ 1+ 2 COVARIANT APPROACH IN BRIEF

In the following we will make use of the 1þ 1þ 2
approach that is optimized for the treatment of the standard
static and spherically symmetric spacetime and more
in general any LRS II spacetime [9]. In the 1þ 1þ 2
approach we perform a threading decomposition of the
spacetime manifold with respect to a timelike congruence
and a selection of a special vector field in the orthogonal
surfaces generated by this threading. In this way all the
essential information in the system can be encoded in a set
of kinematic and dynamic variables (the 1þ 1þ 2 varia-
bles), which have the advantage to be physically well
defined and to have a clear mathematical significance. The
1þ 1þ 2 variables satisfy a set of evolution and constraint
equations derived from the Bianchi and Ricci identities,
forming a closed (but not always complete [4]) system for a
chosen equation of state describing matter.
In the following we give a brief review of this

formalism, before presenting the basic equations of the
new reconstruction technique.

A. The 1+ 1+ 2 decomposition

As mentioned above, the first step in the construction of
the 1þ 1þ 2 approach is the foliation of the spacetime.
The foliation is obtained by defining a congruence of
integral curves of the timelike vector field ua so that the
spacetime is split in 3-spaces V perpendicular to ua. This
decomposition allows us to define the projection tensor
hab ¼ gab þ uaub which represents the metric of the 3-
spaces. Using ua and hab any tensorial object can be split
according to the foliation. For example, a 4-vector Xa can
be written as

Xa ¼ Xua þXa; X≡ Xaua; Xa ≡ Xhai; ð6Þ

and any symmetric 4-tensor

Xab ¼ X0uaub þX1hab þ 2XðaubÞ þXab; ð7Þ

X0 ≡ Xabuaub; X1 ≡ 1

3
Xabhab; ð8Þ

Xa ≡ hacubXcb; Xab ¼ Xhabi: ð9Þ

The angle brackets above denote orthogonal projections of
vectors and the orthogonally projected symmetric trace-
free (PSTF) part of tensors [4]:

Xhai ¼ habXb; Xhabi ¼
�
hðachbÞd −

1

3
habhcd

�
Xcd:

ð10Þ

At this point one performs a further split of the orthogonal
3-spaces via the choice of a special spacelike direction
represented by ea so that

eaua ¼ 0; eaea ¼ 1: ð11Þ

Then, as before, we can define the projection tensor

Na
b ≡ hab − eaeb ¼ gab þ uaub − eaeb; Na

a ¼ 2;

ð12Þ

which maps tensors onto the 2-surfacesW orthogonal to ea

and ua. It is clear that eaNab ¼ 0 ¼ uaNab.
Using this decomposition any tensorial object can be

split along ua, ea, andW. For example any 4-vector Xa can
be irreducibly split as

Xa ¼ Ξ0ua þ Ξ1ea þ Ξa
2; ð13Þ

Ξ0 ¼ X; Ξ1 ≡ −Xaea; Ξa ≡ NabXb: ð14Þ

A similar decomposition can be performed for a symmetric
4-tensor, Xab:

Xab ¼ Ξ0uaub þ Ξ1eaeb þ Ξ3Nab þ 2Ξða
1 u

bÞ

þ 2Ξða
2 e

bÞ þ 2Ξ2uðaebÞ þ Ξab; ð15Þ

where

Ξ0 ¼ X0; Ξ1 ≡X1 þXabNab;

Ξ2 ≡Xcec; Ξ3 ≡X1 −
1

2
XabNab;

Ξa
1 ≡Xcecea; Ξa

2 ≡XbNab þXcbNcaeb;

Ξab ≡Xfabg ≡
�
NcðaNbÞd −

1

2
NabNcd

�
Xcd;
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and the curly brackets denote the PSTF part of a tensor with
respect to ea.
The 2-surface W carries a natural 2-volume element, the

Levi-Civita 2-tensor:

εab ≡ εabcec ¼ ηdabcecud; ð16Þ
where εabc and ηabcd are the Levi-Civita tensors in the
3-space and 4-space respectively.
The decomposition defined above can be also used to

define a set of derivatives operators. Using the vector ua the
covariant time derivative for any tensor Xa::b

c::d can be
defined by

_Xa::b
c::d ¼ ue∇eXa::b

c::d: ð17Þ
The derivative in the spaces V are, instead, the fully
orthogonally projected covariant derivative D,

DeXa::b
c::d ¼ hafhpc…hbghqdhre∇rXf::g

p::q: ð18Þ

From this last operator one can deduce two other deriv-
atives: the “hat derivative”

X̂a::b
c::d ≡ efDfXa::b

c::d; ð19Þ

which is the derivative along the ea vector field in V and the
“δ derivative”

δfXa::b
c::d ≡ Na

h…Nb
gNi

c::Nj
dNf

pDpXg::h
i::j; ð20Þ

which is the projected derivative onto W.

B. Kinematical variables

We can now decompose the covariant derivative of ea in
the direction orthogonal to ua into its irreducible parts:

Daeb ¼ eaab þ
1

2
ϕNab þ ξεab þ ζab; ð21Þ

where

ab ≡ ecDceb ¼ êb; ð22Þ

ϕ≡ δaea; ð23Þ

ξ≡ 1

2
εabδaeb; ð24Þ

ζab ≡ δfaebg: ð25Þ

Therefore, for an observer who chooses ea as a special
direction in the spacetime, ϕ represents the expansion of the
integral curves of the vector field ea, ζab is their distortion
(i.e. the shear of ea) and aa the change of vector ea along its
integral curves (e.g. its acceleration). We can also interpret

ξ as a representation of the “twisting” or rotation of the
integral curves of ea (i.e. the vorticity associated with ea).
In order to complete the characterization of the

kinematical variables we consider the 1þ 3 kinematics
variables

Daub ¼ ua _ub þ
1

3
Θhab þ σab þ ωab; ð26Þ

together with the electric and magnetic parts of the Weyl
curvature tensor Cabcd

Eab ¼ Cabcducud; ð27Þ

Hab ¼
1

2
ηadeCde

bcuc; ð28Þ

and we operate a further split associated with the choice of
ea:

_ua ¼ Aea þAa; ð29Þ

ωa ¼ 1

2
ηabcωbc ¼ Ωea þΩa; ð30Þ

σab ¼ Σ
�
eaeb −

1

2
Nab

�
þ 2ΣðaebÞ þ Σab; ð31Þ

Eab ¼ E
�
eaeb −

1

2
Nab

�
þ 2EðaebÞ þ Eab; ð32Þ

Hab ¼ H
�
eaeb −

1

2
Nab

�
þ 2HðaebÞ þHab: ð33Þ

Therefore the kinematic variables of the 1þ 1þ 2 formal-
ism are eight scalars

fϕ; ξ;Θ;A;Ω;Σ; E;Hg; ð34Þ
six vectors

fab;Aa;Ωa;Σa; Ea;Hag; ð35Þ
and four tensors

fζab;Σab; Eab;Habg: ð36Þ
The full covariant derivatives of ea and ua in terms of these
variables are given in [3,7].

C. Thermodynamics

Now, let us consider the matter stress energy tensor Tm
ab.

