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Abstract
We present an analysis of the phase space of cosmological models based on a
non-minimal coupling between the geometry and a fermionic condensate. We
observe that the strong constraint coming from the Dirac equations allows a
detailed design of the cosmology of these models, and at the same time
guarantees an evolution towards a state indistinguishable from general rela-
tivistic cosmological models. In this light, we show in detail how the use of
some specific potentials can naturally reproduce a phase of accelerated
expansion. In particular, we find for the first time that an exponential potential
is able to induce two de Sitter phases separated by a power law expansion,
which could be an interesting model for the unification of an inflationary phase
and a dark energy era.

Keywords: fermion condensate, cosmology, dynamical systems approach,
dark energy, non-minimal coupling
PACS numbers: 67.85.Fg, 67.85.De, 98.80.-k, 05.45.-a, 04.50.Kd, 95.36.+x

1. Introduction

One of the fundamental initial hypotheses in the formulation of any relativistic theory of
gravitation is the way in which matter couples to geometry. In the first prototype of these
theories, general relativity (GR), one chooses the so-called minimal coupling; that is, matter
and geometry only couple via the determinant of the metric tensor which, in the definition of
the matter action, multiplies the matter Lagrangian density.

However, it has been known for a long time now that in the semiclassical approach to
quantum gravity, also called quantum field theory on curved spacetimes [1], the appearance of
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non-minimal couplings (NMC) is inevitable if one renormalizes the quantum stress energy
tensor of the matter fields [2]. NMCs also appear in the low energy limit of a number of
fundamental theories in particle physics, such as the tree-level action of string theory [3] and
the attempt to more naturally include Machʼs principle in the framework of Einsteinʼs
gravitation, as in Brans-Dicke theory [4]. The study of non-minimally coupled theories has
accompanied the development of our understanding of Einsteinʼs gravitational theory, but
only in the last thirty years has the potential importance of the role of NMCs in inflationary
and dark energy models become clear.

In spite of these interesting features, the introduction of NMCs also brings some fun-
damental problems, which have so far remained unsolved. For example, it is clear that, since
NMCs prescribe a different way in which these matter fields couple to gravity (in addition to
the one given by the Einstein equations), the presence of NMCs violates the strong
equivalence principle. It has also become clear that some types of NMCs can be responsible
for the appearance of ghosts and tachyons in the particle spectrum of gravitational theories
[5]. Last but not least, the NMC is often modeled using a scalar field, whose nature has so far
remained obscure3.

In this paper we will explore the possibility that the scalar field typical of NMCs is not
fundamental, but rather is represented by a fermion condensate.

The idea that scalar fields can be non-fundamental and therefore composed by other
fields (like spinors) was already proposed in the context of particle physics by Weinberg with
specific reference to the Higgs field [8] (see also [9]).

Compared to scalar fields, spinors have received much less attention; only as recently as
the 1990s were first full spinor cosmological solutions considered [10]. Since then, the non-
trivial properties of minimally coupled spinors have been used to model both inflation [11]
and, with the discovery of cosmic acceleration, dark energy [12–14].

A number of works have also considered the possibility that the main action of the
fermions in the cosmological context is in the form of a condensate [15, 16]. The formation of
fermion condensates (also in terms of Bardeen–Cooper–Schrieffer (BCS) theory) has proven
to be fundamentally related to the vacuum state(s) of quantum chromodynamics (QCD) [17].
The motivation behind the exploration of this topic stems from the observation that, within
standard Big Bang cosmology, the dynamics of the early universe have been dominated by
the primordial quark-gluon plasma (QGP). As the universe expands, QGP goes through a
phase transition connected to the breaking of chiral symmetry that involves the formation of
condensates of scalar pion-like (fermion–antifermion) particles. This is considered, together
with the electroweak phase transition, to be the chief mechanism by which quarks acquire
mass [18]. In this case, therefore, a possible candidate for the field we shall consider is a
quark4. A realization of this mechanism, based on supersymmetric theories, has been also
given in [13] considering the condensation of Nf flavors in a SU N( )c gauge theory. Formation
of condensates at late time is also thought to be possible via the mediation of the torsion so
that other fields, like neutrinos, can condensate as well [14]. In this paper, however, we will

3 Only recently, with the discovery of the Higgs field, has a non-minimally coupled theory of this field with the
geometry been considered [6] which might work as a model for inflation. The minimally coupled Higgs field is
known not to be a good candidate in this respect [7].
4 It is important to stress, however, that in this paper, as in the majority of papers on this topic, we will consider a
classical spinor field (i.e., a set of four complex-valued spacetime functions) that transform according to the spinor
representation of the Lorentz group. This is already a strong approximation, as the real spin 1/2 fermions are
described by quantum spinor fields, and there is no classical limit for fundamental quantum Fermi fields. A way out
of this difficulty is to imagine that classical spinors arise from an effective description of more complex quantum
system [12].
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neglect torsion and we will proceed with the idea that the condensate is generated by the
breaking of the chiral symmetry in the QGP setting in the early universe. The use of NMC
coupling with the gravitation interaction appears natural in this setting as it classically
approximates the quantum corrections nature of the gravitational interaction.

Our analysis shows that, at early times, a fermion condensae could combine with the
NMC to originate accelerated expansion independently from the condensate potential. The
potential becomes relevant, instead, at late time. In fact, we will see that the condensate is
forced to go monotonically to zero by the Dirac equation. Therefore, a suitable choice of the
potential can lead to the emergence of an effective cosmological constant. Since in this state
the condensate is effectively a (null) constant, it turns out that in this dynamical state, the
theory is indistinguishable from general relativity at the pure Friedmann level.

We will also see that the Dirac equation constrains the behavior of the condensate in such
a way that it becomes straightforward to control the properties of the cosmological models.
Such ‘model design’ naturally realizes a feature which was sought for a long time in the
context of fourth-order gravity [19].

The analysis we will perform is based on the dynamical systems approach (DSA).
Defined by the work of Collins, Wainwright and Ellis, this technique is a precious tool for the
understanding of complex cosmological models in the framework of GR [20, 21], as well as
extensions of Einstein theory [22]. DSA consists of recasting the cosmological equations as
an autonomous system of differential equations for some tailored variables that also carry
physical meaning. Using DSA, one is able to unfold in a relatively easy way a number of
important aspects of cosmological models, including the general behavior of the cosmology
as well as the evolution of the shear and the occurrence of bounces. In some cases in which
free functions appear in the theory, the DSA has helped to select the structure of such
functions [25].

In the following, we will explore the phase space of cosmological models in which a non-
minimally coupled fermion condensate exists, and in which the fermions have a self-inter-
action potential which depends only on the condensate itself. We will also consider an
additional form of matter described by a perfect fluid. Although the method is completely
general, we will choose some simple, specific forms of this potential as examples. Among
other results, our analysis shows that these models, as other ‘scalar tensor’ models, can
present the phenomenon of the ‘isotropization’ to GR [26], and at the same time show some
peculiar properties which might be used as a framework for dark energy models and/or
inflation.

