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We will consider the torsional completion of gravity for a background filled with Dirac matter fields,
studying what happens when fermionic nonminimal coupling is taken into account: we will show that,
although nonminimal couplings are usually disregarded because of their ill-defined behavior in ultraviolet
regimes, this is due to the fact that torsion is commonly neglected, whereas when torsion is not left aside,
even nonminimal couplings behave properly. In detail, we will see that nonminimal coupling allows one to
renormalize the Dirac equation even when torsion is taken into consideration and that in some type of
nonminimally coupled models parity oddness might be present even in the gravitational sector. In addition,
we will show that in the presence of the considered nonminimal coupling, torsion is able to evade
cosmological singularities as it can happen in the minimal coupling case and in some other nonminimally
coupled theory. In the course of the paper, we shall consider a specific interaction as prototype to study this
fermionic nonminimal coupling, but we will try to present results that do not depend on the actual structure
of the nonminimal couplings by investigating alternative types of interaction.
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I. INTRODUCTION

In physics, the construction of a given theory can be
achieved once a Lagrangian is assigned: the infinity of
theories that can be conceived corresponds to the infinity of
Lagrangians that can be written, and quite astonishingly,
once a field content is taken into account, Lorentz invari-
ance and specific gauge symmetries are powerful tools to
dramatically reduce the number of possible dynamics; then,
additional requirements, such as renormalizability or con-
formal invariance, may set the final count to just a few.
Remarkably, among these few are some of the best
established theories we have ever had (the Dirac theory,
the electroweak theory, chromodynamics); but disappoint-
ingly, other very successful theories do not seem to fit in
(for instance, the Einstein theory of gravitation is neither
conformal nor renormalizable; its subsequent cosmology
still lacks a proper explanation for inflation, a right place
for dark matter, and a complete understanding of dark
energy). Enlarging the model as to have the possibility to
host more physical phenomena demands for the corre-
sponding relaxation of some requirements on the dynami-
cal action and its Lagrangian.
In the present paper we will relax the constraint of

minimal coupling. To better explain the situation, consider
the fact that a Lagrangian is always given in terms of kinetic

terms of given fields (that is, terms with one specific field)
plus terms that describe the interactions among those fields
(namely, terms with the product of more fields): because
the field content we will consider here (torsion gravity with
Dirac fields) is rather well established, we are not going
to change the structure of the kinetic terms; however, we
will allow the interactions to be at the nonminimal mass
dimension. The mass dimension of the interaction is given
by assigning the mass dimension to each field (as it is
known, in four-dimensional spacetimes, the mass dimen-
sion of derivatives and gauge potentials, as well as scalars,
is 1, for Dirac fermions is 3

2
, and so on): all kinetic terms are

required to have mass dimension 4, but for the interactions
it is possible to have all terms of mass dimension 4
(in which case the theory is conformally invariant) or all
mass dimensions up to 4 (in which case the theory is said
to be renormalizable) or even all mass dimensions up to
but excluding 4 (in which case the theory is said to be
superrenormalizable). It is customary not to consider mass
dimensions larger than 4 but in this paper considering larger
mass dimensions is what we will do.
The reason for which larger mass dimensions, or equiv-

alently nonminimal couplings, are in general not considered
is that they violate renormalizability, that is the high-energy,
or ultraviolet, behavior is ill-defined; in these cases in fact,
in the short-range scales these interactions will become
dominant over the kinetic terms, and the theory would fail to
be dynamical, according to Wilson criteria [1].
In the present paper, we aim to generalize the work [2] in

the case torsion is not neglected, in order to provide a better
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understanding of the physics of nonminimal couplings: we
will show that such phenomenology would not come at the
expenses of the dynamics, because the nonminimal cou-
plings we will consider will be proven to be renormalizable
(i.e. dynamically well defined). We will prove that such
nonminimal couplings will even be superrenormalizable.
Moreover, for consistency with the existing literature, we
will show that the presented theory preserves the results on
the avoidance of cosmological singularities, which have
been already established [3–9].
The paper will be divided in the following way:

Section II is dedicated to the description of the theory
and its general properties, particularly the conservation
laws; Sec. III is instead dedicated to some interesting
aspects of the theory such as renormalizability and parity
violation; Sec. IV is devoted to cosmological consider-
ations; Sec. V is dedicated to the summary of the results,
and an overall discussion as conclusion.