It is known that upon foliation this tensor admits the
irreducible decomposition

Tm
ab ¼ μuaub þ phab þ 2qðaubÞ þ πab; ð37Þ
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where ua is the direction of a timelike observer, hab is the
projected metric on V and μ, p, q, and πab denotes the
standard matter density, pressure, heat flux, and anisotropic
stress respectively.
As before, we can split the anisotropic 1þ 3 fluid

variables qa and πab as

qa ¼ Qea þQa; ð38Þ

πab ¼ Π
�
eaeb −

1

2
Nab

�
þ 2ΠðaebÞ þ Πab: ð39Þ

The 1þ 1þ 2 splitting of Tab is, therefore,

Tm
ab ¼ μuaub þ ðpþ ΠÞeaeb þ

�
p −

1

2
Π
�
Nab

þ 2QeðaubÞ þ 2ðQða þ ΠðaÞubÞ þ Πab: ð40Þ

Thus matter is represented by four scalars:

fμ; p;Q;Πg; ð41Þ
two vectors

fQa;Πag; ð42Þ
and one tensor Πab. Note that the three matter sources that
appear in the Einstein equations as

fμ; pr; p⊥g; ð43Þ
are connected to the 1þ 1þ 2 matter scalars by
pr ¼ pþ Π, and p⊥ ¼ p − 1

2
Π. In the following, for

sake of brevity, we will only give the results of the
thermodynamics in terms of fμ; p;Πg.

III. 1+ 1+ 2 EQUATIONS FOR STATIC AND
SPHERICALLY SYMMETRIC SPACETIMES

The formalism given above is clearly able to describe in a
natural way all locally rotationally symmetric (LRS)
spacetime, e.g. space times in which one can define
covariantly a unique, preferred spatial direction. In the
following we are interested in the case of the isotropic,
rotation free, static, and spherically symmetric spacetime.
In this case all the 1þ 1þ 2 vectors and tensors vanish as
well as the variables Ω, ξ, H, Θ, Σ, and Q. Thus one is left
with the six scalars fA;ϕ; E; μ; p;Πg and the set of
(1þ 1þ 2) equations, which describe spherically symmet-
ric static spacetime, is [3,7]

ϕ̂ ¼ −
1

2
ϕ2 −

2

3
μ −

1

2
Π − E; ð44Þ

Ê −
1

3
μ̂þ 1

2
Π̂ ¼ −

3

2
ϕ

�
E þ 1

2
Π
�
; ð45Þ

p̂þ Π̂ ¼ −
�
3

2
ϕþA

�
Π − ðμþ pÞA; ð46Þ

Â ¼ −ðAþ ϕÞAþ 1

2
ðμþ 3pÞ: ð47Þ

with the constraint

0 ¼ −Aϕþ 1

3
ðμþ 3pÞ − E þ 1

2
Π: ð48Þ

In order to solve the equations above it is useful to define
the Gaussian curvature K of W [3]

K ¼ 1

3
μ − E −

1

2
Πþ 1

4
ϕ2: ð49Þ

The propagation equation for K can be then written as

K̂ ¼ −ϕK: ð50Þ

This last equation is the starting point for the choice of an
affine parameter related to the hat derivative, which can
lead to a simplification of the final 1þ 1þ 2 equations. For
our purposes a convenient parameter is the logarithmic
space variable ρ such that K̂ ¼ K;ρϕ. This operation allows
us to make the ρ derivatives dimensionless. In this way (50)
becomes

K;ρ ¼ −K; ð51Þ

and the other equations become

ϕϕ;ρ ¼ −
1

2
ϕ2 −

2

3
μ −

1

2
Π − E; ð52Þ

E;ρ −
1

3
μ;ρ þ Π;ρ ¼ −

3

2

�
E þ 1

2
Π
�
; ð53Þ

ϕðp;ρ þ Π;ρÞ ¼ −
�
3

2
ϕþA

�
Π − ðμþ pÞA; ð54Þ

ϕA;ρ ¼ −ðAþ ϕÞAþ 1

2
ðμþ 3pÞ; ð55Þ

Aϕ −
1

3
ðμþ 3pÞ þ E −

1

2
Π ¼ 0; ð56Þ

K ¼ 1

3
μ − E −

1

2
Πþ 1

4
ϕ2: ð57Þ

Note that in the system above we cannot eliminate Eq. (57).
This is due to the fact that using this new parameter Eq. (51)
is decoupled. Therefore, there can be solutions that satisfy
all the above differential equations, but not Eq. (57) (see [8]
for an example in another framework).
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The parameter ρ is designed in such a way to allow the
definition of a new set of variables which will be the
cornerstone of the present work. Another, maybe more
natural choice, can be obtained requesting that K ∝ r−2 i.e.
it is proportional to the inverse square of the area radius of
W. Since Eq. (50) holds, one obtains that the hat derivative
of any scalar X is

X̂ ¼ 1

2
rϕ

dX
dr

: ð58Þ

However, all the affine parameters can be easily related
via Eq. (50). Using this equation one finds immediately
that ρ ¼ 2 lnðr=r0Þ, where r0 is an arbitrary constant. In
the following, without loss of generality, we will set r0 to
1 i.e. we will assume r to be dimensionless. In the rest of
this work we will perform the calculations in ρ, but we
will give the final results in terms of r. This is due to the
fact that in some cases integrations in r are easier to
perform.
To conclude, it will be useful for our purposes also to

connect directly the metric components to some of the
quantities described above. In [3,7] the relation betweenA,
ϕ, K and the metric coefficients in r were found to be

A ¼ 1

2A
ffiffiffiffi
B

p dA
dr

; ð59Þ

ϕ ¼ 2

r
ffiffiffiffi
B

p ; ð60Þ

and correspond to

K ¼ K0

r2
: ð61Þ

In terms of ρ and using the same procedure one finds that
for the line element

ds2 ¼ −AðρÞdt2 þ BðρÞdρ2 þ C0eρðdθ2 þ sin2θdϕ2Þ;
ð62Þ

we have

A ¼ 1

2A
ffiffiffiffi
B

p dA
dρ

; ð63Þ

ϕ ¼ 1ffiffiffiffi
B

p ; ð64Þ

K ¼ 1

C0

e−ρ ¼ K0e−ρ: ð65Þ

In general, for the metric

ds2 ¼ −AðpÞdt2 þ BðpÞdp2 þ CðpÞðdθ2 þ sin2θdϕ2Þ;
ð66Þ

A, ϕ, and K are given by

A ¼ 1

2A
ffiffiffiffi
B

p dA
dp

; ð67Þ

ϕ ¼ 1

C
ffiffiffiffi
B

p dC
dp

; ð68Þ

K ¼ 1

C
: ð69Þ

This form of the variables highlights the connection
between the 1þ 1þ 2 formalism and the Takeno
formalism [10].1

IV. NEW SET OF VARIABLES FOR THE STATIC
SPHERICALLY SYMMETRIC CASE

Equations (52)–(57) characterize completely the static
and spherically symmetric metrics in relativity, and we can
use them to find solutions of Einstein theory with this
symmetry. However, this system of equations can be further
simplified to a set of dimensionless equations.
Let us the define the following variables

X ¼ ϕ;ρ

ϕ
; Y ¼ A

ϕ
; K ¼ K

ϕ2
; E ¼ E

ϕ2
;

M ¼ μ

ϕ2
; P ¼ Π

ϕ2
; P ¼ p

ϕ2
; ð70Þ

and use the affine parameter ρ. Equations (52)–(57) take the
form

Y;ρ ¼ M þ 3P − 2YðX þ Y þ 1Þ; ð71Þ

K;ρ ¼ −Kð1þ 2XÞ; ð72Þ

P;ρ þ P;ρ ¼ −2YðM þ PÞ − 2Pð2X þ YÞ
− Pð4X þ 3Þ; ð73Þ

with the constraints

2M þ 2Pþ 2Pþ 2X − 2Y þ 1 ¼ 0; ð74Þ

1 − 4K − 4Pþ 4Y − 4P ¼ 0; ð75Þ

1In fact, the covariant formalism we have presented with this
choice of the affine parameter has similarities with a number of
other approaches to the resolution of the Einstein equations, like
the one in [11]. However there are important differences in terms
of generality, physical meaning of the key variables, and the
covariance and gauge invariance of the equations.
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2M þ 6Pþ 3P − 6Y − 6E ¼ 0: ð76Þ

These constraints allow the elimination of X and E as
well as the elimination of one of Eqs. (71)–(73). This is
possible because, due to the definition of K, Eq. (72) is not
decoupled from the system. The above system of equations
will be the starting point of the reconstruction scheme we
intend to propose.2