The paper will be divided in the following way. Section 2 is a brief review of the general
details of the properties of the theory we will consider in this paper and its key equations in
the Friedmann–Lemaître–Robertson–Walker (FLRW) metric. Some exact results in vacuum
are also presented. Section 3 deals with the dynamical systems analysis in both the presence
and absence of a perfect fluid, and for different potentials. Finally, section 4 gives our
conclusions.

Unless otherwise specified, natural units ( π= = = = c k G8 1B ) will be used
throughout this paper; Latin and Greek indices run from 0 to 3. The symbol  represents the
Levi–Civita covariant derivative associated with a metric tensor, gij. We use the + − − −, , ,
signature for the metric tensor, and the Riemann tensor is defined by

Γ Γ Γ Γ Γ Γ= ∂ − ∂ + −R ; , (1)cab a bc b ac ap bc
p

bp
h

ac
pd d d d
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where the Γab
c are the Christoffel symbols associated with the metric gij, defined by

Γ∂ = ∂∂ . (2)b ab
c

ca

The Ricci tensor is obtained by contracting the first and the third index via the metric gab:

=R R . (3)ab acb
c

2. The 1+ϵψψð Þ R-theory in the FLRW metric

Let us consider an action of the form (also proposed in a more complicated form in [16, 29])

∫ ϵψψ= + −⎡⎣ ⎤⎦ ( )g R L s1 ¯ d , (4)D

where the Einstein–Hilbert term is non–minimally coupled to the condensate, ψψ¯ , of a Dirac
field whose Lagrangian has the form

ψΓ ψ ψΓ ψ ψψ ψψ= − − +( )L
i

D D m V
2

¯ ¯ ¯ ( ¯ ), (5)D
i

i i
i

where a fermionic self–interaction potential, ψψV ( ¯ ), is present. In equation (4), ϵ indicates a
suitable constant parameter. In equation (5) we have Γ γ= μ

μe:i i γ μ representing Dirac matrices
and μei a tetrad field such that η= μ ν

μνg e eij i j and the Di indicate covariant derivatives of the
spinor field

ψ ψ Ω ψ= ∂ −D , (6)i i i

ψ ψ ψΩ= ∂ +D ¯ ¯ ¯ , (7)i i i

where

Ω Γ Γ Γ= − − ∂μ
μ( )g e e

1

4
. (8)i ij pq

j j
p q

p q

Introducing for simplicity the notation φ ψψ=: ¯ , it is easily seen that action (4) yields
Einstein–like field equations of the form

ϵφ Σ ϵ φ φ+ − = + −   ⎜ ⎟⎛
⎝

⎞
⎠ ( )R Rg g g(1 )

1

2
, (9)ij ij ij i j ij

pq
p q

where

Σ ψΓ ψ ψΓ ψ= − −( )i
D D L g

4
¯ ¯

1

2
, (10)ij i j i j D ij( ) ( )

is the energy–momentum tensor of the Dirac field, obtained by variation of the Dirac
Lagrangian, LD, with respect to the tetrad field. At the same time, from action (4) we derive
Dirac equations for the spinor field of the form

Γ ψ ψ φ ψ ϵψ− + ′ − =i D m V R( ) 0, (11)i
i

ψΓ ψ φ ψ ϵψ+ − ′ + =iD m V R¯ ¯ ( ) ¯ ¯ 0, (12)i
i

where ′ =
φ

V Vd

d
. Making use of equations (11) and (12) we can express the energy–momentum

tensor (10) as
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Σ ψΓ ψ ψΓ ψ ϵ φ φ φ φ= − − − + ′( )i
D D R g V g V g

4
¯ ¯

2

1

2
( )

1

2
( ) . (13)ij i j i j ij ij ij( ) ( )

Now, let us consider a spatially flat FLRW metric tensor,

= − + +( )s t a t x y zd d ( ) d d d . (14)2 2 2 2 2 2

The tetrad field associated with metric (14) is expressed as

δ δ= = =μ μ μ μe e a t A, ( ) , 1, 2, 3. (15)A A0 0

From this, it is easily seen that the Γ γ= μ
μei i matrices are given by

Γ γ Γ δ γ= = μ
μ

a t
,

1

( )
. (16)A A0 0

It is also easy to see that the coefficients of the spin connection are

Ω Ω γ γ= = =a
A0,

˙

2
, 1, 2, 3. (17)A

A
0

0

Due to equations (14)–(17), in metric (14) the Dirac equations (11) and (12) assume the form

ψ ψ γ ψ φ γ ψ ϵ γ ψ+ + − ′ + =a

a
im V i R˙

3

2

˙
( ) 0, (18)0 0 0

ψ ψ ψγ φ ψγ ϵ ψγ+ − + ′ − =a

a
im V i R¯̇

3

2

˙
¯ ¯ ( ) ¯ ¯ 0. (19)0 0 0

From equations (18) and (19) we derive the evolution law for the scalar field, φ ψψ= ¯ :

φ φ+ =a

a
˙ 3

˙
0, (20)

thus obtaining the final relation

φ
φ

=
a

. (21)0

3

This result, found in [12] and successively in [23], is independent of the form of the
gravitational action and constitutes a very tight constraint on the entire theory. Since one
knows that φ → 0 when the scale factor grows, the non-minimal coupling can be used as a
‘switch’ at the action level to regulate the onset of the different terms of the Lagrangian. This
is not possible in standard scalar tensor theories because in those cases, the behavior of the
scalar field is described by a Klein–Gordon equation, whose solution is in general much more
complicated.

Making use again of equations (14)–(19), it is a straightforward matter to verify that the
non-vanishing components of the fermionic energy–momentum tensor (13) are represented by

Σ φ φ= −( ) m
V

2

1

2
( ), (22)D 00

Σ ϵ φ φ φ φ= + − ′ =( ) Ra V a V a A
2

1

2
( )

1

2
( ) 1, 2, 3. (23)D AA

2 2 2

Inserting the content of equations (22) and (23) into equation (9), the Einstein–like
equations assume the following expression:
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ϵφ φ ϵ φ φ+ = − −⎜ ⎟
⎛
⎝

⎞
⎠

a

a

m a

a
V(1 )3

˙

2
3

˙
˙

1

2
( ), (24)

2

ϵφ ϵ φ ϵφ ϵ φ φ φ φ+ + = − − − − + ′⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

a

a

a

a
R

a

a
V V(1 ) 2

¨ ˙

2
¨ 2

˙
˙

1

2
( )

1

2
( ). (25)

2

We can replace equation (25) by the equivalent Raychaudhuri equation,

ϵφ ϵφ ϵφ ϵ φ φ φ φ φ+ = − − − − − + ′a

a
R

a

a

m
V V(1 )6

¨ 3

2
3 ¨ 3

˙
˙

2
( )