II. TORSION GRAVITY WITH DIRAC FIELDS
IN NONMINIMAL COUPLING

To begin with, we shall introduce the general formalism,
first defining the fundamental geometrical fields, then their
dynamics with specific accent on nonminimal couplings;
the last subsection will be devoted to the proof that in the
case of nonminimal couplings the conservation laws are
improved with extra terms compared to the standard ones.

A. The geometrical background

In this paper, we indicate spacetime indices by Latin
letters and Lorentz indices with Greek letters. The space-
time will be taken to be (1þ 3) dimensional and endowed
with a metric tensor gij and a connection Γij

h which will be
metric compatible, that is the connection defines a covar-
iant derivative ∇i that once applied on the metric tensor
yields zero; the connection defines Cartan torsion and
Riemann curvature expressed in holonomic frames as

Tij
h ¼ Γij

h − Γji
h; ð1aÞ

Rh
kij ¼ ∂iΓjk

h − ∂jΓik
h þ Γip

hΓjk
p − Γjp

hΓik
p: ð1bÞ

The contractions Ti ¼ Tij
j, Rij ¼ Rh

ihj and R ¼ Rijgij are
called, respectively, the torsion vector, the Ricci tensor and
the Ricci scalar curvature, and they verify the identities

∇i

�
Rij − 1

2
Rgij

�
¼ 1

2
TpqrRpqrj þ TjpqRpq; ð2aÞ

∇iðTtsi − Ttgsi þ TsgtiÞ ¼ −TtspTp − Rts þ Rst ð2bÞ

known as Bianchi identities. Given a metric tensor gij,
every metric-compatible connection can be decomposed as

Γij
h ¼ ~Γij

h − Kij
h; ð3Þ

where

Kij
h ¼ 1

2
ð−Tij

h þ Tj
h
i − Th

ijÞ ð4Þ

is called the contorsion tensor and ~Γij
h is the Levi-Civita

connection induced by the metric gij; the contorsion tensor
satisfies Ki

jh ¼ −Ki
jh amounting to the metric compati-

bility of (3), and it has one contraction Ki
ij ¼ Kj from

which we have also the identity Ki ¼ −Ti. With the
contorsion we can decompose the covariant derivative of
the full connection ∇i into covariant derivative of the
Levi-Civita connection ~∇i plus contorsional contributions;
in terms of this decomposition, we have the corresponding
decomposition go the curvature as given according to

Rij ¼ ~Rij þ ~∇jKhi
h − ~∇hKji

h þ Kji
pKhp

h − Khi
pKjp

h;

ð5Þ

where the Ricci curvature of the Levi-Civita connection is
denoted by ~Rij. In the next sections we shall consider
gravity coupled with Dirac fields: as it is well known, the
most suitable variables to describe fermion fields interact-
ing with gravity are tetrads, which possess Lorentz indices
as well as spacetime indices. They are defined together
with their dual ejμe

μ
i ¼ δji and ejμeνj ¼ δνμ in such a way

that gij ¼ eμi e
ν
jημν, where ημν ¼ diagð1;−1;−1;−1Þ is the

Minkowskian matrix, and in addition we may also define
the spin-connection 1-forms ωμ