As a check of the new equations, let us consider first
the case of standard Einstein gravity in vacuum.
Equations (71)–(76) can be reduced to the differential
equations:

Y;ρ ¼ −ð1þ YÞY − XY; ð77Þ

K;ρ ¼ −Kð1þ 2XÞ; ð78Þ

with the constraints

E ¼ −Y; ð79Þ

1þ 2X − 2Y ¼ 0; ð80Þ

1 − 4Kþ 4Y ¼ 0: ð81Þ

Implementing the constraints both the equation for Y and
for K collapse to the Bernoulli equation

2Y;ρ þ Y þ 4Y2 ¼ 0: ð82Þ

The integral of this equation can be written as

2 ln

���� Y
1þ 4Y

���� ¼ ρ − ρ0; ð83Þ

where ρ0 is a constant. If we take the solution for which the
absolute value is positive (which we will call the positive
branch of the solution), (82) resolves to

Y ¼ Y0

eρ=2 − 4Y0

; ð84Þ

where Y0 ≠ 0 is an integration constant. Here and in the
following the subscript “0” is used for all the (integration)
constants. Substituting this solution in (80) and using the
definitions (70) we have

ϕ ¼ ϕ0e−3ρ=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eρ=2 − 4Y0

q
; ð85Þ

and, as a consequence,

A ¼ Y0ϕ0e−
3ρ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eρ=2 − 4ϕ0

p ; K ¼ ϕ2
0

4
e−ρ: ð86Þ

The solution above can be given also in terms of r

ϕ ¼ 2ϕ0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4Y0

r

r
; A ¼ ϕ0Y0

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Y0

r

q ; K ¼ ϕ2
0

4r2
;

ð87Þ

which are exactly the solutions of [3] representing the
Schwarzschild space-time.
Instead, taking the solution for which the absolute value

in (83) is negative (the negative branch of the solution) we
obtain

Y ¼ −
Y0

eρ=2 þ 4Y0

; ð88Þ

which can be shown to correspond to negative mass
Schwarzschild space-time [12]. The fact that Eq. (82) leads
to two different solutions might appear surprising, but it is
perfectly compatible with the Picard-Lindelöff theorem:
given a specific boundary condition Eq. (82) gives always a
unique solution. In the examples in the following sections it
will happen that a given prescription in the variables
Y; X;K might lead to more than a single solution. The
main purpose of this work is to show the working of the
reconstruction method rather than analyze the solutions
obtained in detail, so for the sake of brevity in the following
we will show only one of these solutions per example.
Finally the quantities X and Y can be related to

the coefficients of the metric. Substituting the relations
(59)–(61) and (67)–(69) in the definition (70), one has

Y ¼ rA;r

4A
; X ¼ 1

2

�
rB;r

2B
− 1

�
; K ¼ K0B; ð89Þ

in terms of r and

Y ¼ A;ρ

A
; X ¼ −

B;ρ

2B
; K ¼ K0Be−ρ; ð90Þ

in terms3 of ρ. In the above formulas the constant K0 is
connected to ϕ0 by the relation K0 ¼ ϕ2

0=4.

2In principle there is no reason not to extend this redefinition to
a more complicated LRS metric, but here we will limit ourselves
to the static spherical symmetric case leaving such tasks for future
work.

3Note that a direct transformation of ρ in r does not map the
corresponding expressions above one in the other. This happens
because a change of radial “coordinate” involves also its differ-
ential in the line element. So in general

BðrÞdr2 ¼ BðρÞdρ2 ⇒ BðrÞ ¼ BðρÞe−ρ: ð91Þ
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V. THE CASE OF GENERAL RELATIVITY
AND A GENERIC FLUID

Since we have checked the consistency of Eqs. (52)–(56)
we can consider some elementary applications within the
framework of GR. In particular, one can use Eqs. (71)–(75)
to determine the matter distribution corresponding to a
specific gravitational field and vice versa.
Solving4 (71)–(75) for the variables ðM;P;P;ρ;PÞ we

obtain

M ¼ K − X −
3

4
; ð92Þ

P ¼ 1

3
½Y − 2Y2 − Xð2Y þ 1Þ − 2ðKþ Y;ρÞ�; ð93Þ

P ¼ 1

12
½−4Kþ Xð8Y þ 4Þ þ 8Y;ρ

þ 8YðY þ 1Þ þ 3�; ð94Þ

P;ρ þ P;ρ ¼ Kð1þ 2XÞ þ Y;ρ; ð95Þ

K;ρ ¼ −Kð1þ 2XÞ: ð96Þ

In the equations above, (95) coincides with the sum of the
derivatives of (93) and (94) once (96) has been substituted.
Therefore we can exclude Eq. (95) and the remaining
system is sufficient to solve for the thermodynamics once
the metric is chosen. Specifically, starting from a metric
element one can calculate the variables ðY; X;KÞ and, using
(70), the pressure distribution and the energy density.
Let us consider, for example, the Rindler metric

proposed in [13]:

ds2 ¼ −K2dt2 þ dr2

K2
þ r2ðdθ2 þ sin2θdϕ2Þ; ð97Þ

K2 ¼ 1 −
2M
r

− Λr2 þ br: ð98Þ

This metric was proposed using the technique of spherical
reduction [14] and it has been tested as a model for the
Pioneer effect against the standard planetary data [13].
Using Eq. (89) one obtains

X ¼ Y −
1

2
; Y ¼ 2beρ þ μ

4ð2beρ þ eρ=2 − μÞ ; ð99Þ

K ¼ eρ=2

4ð2beρ þ eρ=2 − μÞ : ð100Þ

Substituting in Eqs. (71)–(74) one obtains immediately

μ ¼ −
2b
r
; p ¼ 4b

3r
; Π ¼ 2b

3r
; ð101Þ

or

μ ¼ −
2b
r
; pr ¼

2b
r
; p⊥ ¼ b

r
; ð102Þ

c2s ¼
dp
dμ

¼ −
2

3
; ð103Þ

which is, modulus the choice of the conventions, the result
of [14].
Another example can be made using directly relations

between the variables X; Y;K. For example, consider the
simple choice

X ¼ βY2; Y;ρ ¼ αY: ð104Þ

K can be obtained integrating (96) so that

Y ¼ Y0eαρ; X ¼ βY2
0e

2αρ; ð105Þ

K ¼ K0 exp

�
−ρ −

β

α
Y2
0e

2αρ

�
: ð106Þ

Using the definitions in (70), one has immediately

ϕ ¼ �
ffiffiffiffiffiffi
K0

K0

s
exp

�
βY2

0e
2αρ

2α

�
; ð107Þ

A ¼ −2Y0

ffiffiffiffiffiffi
K0

K0

s
exp

�
αρþ βY2

0e
2αρ

2α

�
: ð108Þ

Passing to the parameter r and using Eqs. (67)–(68)
corresponds to the metric5

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ sin2θdϕ2Þ; ð109aÞ

A ¼ A0 exp

�
2Y0r2α

α

�
; ð109bÞ

4Equation (76) gives only the value of the variable E, which is
not important in our setting and will be neglected in the
following. Of course one could choose to substitute the variable
Y with E. This formulation will lead to a different set of
reconstruction equations and, possibly, to an additional set of
exact solutions.