3

2
( ). (26)

In the absence of the self–interaction potential ( φ =V ( ) 0), by inserting (21) into (24) we
obtain the final differential equation,

φ
ϵ= −

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥a

m a

a
˙

2

3 6
. (27)2

0
2

1

For values ≪a 1, equation (27) can be approximated to

ϵ
= −a

ma
˙

12
. (28)2

2

This solution for ϵ < 0 admits a de Sitter solution, λ=a t a t( ) exp ( )0 with λ =
ϵ−

: m

12
, that

can describe inflationary models or dark energy eras. Instead, for ϵ > 0, the real part of the
solution of (28) becomes oscillatory. In the case ≫a 1 equation (27) can be approximated to

φ
=a

m

a
˙

6
, (29)2 0

which possesses a Friedmann solution, λ= +⎡⎣ ⎤⎦a t t c( ) ( )3

2

2
3 with λ = φ

:
m

6
0 . This means that

in this case, the theory can describe a transition from a dark energy era (a period characterized
by accelerated expansion) to a Friedmann one (a period characterized by a decelerated
expansion).

In order to add a perfect fluid to our cosmological model, we suppose a barotropic perfect
fluid assigned, with equation of state ρ=p w ( ∈w [0, 1]) and standard conservation law

ρ ρ+ + =a

a
p˙ 3

˙
( ) 0, (30)

yielding the relation

ρ
ρ

=
+a

. (31)
w

0

3(1 )

The field equations (24)–(26) become

ϵφ ρ φ φ ϵ φ+ = + − −⎜ ⎟
⎛
⎝

⎞
⎠

a

a

m
V

a

a
(1 )3

˙

2

1

2
( ) 3

˙
˙ , (32)

2

ϵφ ϵ φ φ φ φ ϵφ ϵ φ+ + = − − − + ′ − −⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

a

a

a

a
p R V V

a

a
(1 ) 2

¨ ˙

2

1

2
( )

1

2
( ) ¨ 2

˙
˙ , (33)

2
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and

ϵφ ρ ϵφ ϵφ ϵ φ φ φ φ φ+ = − + − − − − − + ′a

a
p R

a

a

m
V V(1 )6

¨
( 3 )

3

2
3 ¨ 3

˙
˙

2
( )

3

2
( ). (34)

The complete system of equations is therefore

ϵφ ρ φ φ− = + −⎜ ⎟
⎛
⎝

⎞
⎠

a

a

m
V3(1 2 )

˙

2

1

2
( ), (35)

2

ϵφ ρ ϵφ φ φ φ φ− = − + − − − + ′⎜ ⎟
⎛
⎝

⎞
⎠

a

a
p

a

a

m
V V6(1 2 )

¨
( 3 ) 18

˙

2
( )

3

2
( ), (36)

2

φ φ+ =a

a
˙ 3

˙
0, (37)

ρ ρ+ + =a

a
w˙ 3

˙
(1 ) 0, (38)

where we have already substituted the evolution equation for the scalar field (20) and the

expression of the Ricci scalar in flat FLRW spacetime, = − +( )R 6 a

a

a

a

¨ ˙2

2
. These equations

will be the starting point of our analysis.

3. Dynamical systems analysis

Let us now analyze the cosmology deriving from equations (35)–(38), using DSA. This
method consists of rewriting the cosmological equations written above in terms of some
dimensionless variables (including the time variable) that play the same role of the Ω para-
meters in standard Friedmannian cosmology, and therefore carry a precise physical meaning.

We choose the variables

Ω ρ
ϵφ

ϵφ
ϵφ

φ
ϵφ

φ
ϵφ

=
−

=
−

=
−

=
−

H
X Y

V

H

M
m

H

3 (1 2 )
,

1 2
,

( )

6 (1 2 )
,

6 (1 2 )
, (39)

2 2

2

where =H a

a

˙ and the logarithmic time = aln . In terms of ΩX Y M, , , and , the
cosmological equations can be written as

= − +


X
X X

d ( )

d
3 (1 2 ), (40)

Ω= + + − + + −
  Y

Y M w Y
d ( )

d
[ (3 1) 3 2] [2 3 ], (41)2

Ω= + + + − −
 M

M M w Y
d ( )

d
[ (3 1) (2 3 ) 1], (42)

Ω Ω Ω= − − + − + +
 M w Y Y w

d ( )

d
[ 3 3 2 1 (3 1) ], (43)
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with the constraint

Ω− + − =M Y1 0, (44)

coming from (35). In the above equations, the characteristic function,  ,

ϵ ϵ
φ φ

φ
=

+
= ′

φ φ ϵ=

⎜ ⎟⎛
⎝

⎞
⎠  X

X

V

V2

( )

( )
, (45)

X( , )

contains the information on the form of the potential φV ( ) in (35)–(38).
Note that the variable X is zero for φ → 0, = −X 1 2 for φ → ∞, and → ± ∞X when

φ ϵ→ ±(1 2 ) . Thus the ‘X direction’ represents the complete evolution of the field, φ, and
while the fixed points with X coordinate −1 2 will be unphysical, the ones in X = 0 will
effectively represent GR. In this way, every time there is an attractor on the X = 0 axis it is a
signal that the model converges to GR. This is a typical feature of theories which have a
‘scalar tensor’ structure. In addition, since (21) holds, we also have = −X 1 2 for →a 0
(i.e., ‘early time’) and X = 0 for → ∞a (i.e., ‘late time’), so the fixed points on these invariant
submanifolds characterize early and late time solutions for the theory5.

The above system admits five invariant submanifolds (X = 0, = −X 1 2, Y = 0, M = 0,
Ω = 0), so there can be no global attractor in these cosmologies. However, the origin of the
coordinate axes can be an attractor for a large set of initial conditions. This also means that for
these models, GR can be an attractor for the same set of these conditions. This feature is not at
all common in scalar tensor gravity: the set of initial conditions is usually much smaller [24].
The solutions associated with the fixed points of the above system when β ≠ 0 can be found
using equations

= − βa a t t( ) , (46)0 0
1

ρ ρ= − β− +t t( ) , (47)w
0 0

3(1 )

φ φ= − β−t t( ) , (48)0 0
3

β Ω= + + − − + +( )M X Y w2 2 6 3 2 (1 3 ) , (49)0 0 0 0 0

where the subscript ‘0’ refers to the value of the variable at the fixed point. In the following
section, we will make some illustrative choices for V, and as a consequence, for  .

3.1. DSA in the absence of perfect fluid(s)

We first analyze the case of the absence of perfect fluid (Ω = 0), so that the dynamical system
outlined above loses an equation. Implementing (44) to eliminate Y, one obtains

= − +


X
X X

d ( )

d
3 (1 2 ), (50)

5 It is clear that this definition holds only when the solution for the scale factor has a monotonic character which is
not obvious in NMC cosmologies. However, the orbits plotted in the phase space represent only evolutions in which
a is monotonic. Should a change its character, its derivative would be zero and consequently H would be zero, but
this can happen only asymptotically. In this respect, the above definitions of ‘early time’ and ‘late time’ can be used
without confusion.
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= + − − −
 M

M M M
d ( )

d
[( 1)(2 3 ) 1], (51)2

= −Y M 1. (52)

The phase space has dimension two and can be easily plotted. We will analyze this system in
two cases: φ φ= αV V( ) 0 and φ λφ= −V V( ) exp ( )0 .

3.1.1. The case V φð Þ ¼ V 0φα. As a first example, let us consider the potential φ φ= αV V( ) 0 .
This type of potential is the one most commonly used in the treatment of interacting fermions
[32]. Because of the (21) at early times ( →a 0), the scalar field will have high values and,
depending on the sign of parameter α, the potential will be negligible or dominant. The
converse happens at late times ( → ∞a ). This allows a certain degree of control on the
cosmological model.

In terms of the above variables, the considered potential is characterized by α= and
we have

= − +


X
X X

d ( )

d
3 (1 2 ), (53)

α= + − − −


M
M M M

d ( )

d
[( 1)(2 3 ) 1]. (54)2

This dynamical system has four fixed points shown in table 1. Their coordinates do not
depend on the parameters of the system and therefore we can expect them to be present in
other cases together with other fixed points. The solutions associated with the fixed points
correspond to power law behaviors for the scale factor, whose character depends on the
choice of α. The character of the scale factor depends on α for the points  and  . For α < 0,
both these points always represent a contraction. For α< <0 2 3,  represents a
contraction6 and  an accelerated expansion. For α< <2 3 1,  represents a contraction
and  a decelerated expansion. For α< <1 5 3,  represents an accelerated expansion
(power law inflation) and  a decelerated expansion. Finally for α > 5 3, both  and
represent a decelerated expansion.

Note that only two ( , ) of the fixed points in table 1 can represent physical solutions of
the cosmological equations (i.e., they correspond to actual solutions of the cosmological

Table 1. The fixed points and the solutions of the purely fermion NMC model
with φ φ= αV V( ) 0 .

Point X M Y( , , ) Scale Factor Condensate

 − −( ), 0, 11
2

= − α−a a t t( )0 0
2

3( 1) φ → ∞

 −( ), 1, 01
2

= − −
ϵ( )a a t texp ( )m

0 12 0 φ → ∞

 −(0, 0, 1) = − αa a t t( )0 0
2

3 φ = 0
 (0, 1, 0) = −a a t t( )0 0

2 3 φ = 0

6 The fact that this point is associated with to a contraction might appear to be in contrast with the statement made
above in which along an orbit, H does not change sign. However, looking at the stability, one can see that for α < 1,
 is a saddle and therefore an orbit approaching it simply implies a slowing of the expansion rate whose magnitude
depends on the distance between the orbit and the fixed point.
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equations). In particular, this happens for α < 1 for  and for α > 1 for . For the other
points, it is easy to see that these behaviors for the scale factor can be obtained by (35) in the
right approximation. In the case of point , the solution = − α−a a t t( )0 0

2
3( 1) can be obtained

from (35) in the approximation φ ≫ 1 and ≈m 0, which is suggested by its coordinates. The
same happens for the solution associated with point : it can be derived assuming φ ≫ 1 and

φ ≪V ( ) 1. As for the physical points, the approximated solutions are consistent with the
theory only for specific intervals of parameter α. For example, for point , the conditions
φ ≫ 1 and φ ≪V ( ) 1 are consistent only if α < 1.

The stability of these fixed points can be found using the Hartman–Grobman (HG)
theorem, and it is given together with their coordinates in table 2. Note that the critical values
for the change in stability coincide with the values related to the above-mentioned issues of
the consistency of the solutions. Of all the fixed points, only  and  can be attractors. Since
both the fixed points lay on the X = 0 invariant submanifold and this submanifold represents
states indistinguishable from GR, the fact that these points are attractors implies that a set of
initial conditions exists for which the theory essentially evolves towards GR. These initial
conditions are given by

α> − < <X M
1

2
, 1, 1, (55)0 0

α> − > >X M
1

2
, 0, 1. (56)0 0

Some examples of phase space are plotted in figures 1 and 2.

Figure 1. Phase space of the purely fermion NMC model with φ φ= αV V( ) 0 for α < 1.

Class. Quantum Grav. 31 (2014) 185007 S Carloni et al

10



3.1.2. The case V φð Þ ¼ V 0 exp −λφð Þ. Our interest in this type of potential is due to the fact
that in the limit φ → 0, it becomes a cosmological constant term, introducing in this way a
dynamical realization of the cosmological constant related to the condensate. In fact, since
equation (21) holds, we know that at early time the potential will be irrelevant, reducing the
theory to the case analyzed in (27), whereas at late time the potential effectively becomes a
constant. Let us see how this behavior is realized in terms of the phase space.

For φ λφ= −V V( ) exp ( )0 , we have = − λ
ϵ+ X

X(2 1)
, and the associated dynamical system

becomes

= − +


X
X X

d ( )

d
3 (1 2 ), (57)

Table 2. The fixed points and their stability of the purely fermion NMC model with
φ φ= αV V( ) 0 . Here R = repeller, A = attractor, and S = saddle point.

Point X M Y( , , ) Eigenvalues Stability α > 1 Stability α < 1

 − −( ), 0, 11
2

α −[3, 3( 1)] R S

 −( ), 1, 01
2

α−[3, 3(1 )] S R

 −(0, 0, 1) α− −[ 3, 3( 1)] S A
 (0, 1, 0) α− −[ 3, 3(1 )] A S

Figure 2. Phase space of the purely fermion NMC model with φ φ= αV V( ) 0 for α > 1.
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λ
ϵ

= − +
+

⎛
⎝⎜

⎞
⎠⎟




M
M M

X

X

d ( )

d
3 ( 1) 1

(1 2 )
, (58)

= −Y M 1. (59)

Note that in this case, the above system presents a singularity in the line = −X 1 2. In the
variables we have used, this is in fact the most common case. The singularity, however, is
purely a result of our parametrization and has no correspondence in the actual equations.
Therefore, we can try to work around the singularity using a change of coordinates.

Setting for example7 ϵφ= − d d (1 2 ), one obtains

= − +


X
X X

d ( )

d
3 (1 2 ) (60)2

ε
λ ϵ= − + +


M

M M X X
d ( )

d

3
( 1)[ (1 2 )] (61)

= −Y M 1. (62)

The system (57)–(59) has four fixed points, shown in table 3.
Note that for the point , the exponent (49) is divergent. In fact, looking at the variable

definitions, we can see that this point corresponds to an inconsistent relation between the

Table 3. The fixed points and the solutions of the purely fermion NMC model
with φ λφ= −V V( ) exp ( )0 .