5One could also use directly the (90) or the (89) to obtain the
same result. Here and in the following ϕ and A were given with
the intent of making possible a check of the results also against
the system (52)–(56) other than the Einstein equations. We have
done these tests for every solution given in the present work.
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B ¼ 4K0

K0r2
exp

�
−
βY2

0r
4α

α

�
; ð109cÞ

C ¼ r2

K0

; ð109dÞ

and a fluid whose thermodynamics is given by

μ ¼ K0

r2
−

K0

4K0

ð4βY2
0r

4α þ 3Þe
βY2

0
r4α

α ; ð110aÞ

p ¼ K0

12K0

f4Y2
0r

4αðβ þ 2βY0r2α þ 2Þ

8Y0r2αðαþ 1Þ þ 3ge
βY2

0
r4α

α −
K0

3r2
; ð110bÞ

Π ¼ −
K0Y0r2α

3K0

½Y0r2αðβ þ 2βY0r2α þ 2Þ

þ 2α − 1�e
βY2

0
r4α

α −
2K0

3r2
: ð110cÞ

The metric coefficients we have obtained present no
divergences at finite r and their behavior at r ¼ 0 and r ¼
∞ depends on the values of the parameters α, β, and Y0.
Since Y0 is an integration constant, we can consider four
cases depending only on the values of α and β. Particularly
interesting is the case α < 0; β < 0 shown in Fig. 1. In the
limit r → 0 it might look like the singularity is absent
because all the metric coefficients tend to zero. However
the Ricci scalar and the Kretschmann invariant behave as
(we assume for simplicity α ¼ −1, β ¼ −1)

R → r−6 exp ð−16r−4Þ; ð111Þ
and

K ¼ RabcdRabcd → r−12 exp ð−32r−4Þ; ð112Þ

which both diverge as r → 0. This discordance can be
interpreted thinking that, in spite of the regularity of the
metric coefficients, the actual gravitational force related to
the derivatives of the metric tensor is in fact divergent. This
implies that a singularity is present in the point r ¼ 0, but
its nature is different from the standard Schwarzschild
singularity.
As another example, consider

X ¼ −βK; Y;ρ ¼ αY2; ð113Þ

with β > 0. K can be obtained integrating (96) so that

Y ¼ −
1

αρþ Y0

; X ¼ −β
eK0

2βeK0 þ eρ
; ð114Þ

K ¼ eK0

2βeK0 þ eρ
: ð115Þ

Using the definition of Y and K one has immediately

ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0ðe−K0 þ 2βe−ρÞ

q
; ð116Þ

A ¼ 1

αρþ Y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0ðe−K0 þ 2βe−ρÞ

q
: ð117Þ

Passing to the parameter r and using Eqs. (67)–(68)
corresponds to the metric

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ sin2θdϕ2Þ; ð118aÞ

A ¼ A0j2α ln rþ Y0j−2=α; ð118bÞ

B ¼ 4eK0

K0ðr2 þ 2βeK0Þ ; ð118cÞ

C ¼ r2

K0

; ð118dÞ

and a fluid whose thermodynamics is given by

A
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r

B

FIG. 1 (color online). Graphs of the solution (109) in the case
α < 0, β < 0. The values of the parameters have been chosen in
such a way to make the features of the solution as clear as possible.
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μ ¼ K0

�ðβ þ 2Þ
2r2

−
3

4
e−K0

�
; ð119aÞ

p ¼ K0

�
e−K0

4
−
β þ 2

6r2
þ 2e−K0r2ðα − 2α ln r − Y0 þ 1Þ þ βðY0 − 2ðαþ 1Þ þ 2α ln rÞ

3r2ð2α ln rþ Y0Þ2
�
; ð119bÞ

Π ¼ K0

�
4βðαþ 2α ln rþ Y0 þ 1Þ − r2ð2αþ 2α ln rþ 2þ Y0Þ

3r2e−K0ð2α ln rþ Y0Þ2
−
ðβ þ 2Þ
3r2

�
: ð119cÞ

The features of this solution for different values of the
parameter α are shown in Figs. 2 and 3. At r ¼ 0 the Ricci
scalar and the Kretschmann diverge, thus despite the
behavior of the metrics’ coefficients (and in a similar
way of the previous case) there is a singularity.
In the case α > 0, the coefficient B is regular, whereas A

presents a divergence. The analysis of the Ricci scalar and
the Kretschmann invariant indicates that the divergence
corresponds to an actual singularity. Thus in this case our

solution seems to show a second singularity, which is
naked. Note that the divergence of A is mirrored by a
divergence of the anisotropic pressure Π.
In the case α < 0, both coefficient are regular. However

A presents a zero and this again implies the presence of a
second singularity albeit of different nature (but still
naked). The presence of this singular point is also accom-
panied by a divergence in the pressure p.
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FIG. 2 (color online). The coefficients of the metric (118) for
different values of the parameter α. The values of the parameters
have been chosen in such a way to make the features of the
solution as clear as possible and consistent with the choice
in Fig. 3.

p

r

2

1

1

2

3

p

r

10

5

5

10

15

1 2 3 4

1 2 3 4 5 6

FIG. 3 (color online). The thermodynamic quantities (119)
associated with (118) for different values of the parameter α. The
values of the parameters have been chosen in such a way to make
the features of the solution as clear as possible and consistent with
the choice in Fig. 2.
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VI. RECONSTRUCTING SOLUTIONS
COMPLYING WITH SPECIFIC PHYSICAL

CONSTRAINTS

The general technique proposed above allows one to find
many other exact solutions and they contain even more
complicated features. However, we would like to refine the
method in order to control the physical properties of the
solution. For example, one would like to generate solutions
which satisfy a given energy condition or that is asymp-
totically flat.
Let us consider first the weak energy condition (WEC).

In terms of the 1þ 1þ 2 formalism, this condition can be
easily stated. Consider an observer that moves with velocity
ūa ¼ γðua þ vaÞ ¼ γðua þ wa

1 þ wa
2Þ with respect to the

frame ua we have chosen. Here va is the relative (spatial)
velocity measured by ua so that vaua ¼ 0. The vectors wa

1

and wa
2 are the projection along and orthogonal to a given

ea and therefore wa
1ua ¼ 0 ¼ wa

2ua and wa
1gabw

b
1 ¼ 0. The

observer ūa will measure an energy density

μ̄ ¼ Tabūaūb ¼ μþ γ2w2
1ðμþ pþ ΠÞ

þ γ2w2
2

�
μþ p −

1

2
Π
�
; ð120Þ

where we have used the general 1þ 1þ 2 splitting of the
tensor Tab (40). In this way imposing μ̄ ≥ 0 implies

μ ≥ 0; μþ pr ¼ μþ pþ Π ≥ 0;

μþ p⊥ ¼ μþ p −
1

2
Π ≥ 0: ð121Þ

In terms of Eq. (70) and for ϕ2 > 0 the WEC can be written
as

M ≥ 0; M þ Pþ P ≥ 0; M þ P −
1

2
P ≥ 0;

ð122Þ

and using Eqs. (92)–(96) this gives, for any X

Y ≥
1

2
ð2X þ 1Þ; K ≥

1

4
ð4X þ 3Þ; ð123Þ

Y;ρ ≥
1

2
ð1 − 2K − 2XY þ X − 2Y2 − YÞ; ð124Þ

K;ρ ¼ −Kð1þ 2XÞ: ð125Þ

Let us see if we can reconstruct a solution that fulfills WEC.
Choosing

K ¼ 1

4
ð4X þ 3þ αÞ; Y ¼ 1

2
ð2X þ 1þ βÞ; ð126Þ

and imposing

Y;ρ ¼
1

2
ð1 − 2K − 2XY þ X − 2Y2 − YÞ þ γ; ð127Þ

it is easy to prove that for α ¼ 3β and γ ¼ 1
4
ðβ þ 3Þ the

relations above are consistent with the WEC for any choice
of X and β ≥ 0 and the equations (127) and (125) coincide.
Now substituting our ansatz on Y and K in either (127) or
(96) we obtain