Point X M Y( , , ) Scale Factor Condensate

 − −( ), 0, 11
2

N/A N/A

 −( ), 1, 01
2

= − −
ϵ( )a a t texp ( )m

0 12 0 φ → ∞

 −(0, 0, 1) = − −( )a a t texp ( )V
0 6 0

0 φ = 0

 (0, 1, 0) = −a a t t( )0 0
2 3 φ = 0

Table 4. The fixed points and their stability in the purely fermion NMC model with
φ λφ= −V V( ) exp ( )0 . Here S = saddle, A = attractor, and SN = saddle node. The

saddle nodes change orientation (but not character) with the sign of ϵλ.

Point X M Y( , , ) Eigenvalues Stability

 − −( ), 0, 11
2

λ
ϵ

⎡⎣ ⎤⎦, 03
2

SN

 −( ), 1, 01
2

− λ
ϵ

⎡⎣ ⎤⎦, 03
2

SN

 −(0, 0, 1) − −[ 3, 3] S
 (0, 1, 0) −[ 3, 3] S

7 One might be tempted to redefine the dimensionless time in this way and treat the entire system in this way.
However, in general the sign of the quantity ϵφ−1 2 can be subject to a change, and this might lead to problems, in
the interpretation of the orientation of the flow. One could, of course, use the factor ϵφ−(1 2 )2 to ensure the
monotonicity of the time coordinate. This choice would lead to a system in which a fixed sub manifold ( =X 1 2)
would appear. This would not change the topology of the flow, but it would complicate the DSA. For this reason, we
will keep our original choice, using the analysis of the original system as a control tool.
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quantities in the cosmological equations. As we will see, the point is always unstable and
therefore it poses no issue for understanding the dynamics of the cosmology. For the other
solutions, the same type of reasoning given in the previous section holds: we have two points
which are unphysical (, ) and two which are physical ( , ). The difference is that
parameter λ does not have the same weight as parameter α in the previous case. This can be
understood by considering that the change in the power law potential due to a change in α is a
more radical modification of the change of the ‘time constant’ of the exponential potential.
Note also that the solutions associated with the fixed points are the same, except for the one
associated with point  . This result is expected since this point is the only one that expresses a
potential-dominated solution.

The stability of these fixed points can be found using the HG theorem, and it is given
together with their coordinates in table 4. As expected from the considerations on the
potential, point  (the potential dominated fixed point) is always an attractor. In addition,
since points  and  have one zero eigenvalue, their stability has to be determined using the
central manifold theorem (CMT) [30, 31].

Let us consider, for example, point . One can write the system (60)–(61) in the form

= +


X
CX F X M

d ( )

d
( , ) (63)

= +


M
PM G X M

d ( )

d
( , ), (64)

where C and P correspond to the linear part of the equation and F and G to the non-linear part.
The CMT says that the behavior of the fixed points is determined by the solution, h, of the
equation,

′ + − + =h X CX F X h X Ph X G X h X( )[ ( , ( )] [ ( ) ( , ( ))] 0. (65)

In the case of , we have

=C 0, (66)

λ
ϵ

= −P
3

2
, (67)

= −F X X6 12 , (68)2 3

λ ϵ λ
ϵ

= + − −
G

M X M M3 [2( 2 ) ( 1) ]
2

, (69)

and (65) can be integrated exactly to give

= −
− +λ

ϵ

h X
X

Xe X
( )

1 2

2 1
. (70)

X4

This function describes the center manifold for the non-hyperbolic fixed point, . The same
procedure can be used for point , obtaining

= −
+ −

λ
ϵ

λ
ϵ

h X
Xe

Xe X
( )

2 1
. (71)

X

X

4

4

In this way, the phase space can be completely characterized. Unexpectedly, it turns out that
the only structural differentiation of the phase space is given by the ‘orientation’ on the saddle
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Figure 3. Phase space of the purely fermion NMC model with φ λφ= −V V( ) exp ( )0

for ϵ > 0.

Figure 4. Phase space of the purely fermion NMC model with φ λφ= −V V( ) exp ( )0

for ϵ < 0.
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nodes points ( , ), whereas the others remain unchanged. The key parameter for the
stability change is again ϵ. Samples of its structure can be seen in figures 3 and 4.

3.2. DSA in the presence of a perfect fluid

Let us now analyze the cosmology deriving from action (4) in the presence of a perfect fluid.
We are specifically interested in seeing how the presence of an additional perfect fluid affects
the action of the non-minimal coupling. We choose, therefore, two different potentials:

λφ= −V V exp ( )0 and φ= + γV V V( )0
2

1 . This choice is motivated by the fact that we want
to explore potentials able to give rise to a cosmological term at late time.

3.2.1. The case V ¼ V 0 exp −λφð Þ. As in the case without a perfect fluid, the characteristic
function is given by = − λ

ϵ+ X

X(2 1)
. The general system (40)–(44) takes the form

= − −


X
X X

d ( )

d
6 3 , (72)2

Ω λ
ϵ

λ
ϵ

= + + +
+

+ + +
+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥




Y
Y M w

X

X
Y

X

X

d ( )

d
(3 1)

3

(2 1)
2 2

3

(2 1)
, (73)2

Ω λ
ϵ

= + + + +
+

−
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥




M
M M w Y

X

X

d ( )

d
(3 1) 2

3

(2 1)
1 , (74)2

Ω Ω λ
ϵ

Ω= − +
+

+ − + +
⎡
⎣⎢

⎤
⎦⎥


 M w Y

X

X
Y w

d ( )

d
3 3

(2 1)
2 1 (3 1) , (75)2

or implementing the constraint (44) to eliminate Y,

= − −


X
X X

d ( )

d
6 3 , (76)2

Table 5. The fixed points and the solutions of the NMC model with matter
and φ λφ= −V V( ) exp ( )0 .

Point Ω X M Y( , , , ) Scale Factor

 − −( )0, , 0, 11
2

N/A

 −( )0, , 1, 01
2

= − −
ϵ( )a a t texp ( )m

0 12 0

 −( )1, , 0, 01
2

ρ
φ=

− =

− ≠

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥a

a t t w

a t t w

exp ( ) 0

( ) 0w

0
0

0
0

0 0
2 3

 −(0, 0, 0, 1) = − −( )a a t texp ( )V
0 6 0

0

 (0, 0, 1, 0) = −a a t t( )0 0
2 3

 (1, 0, 0, 0) = − +a a t t( )0 0 w
2

3(1 )

 Ω Ω− −( ), , 1 , 00
1
2 0 ρ φ

=
− =

− ≠Ω⎪
⎪⎧⎨
⎩

⎡⎣ ⎤⎦
a

a t t w

a t t w

exp ( ) 0

( ) 0w

0 0 0 0

0 0
2 3 0
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λ Ω
ϵ

Ω= + −
+

+ + + −
⎡
⎣⎢

⎤
⎦⎥




M
M

X M

X
M w

d ( )

d
3

( 1)

(2 1)
( 1) 1 , (77)

Ω Ω λ Ω
ϵ

Ω= + −
+

+ + + −
⎡
⎣⎢

⎤
⎦⎥




X M

X
M w

d ( )

d
3

( 1)

(2 1)
( 1)( 1) , (78)

Ω= + −Y M 1. (79)

As in the Ω = 0 case, we perform a change of variables to work around the singularities of
the system. Setting again ϵϕ= − d d (1 2 ), we obtain

= − +


X
X X

d ( )

d
3 (1 2 ) , (80)2

ϵ
λ Ω ϵ ϵ Ω= + − + + + + − +


M

M X M M X w X
d ( )

d

3
[ ( 1) (2 1) ( 1)( 1)(2 1)], (81)

Table 6. The fixed points and the solutions of the NMC model with matter
and φ λφ= −V V( ) exp ( )0 .

Point Ω X M Y( , , , ) Condensate Energy Density

 − −( )0, , 0, 11
2

N/A N/A

 −( )0, , 1, 01
2

φ → ∞ ρ = 0

 −( )1, , 0, 01
2

φ → ∞
ρ

ρ
=

=

− ≠− +
⎪

⎪

⎧
⎨
⎩

w

t t w

0 0

( ) 0
w

w0 0
2

(1 )

 −(0, 0, 0, 1) φ = 0 ρ = 0
 (0, 0, 1, 0) φ = 0 ρ ρ= − − +t t( ) w

0 0
2(1 )

 (1, 0, 0, 0) φ = 0 ρ ρ= − −t t( )0 0
2

 Ω Ω− −( ), , 1 , 00
1
2 0 φ → ∞

ρ
ρ

=
=

− ≠Ω− +
⎪
⎪⎧⎨
⎩

w

t t w

0 0

( ) 0
w

w0 0
2

(1 )
0

Table 7. The fixed points and their stability of the NMC model with matter and
φ λφ= −V V( ) exp ( )0 . Here A = attractor, S = saddle point, and SN = saddle node

bifurcation (non hyperbolic).

Point Ω X M Y( , , , ) Eigenvalues Stability

 − −( )0, , 0, 11
2

λ
ϵ

λ
ϵ

⎡⎣ ⎤⎦, , 03
2

3
2

SN

 −( )0, , 1, 01
2

− λ
ϵ

⎡⎣ ⎤⎦, 0, 03
2

SN

 −( )1, , 0, 01
2

− λ
ϵ

⎡⎣ ⎤⎦, 0, 03
2

SN

 −(0, 0, 0, 1) − − − + w[ 3, 3 3(1 )] A
 (0, 0, 1, 0) − − w[ 3, 3, 3 ] S
 (1, 0, 0, 0) − +w w[ 3, 3 , 3(1 )] S
 Ω Ω− −( ), , 1 , 00

1
2 0

λ
ϵ

⎡⎣ ⎤⎦0, 0, 3
2

SN
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Ω
ϵ

Ω λ Ω ϵ ϵ Ω= + − + + + + − +
 X M M X w X

d ( )

d

3
[ ( 1) (2 1) ( 1)( 1)(2 1)], (82)

Ω= + −Y M 1. (83)

Both systems admit six fixed points and a one-dimensional fixed subspace given in
tables 5 and 6 whose coordinates are independent of the parameters of the system. The set of
fixed points includes the ones we have found in the Ω = 0 case, plus two new fixed points
which represent states in which the matter contributions are dominant. One of these points ( )
is associated with standard Friedmann cosmologies. The other () corresponds to an
exponential in the case of dust (w = 0) and a power law otherwise. This is an unusual
behavior, as a pressureless component is normally not expected to produce a de Sitter phase.
However, since the condensate also acts as a form of dust (see (21)) in the cosmology, the
theory does not ‘recognize’ the presence of matter and shows a phenomenology typical of the
Ω = 0 case.

As usual, the stability has to be calculated using the HG theorem for the hyperbolic
points and the CMT for the non-hyperbolic points. Only the stability of the non-hyperbolic
fixed points depends on the values of ϵ. The results are shown in table 7.

Because of the higher dimensionality of the phase space, the characteristic equation for
the determination of the stability of the non hyperbolic fixed manifolds generalizes to

′ + − + =X CX F X X X X Xh h P h G h( )[ ( , ( ))] [ · ( ) ( , ( ))] 0, (84)

where now =X h X h Xh( ) ( ( ), ( ))1 2 . Let us consider as an example the case of point . In this
case, we have

= −C 24, (85)

λ
ϵ

λ
ϵ

= − + − − −{ }wP 6( 1)
3

2
,

3

2
6 , (86)

= − + +{ }F X X6 (2 5) 1 , (87)2

= { }G GG , , (88)1 2

Ω
ϵ

λ Ω Ω ϵ Ω Ω= + − + + + + + + − +G X M M M X w X X
3

2
{ [2 ( 1) ] 4 [ ( 1) ( 1)( )]},(89)1

ϵ
λ Ω Ω

ϵ Ω Ω Ω

= − + + −

+ − + + + −

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

{
}

G M MX M

M MX M w

3

2
2 ( 1)

4 ( 1) . (90)

2
2 2

2 2

Equations (84) cannot be solved exactly. A standard approach in this case is a resolution by
series. Using the approximation

= + + = + +h X aX bX h X X eX( ) ..., ( ) d ..., (91)1
2 3

2
2 3
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one solution for the leading coefficients is

λ ϵ λ ϵ

λ ϵ

ϵ λ ϵ λ ϵ
= −

+ − + − + +

+ − +

+ − − + − −

⎡

⎣
⎢⎢⎢

⎡⎣ ⎤⎦
⎤

⎦
⎥⎥⎥

⎡⎣ ⎤⎦

{
}

( )
( )

( )
a

w w w w

w w

w w w w

( 4 ) (5 48) 16 21 83 40

16 16 30

32 [ 4( 7) ] ( 4) 2 6 8
, (92)

2 2 2

2

2

λ ϵ λ ϵ

ϵ λ ϵ
=

− + − + + + − +

− + − −

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( ) ( )
( )

d
w w w w w w

w w w

(5 48) 16 21 83 40 16 16 30

32 ( 4) 2 6 8
. (93)

2 2 2 2

2

The form of these coefficients is not unique, but it can be proven to be topologically
equivalent to any other solution found in this way [30]. The sign of a and d specifies in
general the stability of the fixed points. However, since the lower-order term of the two
expansions is even, the points represent a saddle node bifurcation, and they are unstable. For
points  and  , the determination of the stability is complicated by the fact that these points
present two zero eigenvalues. However, only one of them is due to its non-hyperbolic
character, while the other one represents the fact that it belongs to line .