X;ρ ¼ −
1

4
ð2X þ 1Þð3þ 3β þ 4Þ; ð128Þ

which gives

1

2ð1þ 3βÞ ln
���� 3ðβ þ 1Þ þ 4X

1þ 2X

���� ¼ ρ − ρ0; ð129Þ

where ρ0 is a constant. Choosing the negative branch of this
solution gives

X ¼ −
1

2
þ 3β þ 1

2ðe1
2
ð3βþ1Þρ þ 2Þ ; ð130Þ

and therefore

Y ¼ β

2
þ 1þ 3β

2ðe1
2
ð3βþ1Þρ þ 2Þ ; ð131Þ

K ¼ 3β þ 1

4
þ 1þ 3β

2ðe1
2
ð3βþ1Þρ þ 2Þ : ð132Þ

Using the definition of Y and K one has immediately

ϕ ¼ �2

ffiffiffiffiffiffi
K0

K0

s
e−

3
4
ðβþ1Þρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
1
2
ð3βþ1Þρ þ 2

q
; ð133Þ

A ¼
ffiffiffiffiffiffi
K0

p ½βe1
4
ðβþ1Þρ þ ðβ þ 1Þe−3

4
ðβþ1Þρ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K0ð2þ e
1
2
ð3βþ1ÞρÞ

q : ð134Þ

Passing to the parameter r and using Eqs. (67) and (68)
corresponds to the metric

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ sin2θdϕ2Þ; ð135aÞ

A ¼ A0

rβþ1
ð2þ r3βþ1Þ; ð135bÞ

B ¼ 4K0

K0

ð2þ r3βþ1Þ−1; ð135cÞ

C ¼ 4r2

K0

; ð135dÞ

and a fluid whose thermodynamics is given by
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μ ¼ K0

4K0r3
½6βr−3β − ð1 − 4K0ÞrÞ�; ð136aÞ

p ¼ K0r−3β−3

12K0

f½2βðβ þ 1Þ − 4K0 þ 1�r3βþ1

þ 2βð2β − 1Þg; ð136bÞ

Π ¼ −
K0r−3β−3

6K0

f½ðβ − 2Þβ þ 4K0 − 1�r3βþ1

þ 2βðβ þ 1Þg: ð136cÞ

Note that the energy density is positive for K0 > 1=4.
Calculating the rest of the quantities in (121) one obtains

ρþ pr ¼
β4K0ð2þ r1þ3βÞ

2K0r3βþ1
; ð137Þ

ρþ p⊥ ¼ K0

K0r3ðβþ1Þ ½2ðβ2 þ 4K0 − 1Þr3βþ1

þ βðβ þ 3Þ�; ð138Þ

which are also always positive for K0 > 1=4. The metric
presents no divergences at finite r ≠ 0, but in r ¼ 0 and for
r → ∞ the analysis of the Ricci scalar and Kretschmann
invariant shows the presence of singularities. It is interest-
ing to notice that the solution (135) satisfies also the strong
energy condition for K0 > 0:

ρþ 3p ¼ 2βK0ðβ þ 1Þ
K0r3ðβþ1Þ ðr3βþ1 þ 2Þ: ð139Þ

A plot of the behavior of the metric coefficients and of the
thermodynamic quantities is given in Fig. 4.
Let us now formulate the concept of asymptotic

flatness in terms of our new variables. Loosely speaking,
a metric is asymptotically flat if there exists at least a
coordinate system in which, at a large value of the radial
coordinate, the metric tends to Minkowski i.e. in which
the Riemann tensor is identically zero. This implies that
in this limit ua, ea, and Nab are constant objects and A
and ϕ have to be zero. Unfortunately our definition (70)
is not useful to deduce the behavior of the new variables
in this limit. However, looking at Eq. (90) it is clear that
the conditions corresponding to asymptotic flatness are
given by

Y → 0; X → 0; K → 0; ð140Þ

when ρ → ∞. The behavior of the other variables can be
derived as in [8] from the decomposition of the Riemann
tensor. In particular, we have that fμ; p;Πg → 0 and as
consequence E → 0. Since also ϕ → 0 this leaves three

possibilities for fM;P;Pg6: they can go to zero or a con-
stant (different from zero) or diverge. Only the second
last case is compatible with the constraints, but this
possibility also implies that M < 0. Assuming B positive
and therefore ϕ real [see Eq. (68)], this means μ < 0
which is not physically interesting. This means that no
metric can be asymptotically flat and have a positive
energy density if we write it in the parameter ρ. Of
course, since the concept of asymptotic flatness depends
on the choice of the coordinate/affine parameter, one can
require that the solution is asymptotically flat in r:

fY;μ;p;Πg→0; K→
K0

ϕ2
0

¼ 1

4
; X→−

1

2
ð142Þ

for ρ → ∞.
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FIG. 4 (color online). Graphs of the solution (135) in the case
β > 0. The values of the parameters have been chosen in such a
way to make the features of the solution as clear as possible.

6Since (56) holds, one has

E →
1

3
ðM þ 3PÞ þ 1

2
P; ð141Þ

which is essentially Eq. (76) in the limit Y → 0. Therefore E has
the same behavior of fM;P;Pg.
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Let us test the above results reconstructing a solution
which is asymptotically flat in r. Equation (142) gives us
the prescription for X and Y. We can set for example

Y ¼ 1

eα
2ρ þ Y0

; X ¼ X0 exp ð−β2ρÞ −
1

2
: ð143Þ

Equation (73) gives immediately

K ¼ K0 exp

�
2X0e−β

2ρ

β2

�
; ð144Þ

where, to fulfill (142), we must have K0 ¼ 1=4. Using the
definition of Y and K one has immediately

ϕ ¼ �2

ffiffiffiffiffiffi
K0

K0

s
exp

�
ρ

2
−
X0e−β

2ρ

β2

�
; ð145Þ

A ¼ −

ffiffiffiffiffiffi
K0

K0

s
e
−ρ
2
−X0e

−β2ρ

β2

eα
2ρ þ Y0

: ð146Þ

Passing to the parameter r and using Eqs. (67) and (68)
corresponds to the metric

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ sin2θdϕ2Þ; ð147aÞ

A ¼ A0r
4
Y0ðr2α2 þ Y0Þ−

2

α2Y0 ; ð147bÞ

B ¼ 4K0

K0

exp

�
2X0r−2β

2

β2

�
; ð147cÞ

C ¼ r2

K0

; ð147dÞ

and a fluid whose thermodynamics is given by

μ ¼ K0

4K0r2

�
4K0 − ð4X0r−2β

2 þ 1Þ exp
�
−
2X0r−2β

2

β2

��
; ð148aÞ

p ¼ K0

3K0r2

�
X0r−2β

2

�
2

r2α
2 þ Y0

−K0 exp

�
2X0r−2β

2

β2

�
þ 1

�
−
ð2α2 − 1Þr2α2
ðr2α2 þ Y0Þ2

þ ðY0 þ 2Þ
ðr2α2 þ Y0Þ2

þ 1

4

�
exp

�
−
2X0r−2β

2

β2

�
; ð148bÞ

Π ¼ K0

6K0r2

�
4K0 exp

�
2X0r−2β

2

β2

�
þ 2X0r−2β

2

�
1þ 2

r2α
2 þ Y0

�
þ 4ðα2Y0 þ 1Þ

ðr2α2 þ Y0Þ2
−
4ðα2 þ 1Þ
r2α

2 þ Y0

− 1

�
exp

�
−
2X0r−2β

2

β2

�
: ð148cÞ
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FIG. 5 (color online). Graphs of the solution (147). The values
of the parameters have been chosen in such a way to make the
features of the solution as clear as possible.
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Figure 5 shows the metric coefficient and the thermo-
dynamics quantities. Apart from r ¼ 0 in which a singu-
larity is present, the metric coefficients are always regular.
This implies the presence of a naked singularity. Also the
thermodynamics does not present any irregularity. As
r → ∞, A and B go to a constant and the thermodynamics
quantities approach zero. The metric is then asymptotically
flat and the discussion above is confirmed.

VII. DIRECT RESOLUTION OF THE EINSTEIN
EQUATIONS WITH A PERFECT FLUID

It is clear from the above examples that the method
proposed above is very effective in terms of the
reconstruction approach. One might therefore ask if the
same is true for the inverse problem i.e. to obtain the metric
from a certain matter configuration. This is achieved
solving Eqs. (71)–(75), for the variables ðX; Y;K; Y;ρ;
K;ρÞ. The resulting equations are somewhat long and are
given in Appendix A. Schematically one has

X ¼ XðM;P;P; P;ρ;P;ρÞ; ð149Þ

Y ¼ YðM;P;P; P;ρ;P;ρÞ; ð150Þ

K ¼ KðM;P;P; P;ρ;P;ρÞ; ð151Þ

Y;ρ ¼ f1ðM;P;P; P;ρ;P;ρÞ; ð152Þ

K;ρ ¼ f2ðM;P;P; P;ρ;P;ρÞ: ð153Þ

An important point is that the above system of equations
contains constraints because the ρ derivative of (150) and
(151) must be equal to (152) and (153), respectively. We
will call these constraints “Y constraint” and “K con-
straint.” This feature implies that a general combination of
functional forms for ðM;P;PÞ does not necessarily corre-
spond to an actual solution of the system so that only a
matter distribution with specific features is compatible with
the symmetries we have imposed on the metric. However, it
is easy to check that, as before, one of the equations above
is redundant and can be eliminated, thus one can eliminate
either the Y constraint or the K constraint.
Let us consider some examples. We start with the simple

case

P;ρ ¼ 0; P;ρ ¼ 0; M;ρ ¼ 0; ð154Þ

which corresponds to a mass distribution given by

P ¼ P0; P ¼ P0; M ¼ M0; ð155Þ

and we choose P0 ¼ 1=12, P0 ¼ 1=24, and M0 ¼ 1=8.

Equations (71)–(74) are solved by

X ¼ −
1

2
; Y ¼ −

1

4
; K ¼ 3

8
; ð156Þ

and, using the definition of Y andK, we can obtainA and ϕ

A¼ϕ0

4
e−ρ=2; ϕ¼ϕ0e−ρ=2; K¼ 3

8
ϕ2
0e

−ρ: ð157Þ

Converting to the parameter r, this corresponds to the
thermodynamical variables

p ¼ ϕ2
0

12r2
; Π ¼ ϕ2

0

24r2
; μ ¼ ϕ2

0

8r2
; ð158Þ

and the metric

ds2 ¼ −A0rdt2 þ
4

ϕ2
0

dr2 þ 8

3ϕ2
0

r2ðdθ2 þ sin2θdϕ2Þ:

ð159Þ

Another way to obtain solutions is to assign only two
conditions on the thermodynamics and to use the Y
constraint to obtain the third one. For example, choosing

P;ρ ¼ αM;ρ; P;ρ ¼ βM;ρ; ð160Þ

where α and β are constants. Integrating we have

P ¼ P0 þ αM; P ¼ P0 þ βM; ð161Þ

where P0 and P0 are constants. This equation suggests that
matter in this case has an equation of state that resembles
the one of a barotropic fluid with the difference that in this
case both the isotropic and anisotropic pressures are
proportional to the energy density. Setting P0 ¼ 0,
P0 ¼ 0, α ¼ −1=3, and β ¼ −2=3, the Y constraint gives
the differential equation

8MM;ρρ − 16M2
;ρ þ 4MM;ρ ¼ 0; ð162Þ

which can be solved exactly to give

M ¼ M0eρ=2

eρ=2 þ 2
; ð163Þ

This implies immediately

X ¼ 1

−2eρ=2 − 4
−
1

2
; Y ¼ 1

−2eρ=2 − 4
; ð164Þ

K ¼ eρ=2ð4M0 þ 1Þ
4ðeρ=2 þ 2Þ ; ð165Þ
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whereM0 is a constant. Using the definition of Y andK we
obtain

A ¼ −
e−3ρ=4ϕ0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eρ=2 þ 2

p ; ϕ ¼ ϕ0e−3ρ=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eρ=2 þ 2

p
:

ð166Þ

Converting to the parameter r, this corresponds to the
thermodynamical variables

μ¼ ϕ2
0

8r2
; p¼−

M0ϕ
2
0

3r2
; Π¼−

2M0ϕ
2
0

3r2
; ð167Þ

and the metric element

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ sin2θdϕ2Þ; ð168aÞ

A ¼ A0

�
1þ 2

r

�
; ð168bÞ

B ¼ 4

ϕ2
0

�
1þ 2

r

�
−1
; ð168cÞ

C ¼ 4

ϕ2
0

r2: ð168dÞ

This metric corresponds again to the negative mass
Schwarzschild solution obtained in Sec. IV although in
this case we are not in vacuum and μ > 0. A singularity at
r ¼ 0 is evident from the behavior of the Kretschmann
invariant and the Ricci scalar and the singularity is naked
because it presents no divergences at finite r ≠ 0. It is also
obvious that the solution is asymptotically flat. A plot of the
metric and the thermodynamic coefficients is given
in Fig. 6.
As a final example let us consider the case

P;ρ ¼ βP;ρ; M;ρ ¼ αM; ð169Þ

where α and β are constants. Integrating, we have

P ¼ M0 þ βP; M ¼ βM0

α
exp ðαρÞ: ð170Þ

Choosing α ¼ 1, β ¼ −1, M0 ¼ −1=4, the Y constraint
gives

3

2
ðeρ − 3ÞP;ρ þ 18P2 −

3

4
Pðe2ρ þ 1Þ þ 1

16
ðe2ρ − 1Þ ¼ 0;

ð171Þ

which admits a solution in terms of generalized Laguerre
polynomials

P ¼ ðeρ − 1ÞL1=2
−1=2ðe

ρ

2
Þ − eρðeρ − 3ÞL1=2

−3=2ðe
ρ

2
Þ

24L1=2
−1=2ðe

ρ

2
Þ

: ð172Þ

This implies

X ¼ 1

4

�
−
eρL3=2

−3=2ðe
ρ

2
Þ

L1=2
−1=2ðe

ρ

2
Þ

− eρ − 2

�
; ð173Þ

Y ¼ −
eρL3=2

−3=2ðe
ρ

2
Þ

4L1=2
−1=2ðe

ρ

2
Þ
−
1

4
; ð174Þ

K ¼ 1

4
−
eρL3=2

−3=2ðe
ρ

2
Þ

4L1=2
−1=2ðe

ρ

2
Þ
: ð175Þ

As before from this result we obtain
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FIG. 6 (color online). Graphs of the solution (168). The values
of the parameters have been chosen in such a way to make the
features of the solution as clear as possible.
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ϕ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0L

1=2
−1=2ðe

ρ

2
Þ

eρL1=2
−1=2ðe

ρ

2
Þ − e2ρL1=2

−1=2ðe
ρ

2
Þ

vuut ; ð176Þ

A ¼ 2
ffiffiffiffiffiffi
K0

p
e−ρ=2ðeρL3=2

−3=2ðe
ρ

2
Þ þ L1=2

−1=2ðe
ρ

2
ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L1=2
−1=2ðe

ρ

2
Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1=2
−1=2ðe

ρ

2
Þ − eρL3=2

−3=2ðe
ρ

2
Þ

q : ð177Þ

Converting to the parameter r, this corresponds to the
thermodynamical variables

μ ¼
ffiffiffi
2

p
K0Dþð rffiffi

2
p Þ

r
; ð178aÞ

p ¼ −
K0ð2

ffiffiffi
2

p
Dþð rffiffi

2
p Þ þ r3 − 3rÞ
6r3

; ð178bÞ

Π ¼ −
K0ð8

ffiffiffi
2

p
Dþð rffiffi

2
p Þ þ r3 − 3rÞ
6r3

; ð178cÞ

where

Dþ ¼ e−x
2

Z
x

0

et
2

dt ð179Þ

is the Dawson function [15] and to the metric element

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ sin2θdϕ2Þ; ð180aÞ

A ¼ A0L
1=2
−1=2ðr

2

2
Þ

r
; ð180bÞ

B ¼ r

4
ffiffiffi
2

p
K0Dþð rffiffi

2
p Þ ; ð180cÞ

C ¼ r2: ð180dÞ

The behavior of the thermodynamical variables and of the
metric coefficients are given in Fig. 7. As in the previous
example, also in this case the metric coefficients and the
thermodynamics is regular and we have a naked singularity.