The entire line  lies on the invariant submanifold = −X 1 2, and therefore it is unstable
for all the initial conditions with ≠ −X 1 2. In the invariant submanifold = −X 1 2, its
stability can be characterized by the projection of the system in the invariant submanifold
itself. However, the submanifold = −X 1 2 is irrelevant in the physical point of view, and the
above considerations combined with the considerations of the Ω = 0 case are sufficient to
characterize the line as unstable and points  and  as saddle node bifurcations.

Since the phase space is three-dimensional, plotting the phase space and deducing
geometrical information for it is not as easy as in the previous section. For this reason, here
and in the following subsection we will limit ourselves to giving analytical considerations.

3.2.2. The case V ¼ V 0 φ2+V 1
� �γ. The potential φ= + γV V V( )0

2
1 is a simple extension of

the power law potential considered in the previous section. It was chosen because of its
relevance in inflationary scenarios in the framework of the scalar field. At early times
( →a 0), this potential coincides with the pure power law considered in the Ω = 0 case.
However, at late time ( → ∞a ), it generates a cosmological term related to the value of the
constant, V1.

In this case, = γ
ϵ ϵ+ +

 X

X V X

2

(2 )

2

2
1

2 and the general system (40)–(44) takes the form

= − +


X
X X

d ( )

d
3 (1 2 ), (94)

Ω γ
ϵ ϵ

γ
ϵ ϵ

= + + −
+ +

+

+ −
+ +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥




Y
Y M w

X

X V X

Y
X

X V X

d ( )

d
(3 1)

6

(2 )
2

2 1
3

(2 )
, (95)

2

2
1

2

2
2

2
1

2
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Ω γ
ϵ ϵ

= + + + −
+ +

−
⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭




M
M M w Y

X

X V X

d ( )

d
(3 1) 2 1

3

(2 )
1 , (96)2

2

2
1

2

Ω Ω γ
ϵ ϵ

Ω= − + −
+ +

− + +
⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭


 M w Y

X

X V X
w

d ( )

d
3 2 1

3

(2 )
1 (3 1) , (97)

2

2
1

2
2

or implementing the constraint (44) to eliminate Y,

= − +


X
X X

d ( )

d
3 (1 2 ), (98)

γ Ω
ϵ ϵ

Ω= − + −
+ +

+ + −
⎡
⎣⎢

⎤
⎦⎥




M
M M

X M

X V X
w

d ( )

d
3

2 ( 1)

(2 )
( 1) 1 , (99)

2

2
1

2

Table 8. The fixed points and the solutions of the NMC model with matter
and φ= + γV V V( )0

2
1 .

Point Ω X M Y( , , , ) Scale Factor

 − −( )0, , 0, 11
2

= − γ−−a a t t( )0 0
2 3(1 2 )

 −( )0, , 1, 01
2

= − −
ϵ( )a a t texp ( )m

0 12 0

 −( )1, , 0, 01
2

ρ
φ=

− =

− ≠

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥a

a t t w

a t t w

exp ( ) 0
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Table 9. The fixed points and the solutions of the NMC model with matter
and φ= + γV V V( )0

2
1 .

Point Ω X M Y( , , , ) Condensate Energy Density

 − −( )0, , 0, 11
2

φ → ∞ ρ = 0

 −( )0, , 1, 01
2

φ → ∞ ρ = 0

 −( )1, , 0, 01
2

φ → ∞
ρ

ρ
=

=

− ≠− +
⎪

⎪

⎧
⎨
⎩

w

t t w

0 0

( ) 0
w

w0 0
2

(1 )

 −(0, 0, 0, 1) φ = 0 ρ = 0
 (0, 0, 1, 0) φ = 0 ρ = 0
 (1, 0, 0, 0) φ = 0 ρ ρ= − −t t( )0 0

2
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Ω Ω γ Ω
ϵ ϵ

Ω= − + −
+ +

+ + −
⎡
⎣⎢

⎤
⎦⎥


 M

X M

X V X
w

d ( )

d
3

2 ( 1)

(2 )
( 1)( 1) , (100)

2

2
1

2

Ω= + −Y M 1. (101)

The fixed points of the above system are shown in tables 8 and 9. In addition to the fixed
points found in the previous section, we find two more fixed points, whose coordinates are
also independent of the parameters of the system. The character of the solutions associated
with fixed point  depends on parameter γ. For γ < 1 6,  is associated with decelerated
expansion solutions, whereas for γ< <1 6 1 2 it represents and accelerated expansion
solution. The values γ > 1 2 are associated instead with a contraction solution whose
meaning is the same as the one in the power law potential given in the previous section. Apart
from , none of the fixed points represents an exact solution for the cosmological equations,
so that the behavior given in tables 8 and 9 represents approximations of the general integral.
The same caveats given in the previous sections hold here. Compared to the power law
potential examined in the Ω = 0 case, in this case a second exponential solution appears as a
late time solution as, expected. However, upon substitution in the cosmological equations,
this solution does not constitute a de Sitter phase, but rather an oscillatory solution.

Using the HG theorem, one can find the stability of the fixed points which is given in
table 10. The stability of the fixed points depends on all the parameters of the system,
including the nature of the perfect fluid considered. Of all the points, only  is an attractor for
a large set of initial conditions and coincides effectively with a cosmology indistinguishable
from a GR-based one. The remaining points are always unstable, so the fact that they do not
represent physical solutions is irrelevant for the analysis of the cosmologies.

Finally, also in this case, the dimensionality of the phase space, prevents an effective
graphical description of the phase space and we will not include that here.

Table 10. The fixed points and their stability of the NMC model with matter and
φ= + γV V V( )0

2
1 . Here R = repeller, A = attractor and S = saddle point.

Point Ω X M Y( , , , ) Eigenvalues γ < 1 2 γ< <1 2 1 γ > 1

 − −( )0, , 0, 11
2

γ γ− − − + −w[3, 3(1 2 ), 3(1 2 )] S R
if

γ⩽ < −w0 2 1

R

S S
if

γ − < ⩽w2 1 1
 −( )0, , 1, 01

2
γ− −w[3, 3 , 3(1 2 )] S S S

 −( )1, , 0, 01
2

γ− + −w w[3, 3 , 3(1 2 )] R R
if γ − ⩽w2 1 1

S

S S
if

γ⩽ < −w0 2 1
 −(0, 0, 0, 1) − − − + w[ 3, 3, 3(1 )] A A A
 (0, 0, 1, 0) − − w[ 3, 3, 3 ] S S S
 (1, 0, 0, 0) − − +w w[ 3, 3 , 3(1 )] S S S
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4. Conclusions

In this paper, we have analyzed the dynamic of the cosmology of a metric theory of gravity, in
which a condensate of fermions couples non-minimally with the geometry. One of the most
interesting features of this model is the fact that the Dirac equations constrain the behavior of
the condensate in a very strict way allowing the use of the non–minimal coupling as a switch
for additional terms in the action. For example, consider the case of an action, φ φ+R R2 2. It
is clear that since φ∝ a−3, the Hilbert–Einstein term will be dominant at early time and the R2

term will become important at late time. Instead, an action φ φ+R R2 2 will behave in the
opposite way. In other words, using this feature of the condensate, one can regulate the
influence of non–minimally coupled terms in a way what is impossible in the standard scalar
tensor and higher–order gravity. In this sense, we can speak of ‘design’ of the actions in the
case of theories with condensate NMC.