VIII. RECONSTRUCTING METRICS IN THE
PRESENCE OF A SCALAR FIELD

We will consider now the special case in which matter is
represented by a real scalar field. The scalar field is, at first
sight, easier to deal with than a general perfect fluid,
because it presents less unknown variables i.e. the scalar
field itself and the potential. In terms of our purposes,
however, this fact also means an additional number of
constraints, which increase the difficulty of the search for
solutions.
In order to specialize the general equation of the previous

section to the case of the scalar field we need to write the
matter variables μ; p;Π in terms of the scalar field:

μσ ¼ 1

2
σ̂2 þ V; ð181Þ

pσ ¼ −
σ̂2

6
− V; ð182Þ

Πσ ¼ 2

3
σ̂2: ð183Þ

In this way Eqs. (52)–(57) can be written as

2ϕ̂ − 2Aϕþ ϕ2 ¼ −2σ̂2; ð184Þ

ÂþAðAþ ϕÞ ¼ −V; ð185Þ

ˆ̂σ þ 2ðA − ϕÞσ̂ − V 0 ¼ 0; ð186Þ

4K − ϕ2 − 4Aϕ ¼ −2ϕ2σ̂2 þ 4V; ð187Þ
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FIG. 7 (color online). Graphs of the solution (180). The values
of the parameters have been chosen in such a way to make the
features of the solution as clear as possible.
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3E ¼ −3Aϕþ σ̂2 − 2V; ð188Þ

K̂ ¼ −ϕK: ð189Þ

Note that the third equation above is the Klein-Gordon
equation, thus no additional equations are needed in
this case.
For ϕ ≠ 0 and introducing the parameter ρ and the

variables (70) one can write these equations as

2X − 2Y þ 1 ¼ −Σ2; ð190Þ

Y;ρ þ XY þ Y2 þ 1 ¼ −V ; ð191Þ

Σ;ρ þ ðX þ Y þ 1ÞΣ − V ;σ ¼ 0; ð192Þ

K;ρ ¼ −Kð1þ 2XÞ; ð193Þ

3E ¼ −3Y þ Σ2 − 2V ; ð194Þ

where we have defined

Σ ¼ σ;ρ; V ¼ Vðσ;ϕÞ ¼ VðσÞ
ϕ2

; ð195Þ

so that

V;σ ¼ V ;σϕ
2: ð196Þ

Using the above equations it is possible to apply the new
reconstruction technique also to the scalar field case. As
before, one can use the constraints to eliminate one
equation of the system. We choose to eliminate the
Klein-Gordon equation. The remaining equations can be
written, for ϕ ≠ 0, as

Σ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Y − 2X − 1

2

r
; ð197Þ

V ¼ 1

2
ð2K − X − Y − 1Þ; ð198Þ

2Y;ρ þ 2Y2 þ Y þ Xð2Y − 1Þ þKþ 1 ¼ 0: ð199Þ

Note that in the system above the last equation does not
depend directly on the scalar field. In addition, to have a
real scalar field one has to guarantee that 2Y − 2X − 1 ≥ 0.
This shows that the metrics that are compatible with scalar
fields must satisfy some specific constraints that are
independent from the form of the scalar field and its
potential. Equations (197) and (198) can also be expressed
directly in terms of the metric coeffients:

Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
A;ρ

A
þ B;ρ

B
− 1

�s
; ð200Þ

VðσÞ ¼ 1

4

�
−
A;ρ

AB
−
2

B
þ Bρ

B2
þ 4K0e−ρ

�
: ð201Þ

These expression will be useful in the following.
The equations above make clear an additional difficulty

of the reconstruction process: one has to integrate
Eq. (200). This will be a major problem in the search
for exact solutions: even if one manages to solve Eq. (199),
there is still the possibility that Eq. (200) or equivalently
(197) will not be easily integrable.
As a first example, we will reconstruct a solution for a

real scalar field starting from an ansatz on the variables
X; Y;K as in the previous sections. The real nature of the
scalar field can be guaranteed by setting, for example,

X ¼ −1þ Y ≤ −
1

2
þ Y: ð202Þ

Substituting into (192) and (193), integrating and choosing
the positive branch of the solution, one obtains

Y ¼ eρρ
2eρðρ − 1Þ − 2

; K ¼ eρ

2ð1 − eρρþ eρÞ : ð203Þ

Using the definition of Y and K one has immediately

ϕ ¼ �e−ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0½1 − eρðρ − 1Þ�

p
; ð204Þ

A ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2K0

2 − 2eρðρ − 1Þ

s
: ð205Þ

In terms of r and using Eqs. (67) and (68) corresponds to
the metric

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ sin2θdϕ2Þ; ð206aÞ

A ¼ A0½r2 − 2r2 ln rþ 1�; ð206bÞ

B ¼ 2r2

K0½r2 − 2r2 ln rþ 1� ; ð206cÞ

C ¼ r2

K0

; ð206dÞ

and from Eqs. (197)–(198)

σ ¼
ffiffiffi
2

p

2
lnðrÞ; ð207Þ

V ¼ K0e−
ffiffi
2

p
σð

ffiffiffi
2

p
σ þ 1Þ: ð208Þ
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Themetric coefficients for this solution are rational functions
of r. This implies that the divergences ofB are zeros forA and
the zeros ofB are divergences of A, much in the sameway of
the Schwarzschild solution. The analysis of the Ricci scalar
and the Kretschmann invariant shows that, like in the
Schwarzschild case, there is no real singularity in the solution,
apart from, of course, r ¼ 0. In this respect, therefore, the
solution above seems to represent a spatially symmetric scalar
field sourced solution embedded in an expanding homo-
geneous and isotropic space-timevia a horizon structure. This
case looks conceptually similar to the Swiss cheese models
[4,16], but with the difference to not require special junction
condition. Plots of the metric coefficients, the scalar field and
the potential are given in Figure 8.

Another example can be given looking carefully at the
structure of the constraint (199) and expressing A as
function of B so that this constraint becomes an equation
for the coefficient B which admits an analytical solution.
For example, setting

A;ρ

A
þ B;ρ

B
− 1 ¼ −

3

1 − e3ρ=2
; ð209Þ

we have

A ¼ A0e−2ρð1 − e3ρ=2Þ2
BðρÞ : ð210Þ

Using the relations (89) the (199) give a solution for metric component B:

B ¼ 120eρðe3ρ=2 − 1Þ2
40B0e4ρ − 60C0ð2eρ − 4e5ρ=2 þ 2e4ρÞ − 3ρ0ð8e3ρ=2 − 40e3ρ þ 5Þ : ð211Þ

Passing t to the parameter r one obtains for the metric coefficients

ds2 ¼ −Adt2 þ Bdr2 þ Cðdθ2 þ sin2θdϕ2Þ; ð212Þ

A ¼ A0ðr3 − 8Þ2
r6B

¼ 1

12
A0ðB0 − 3B1Þr2 þ 4A0K0 þ

4A0B1

r
−
32A0K0

5r3
−
16A0B1

r4
−
32A0K0

r6
; ð213Þ

B ¼ 480ðr3 − 1Þ2
40B0r8 − 3½40C0ðr4 − rÞ2 þ K0ð−40r6 þ 8r3 þ 5Þ� ; ð214Þ

C ¼ r2

K0

; ð215Þ

and, using (200), one obtains

σ ¼ 2

ffiffiffi
2

3

r
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 1

p �
; ð216Þ

V ¼ 20csc6
�
1

2

ffiffiffi
3

2

r
σ

�	
4ð2B0 − 3C0Þ cos

� ffiffiffi
3

2

r
σ

�
þ 3C0½cos ð

ffiffiffi
6

p
σÞ þ 3�




þ
3K0cos

10
3

�
1
2

ffiffi
3
2

q
σ
�

640sin6
�
1
2

ffiffi
3
2

q
σ
� �

38 cos

� ffiffiffi
3

2

r
σ

�
− 5 cos ð

ffiffiffi
6

p
σÞ þ 75

�
: ð217Þ

The metric we obtained is again characterized by a
divergence in the coefficient B that corresponds to a zero
in the coefficient A. The denominator of the coefficient B
is a polynomial of the eighth order and consequently we

can expect at most eight singular points. The Ricci scalar,
the Kretschmann invariant, the scalar field, and its
potential are finite in these points so that these singu-
larities are probably related to the horizon structure of the
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space-time. In Fig. 9, an example is given in which only
two of these singularities are apparent. In r ¼ 0 the actual
presence of a singularity in the gravitational field is
confirmed by the behavior of the Ricci scalar and the
Kretschmann invariant.

IX. CONCLUSIONS

In this paper we have presented a new reconstruction
technique that can be used to obtain static spherically
symmetric solutions in general relativity. Defining a special
affine parameter and new variables in the 1þ 1þ 2
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FIG. 9 (color online). Graphs of the solution (212). The values
of the parameters have been chosen in such a way to make the
features of the solution as clear as possible.
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FIG. 8 (color online). Graphs of the solution (206). The values
of the parameters have been chosen in such a way to make the
features of the solution as clear as possible.
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covariant approach framework, we have been able to obtain
a new form of the covariant equations, which is more
suitable for the application of the reconstruction paradigm.
As in cosmology this strategy has revealed itself very

useful to obtain nontrivial results. In fact the new method
can be also considered more efficient than its cosmological
counterpart as one is able to achieve even more than one
reconstructed solution from a given variable prescription.
Another advantage of the method proposed is that it gives
the possibility to encode naturally in the reconstruction
process also some physically relevant constraints like the
fulfillment of the energy conditions and the asymptotic
flatness. This possibility makes the new method unique
among the ones devised to obtain spherically symmetric
solutions of the Einstein equations.
The set of variables devised for the reconstruction can

also be used for the direct resolution of the Einstein
equations in the presence of matter. In the new formalism
the main obstacle to the achievement of a solution is the
fulfillment of complicated first-order constraints. We have
managed to solve these equations in some simple cases and
in one example, we also found a solution in terms of
Legendre polynomials. The possibility of considering
solutions containing special functions increases enor-
mously the richness of the physics of the reconstructed
spacetime.
The new method has been also applied to the case of

matter composed by a scalar field, finding some new exact
solutions. When a scalar field is present, the search for
exact solutions is further complicated because the behavior
of the scalar field can be only found via an integration, and
in many physically interesting cases such integration is
very hard to achieve. Of course one can seek for numerical
solutions for these cases, but they have not been considered
here as we focused on exact solutions. Such result was
somehow expected: exact static and spherically symmetric
solutions sourced by a scalar field with nontrivial potential
are very rare and very few are known so far. In this respect
the new reconstruction method helps in the investigation of
these solutions and reveals that they might reserve some
surprises especially correlated to the assumption that the
scalar field is real.

The solutions we have reconstructed as examples are
only a small set of the ones that can be obtained with the
new method. They have been chosen mainly in terms of
their simplicity and obvious interesting features. Since it
was not our purpose to give a complete analysis of their
properties a very limited exploration of their features has
been made in the text. A future work will be dedicated to a
detailed analysis of these features. However, even using the
little information obtained above it is possible to draw some
interesting general conclusion. The first concerns the form
of the metric coefficients A and B. The “classic” static and
spherically symmetric metric in which the parameter A ¼
B−1 does not seem to be common in our results. However,
from the results above it is evident that metrics in which
A ¼ fðrÞB−α with α > 0 and fðrÞ regular seems to have a
special physical meaning as it prevents the formation of
naked singularities. The second is related to the horizon
structures that cover the singularities. We use here the
wording “horizon structure” because the determination of
the actual presence and the nature of the horizons in the
solution we found would require an investigation that is
way beyond the purposes of this work (see [17] for a review
on these topics). While we are left with many open
questions on the actual nature of these structures they also
show interesting features. For example in the solution
(206)–(208) the horizon was found to be the junction
between the spherically symmetric solution and an expand-
ing space-time. This result suggests a new potential way to
approach the problem of “embedding” static and spheri-
cally symmetric spacetime in cosmological manifolds,
which definitely deserves further study.

ACKNOWLEDGMENTS

The author would like to thank Professor O. Semerák,
Dr. M. Žofka, and Dr. O. Svítek for useful discussions.

APPENDIX: EQUATIONS (71)–(75) SOLVED IN
TERMS OF THE GEOMETRIC VARIABLES

Solving (71)–(75) for the variables ðX; Y;K; Y;ρ;K;ρÞ
one obtains

X ¼ −
Pð4M þ 4Pþ 1Þ þ 2ðM þ PÞ2 þM þ 2P2 þ 2ðP;ρ þ P;ρ þ 2PÞ

2ðM þ 3Pþ 3PÞ ; ðA1Þ

Y ¼ Pð4M þ 8Pþ 2Þ þ Pð4M þ 4P − 1Þ þ 4P2 − 2ðP;ρ þ P;ρÞ
2ðM þ 3Pþ 3PÞ ; ðA2Þ

K ¼ Pð4M − 8Pþ 7Þ þ 4PðM − PÞ þM − 4P2 − 4ðP;ρ þ P;ρÞ þ P

4ðM þ 3Pþ 3PÞ ; ðA3Þ
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Y;ρ ¼
M3ð8Pþ 2Þ þ 2P2ð4M2 þMð11 − 12PÞ þ 10P;ρ þ 10P;ρ þ 3ð7 − 8PÞP − 7Þ

4ðM þ 3Pþ 3PÞ2

þM2½8P2 − 4ðP;ρ þ P;ρÞ6P� þ P3ð−8M − 32Pþ 22Þ − 8P4

4ðM þ 3Pþ 3PÞ2

þ P½8M3 þ 2M2ð8Pþ 9Þ þ 2Mð8P;ρ þ 8P;ρ þ 4ð4 − 3PÞP − 1Þ�
4ðM þ 3Pþ 3PÞ2

þ PPð−32P2 þ 40P;ρ þ 40P;ρ þ 18Pþ 5Þ þ 22ðP;ρ þ P;ρÞ
4ðM þ 3Pþ 3PÞ2

þM½2ðP;ρ þ P;ρÞ þ Pð16P;ρ þ 16P;ρ þ 2ð5 − 4PÞPþ 1Þ�
4ðM þ 3Pþ 3PÞ2

−
½2P2 − 4ðP;ρ þ P;ρÞ þ P�½Pð4P − 1Þ − 2ðP;ρ þ P;ρÞ�

4ðM þ 3Pþ 3PÞ2 ; ðA4Þ

K;ρ ¼ −
2½Pð2M þ 2P − 1Þ þ ðM þ PÞ2 þ P2� þ 2ðP;ρ þ P;ρÞ þ P

4ðM þ 3Pþ 3PÞ2

×
Pð−4M þ 8P − 7Þ −Mð4Pþ 1Þ þ 4P2 þ 4ðP;ρ þ P;ρÞ þ Pð4P − 1Þ

4ðM þ 3Pþ 3PÞ2 : ðA5Þ

These equations are completely equivalent to the full Einstein equations when the staticity and spherical symmetry have
been imposed.
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