Our contribution in this framework is an analysis of the details of the cosmology via the
DSA. The proposed formulation allows the exploration of a model which includes massive
fermions, a perfect fluid, and a completely general self–interaction potential for the con-
densate. All these models present some common fixed points, although the solutions for the
scale factor associated with them can differ strikingly.

The phase space analysis also highlights a somewhat expected feature: since the
attractors of the theory are always a φ = 0 state, this kind of theory always evolves towards
states which are indistinguishable from GR. In fact, since the solutions corresponding to the
fixed points are characterized by a constant (null) condensate, for the orbits that are close to
this point the condensate is small and evolves very slowly—so slowly, in fact, that its
characteristic time of change can be bigger than the age of the Universe. It is clear that in such
a case, no-observation on the exact Friedmannian cosmology can reveal the presence of such
coupling. This is a common phenomenon in the cosmology of non-minimally coupled the-
ories and has been found in different ways by one of the authors of this paper, as well as other
researchers [24, 26]. This result, added to careful design of the interaction potential as in the
case of the exponential potential, can offer a natural, dynamic way to approximate Λ(CDM)
universes at late time. Of course this ‘degeneracy’ between non-minimally coupled theories
and GR exists only at the level of the pure Friedmann cosmology. Judging from what happens
in the case of the standard scalar tensor cosmologies, it is likely that looking into the evolution
of the cosmological perturbations will reveal clearly that we are not dealing with GR. In fact,
it is known that modification of GR dramatically impacts the behavior of the cosmological
perturbations (see, e.g., [27, 28] and references, therein). These differences would probably
also be evident in other cases, like black hole properties perturbations, etc. These issues have
never been analyzed in this perspective, even in the case of scalar tensor gravity, and it would
be outside the purpose of the present work to present them in details. We leave this task for a
series of future works.

Notwithstanding the general formulation of the DSA equations, the present work spe-
cifically focused on two different types of potential: power law and exponential law in both
the absence and presence of a perfect fluid. The choice of these potentials is motivated by
both the standard form of the potential considered in fermionic self-interaction and the
attempt to model an inflationary or dark energy phase.

In the absence of a perfect fluid, the structure of the phase space makes clear that some
interesting orbits are present in the sector − < <X1 2 0. In particular, for the case of a power
law potential, φ= αV V0 and α < 1, the cosmology can start from an unstable de Sitter state
() and evolve through a Friedmannian (t2 3) behavior () or a reduction of the expansion
rate (via ) to approach a power law evolution (). In particular, for α< <0 2 3, the final
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power law phase of  can be a power law inflation so that the orbits → →   inludes an
inflation era, a transition to a Friedmannian cosmology, and the onset of a (power law) dark
energy era. This transition to dark energy domination was already found in [16] using a
different approach. For α > 1, instead, the cosmology can start with a power law behavior
() and evolve towards to a Friedmannian behavior () either via an intermediate de Sitter
() or a power law decelerated expansion (). For α< <1 5 3, the power law phase of 
corresponds to accelerated expansion (power law inflation). In this sense, the orbits

→ →   can describe the graceful exit from a (de Sitter) inflationary phase.
In the case of an exponential potential, one of the fixed points () does not represent a

solution for the system, but it is always unstable and does not constitute an issue for the
understanding of the dynamics of the model. The orbits in the phase space of this case can
contain up to two de Sitter phases and one Friedmannian phase, and one of the de Sitter
phases () is an attractor for every value of the parameters (although not for all the orbits/
initial conditions). Particularly interesting are the orbits in which the de Sitter phase, Fried-
mann phase, de Sitter phase sequence is realized. It is worth to stressing again that from the
properties of the behavior of the condensates, the appearance of such behavior could be
inferred already the action level.

As expected, the inclusion of a perfect fluid adds to the degrees of freedom of the
cosmology, and this change is reflected in both an increase of the dimensionality of the phase
space and the appearance of additional fixed points. We have considered in this case the
exponential potential and a generalization of the power law potential considered in the
previous cases.

In the case of an exponential potential in the presence of a perfect fluid, the picture that
emerges is considerably more complicated than the purely fermionic one (Ω = 0). On top of
the Ω = 0 fixed points, other points appear together with a line of fixed points which are
associated with power law and exponential solutions. The cosmology, however, still contains
two de Sitter phases other than a proper Friedmann phase, and it cannot be excluded that a de
Sitter phase, Friedmann phase, de Sitter phase sequence is realized for a set of initial con-
ditions of measure different from zero.

In the case of a power law potential in the presence of a perfect fluid, an oscillating
cosmology, in which phases of expansions are alternated to phases of contractions, becomes
an attractor for a large set of initial conditions. The period of the oscillations is strictly related
to the constant, V1. The approaching trajectory can be, however, rather complicated and can
be approximated with different types of power law behaviors and a de Sitter phase. It is worth
stressing that this kind of behavior was not predictable a priori, and this shows a limitation of
the idea of the design of these models. We can construct a theory whose cosmology shows an
exponential behavior, but we cannot easily control the character of the exponential solution.

An interesting phenomenon present in both of the above cases is related to the fact that,
since the condensate works as a dust fluid when these cosmologies are filled with dust, one
obtains behaviors typical of the Ω = 0 case (modulo the additional complication of the flow,
due to the increase of degrees of freedom). This happens because in the case of dust, the
theory is not able to ‘distinguish’ between the perfect fluid and the condensate, so the Ω = 0
phenomenology appears again. This is clear from the structure of the solution associated
with  .

All in all, therefore, the presence of matter does have a deep influence on the cosmo-
logical models, but in some cases, like the case of the exponential potential, it offers the
possibility of a full representation of an inflation plus Λ universes.

The analysis of the above models indicates that the possibility of a non–minimal coupling
between a fermion condensate and the geometry can present, in spite of the additional
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constraint given by the Dirac theory, a phenomenology as rich as the standard scalar field
theories. Although still at the toy-model-level of understanding, the theory presented above
constitutes an interesting alternative approach to the unification of inflation and dark energy
which deserves further study.

To conclude, it is worth stressing that one major issue for these models is to identify a
suitable potential for the condensate interaction. This is, however, not new in cosmology and
particle physics. Probably the most important example is the theory of inflation in which, in
spite of more that thirty years of study, there is no agreement on the form of the potential for
the inflation. In this sense, our work aims to highlight an alternative explanation for inflation
and/or the cosmic acceleration phenomenon, rather than to prove the actual necessity of such
mechanism. Further studies will allow more critical review of these results.
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