ν ¼ ωi
μ
νdxi such that

Γij
h ¼ ωi

μ
νehμeνj þ ehμ∂ie

μ
j ð6Þ

with ωi
μν ¼ −ωi

νμ identically; torsion and curvature ten-
sors can also be expressed as

Tμ
ij ¼ ∂ie

μ
j − ∂je

μ
i þ ωi

μ
λeλj − ωj

μ
λe

λ
i ; ð7aÞ

Rij
μν ¼ ∂iωj

μν − ∂jωi
μν þ ωi

μ
λωj

λν − ωj
μ
λωi

λν; ð7bÞ

and their relationships with the world tensors defined in
Eq. (1) are given by the relationships Tij

h ¼ Tij
αehα and

Rh
kij ¼ Rij

μ
νe

h
μeνk, respectively. Spacetime and Lorentz

formalisms are totally equivalent.
The spinor fields we will consider are basically the

simplest possible, that is the 1
2
-spin spinor fields, or Dirac

fields. They are introduced in terms of the Clifford algebra,
which is constituted by the set of gamma matrices given by
γμ, and of course Γi ¼ eiμγμ, in terms of which we can
define Sμν ¼ 1

8
½γμ; γν� that can be proven to be the infini-

tesimal generators of a complex Lorentz transformations:
the spinorial-covariant derivative of the spinor field is given
by Diψ ¼ ∂ψ

∂xi −Ωiψ, where the spinorial connection is
given according to
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Ωi ¼ −ωi
μνSμν ≡− 1

4
gjhðΓik

j − ejμ∂ie
μ
kÞΓhΓk ð8Þ

in terms of the spin connection, or the linear connection. In
the paper, we will consider no gauge interaction.

B. The dynamical action

With this field content, it possible to define the dynami-
cal action: the kinematic sector will be given in terms of the
usual action for the Einstein-Sciama-Kibble gravity filled
with a Dirac field; however, as we anticipated in the
introduction, we will take into account also additional
terms giving rise to interactions in a nonminimal fashion.
The simplest terms we may think to add are those
constituted of interactions of mass dimension 5: because
the interaction must contain geometrical as well as Dirac
fields, and because Dirac fields are spinors that have to be
bracketed with one another, then the spinorial contributions
will already account for a mass dimension 3

2
× 2 ¼ 3, and

therefore the remaining 5 − 3 ¼ 2 mass dimensional term
can only be a curvature or a squared torsion or a derivative
torsion; the only term that would still be present even in the
torsionless limit can only be a curvature, and as a quick
algebra on the gamma matrices would show, all possible
terms actually reduce to the single Rψ̄ψ so that

Linteraction ¼ ½ϵRψ̄ψ − VðψψÞ�e; ð9Þ
with ϵ an undetermined parameter, will be our interacting
term in the Lagrangian. The total Lagrangian is then

L ¼ ½ð1þ ϵψ̄ψÞR − i
2
ðψ̄ΓiDiψ −Diψ̄ΓiψÞ

þmψψ − VðψψÞ�e: ð10Þ

Its variation with respect to the tetrad and spin connection
as well as Dirac fields gives

φðTts
α − Ttσ

σeαs þ Tsσ
σeαt Þ ¼

∂φ
∂xt e

α
s − ∂φ

∂xs e
α
t þ Stsα;

ð11aÞ

Rμσ
λσeiλ − 1

2
Reiμ ¼

1

φ
Σi
μ; ð11bÞ

iΓhDhψ þ i
2
ThΓhψ −mψ þ V 0ðψ̄ψÞψ − ϵψR ¼ 0; ð12Þ

where we have denoted φ ¼ ð1þ ϵψ̄ψÞ and V 0 ¼ dV
dðψ̄ψÞ, for

simplicity, together with the usual Σi
μ ¼ − 1

2e
∂ðeLDÞ
∂eμi and

Sμνi ¼ 1
2e

∂ðeLDÞ∂ωi
μν playing the role of energy and spin density

tensors, respectively: they are given by expressions

Sijh ¼
i
2
ψ̄fΓh; Sijgψ ≡− 1

4
ϵhijkψ̄Γ5γ

kψ ; ð13aÞ

Σij ¼
i
4
ðψ̄ΓiDjψ −Djψ̄ΓiψÞ − 1

2
ϵðψ̄ψÞRgij

− 1

2
Vðψ̄ψÞgij þ

1

2
ðψ̄ψÞV 0ðψ̄ψÞgij; ð13bÞ

where (13b) is obtained by employing the Dirac
equations (12).
Using the set of field equations for torsion (11a), we

obtain the following representation for the contorsion
tensor:

Kij
h ¼ K̂ij

h þ Ŝij
h; ð14Þ

where

Ŝij
h ¼ − 1

2φ
Sijh; ð15aÞ

K̂ij
h ¼ −T̂jδ

h
i þ T̂pgphgij; ð15bÞ

T̂j ¼
1

2φ

∂φ
∂xj ; ð15cÞ

and after splitting the spin into its three irreducible terms,
only the two vector terms will remain, the completely
antisymmetric part, sourced by the spin of the Dirac field,
and the vector part, generated by the nonminimal coupling

Tak
k ¼ − 3

2φ
∂aφ: ð16Þ

Without the nonminimal coupling this term would vanish
identically.
To proceed in our study, let us substitute (16) into (11a),

so to invert the expression for the torsion according to

Ttsa ¼
1

2φ
ðgat∂sφ − gas∂tφÞ þ

1

4φ
ϵtsakψ̄Γkγ5ψ ð17Þ

in which the role of the two vector parts is manifest; field
equations (11b) are symmetrized and decomposed as

~Rij − 1

2
~Rgij ¼ − 1

2φ
ϵψ̄ψRgij þ

1

φ
~Σij þ

1

φ2

�
− 3

2

∂φ
∂xi

∂φ
∂xj þ φ ~∇j

∂φ
∂xi þ

3

4

∂φ
∂xh

∂φ
∂xk g

hkgij − φ ~∇h ∂φ
∂xh gij

�

þ 3

64φ2
ðψ̄γ5γτψÞðψ̄γ5γτψÞgij − 1

2φ
Vðψ̄ψÞgij þ

1

2φ
ðψ̄ψÞV 0ðψ̄ψÞgij ð18Þ
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with

~Σij ¼
i
4
½ψ̄Γði ~DjÞψ − ~Dðjψ̄ΓiÞψ �; ð19Þ

where ~Djψ is the spinorial covariant derivative with respect
to the Levi-Civita connection. The antisymmetric part of
(11b) is simply the conservation law for the spin, ensured
by the Dirac equations [10], as we are going to show in the
following section. Dirac equations (12) are given according
to the expression

iΓh ~Dhψ − 3

16φ
½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5�ψ

− ðm − V 0ðψ̄ψÞ þ ϵRÞψ ¼ 0 ð20Þ

as it can be checked by following the procedure outlined
in [11].
These equations, however, have a problem: if we

separate the interacting term in its torsionless term ~R
and torsional contributions, and we substitute torsion with
the matter field, (20) becomes

3ϵ2

φ
~∇2ðψ̄ψÞψ − 3ϵ3

2φ2
~∇iðψ̄ψÞ ~∇iðψ̄ψÞψ þ iΓh ~Dhψ þ 3ϵ

32φ2
½ðψ̄ψÞ2 þ ðiψ̄γ5ψÞ2�ψ

− 3

16φ
½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5�ψ − ðm − V 0ðψ̄ψÞ þ ϵ ~RÞψ ¼ 0; ð21Þ

containing second-order time derivatives of the spinor
that cannot be present in a Dirac field equation. Indeed,
it is possible to prove that when the field equations
contain second-order time derivatives of the spinor,
there is the possibility to induce a mismatch of number
of degrees of freedom and violation of causal propa-
gation, as it has been described in terms of the Velo-
Zwanziger analysis [12,13]. Nevertheless, things can be
straightened up by employing the coupling to gravity.
To see that, consider that the trace of the gravitational
field equations yields

−φR ¼ Σi
i ¼

m
2
ψ̄ψ − 3

2
ϵψ̄ψR − 2V þ 3

2
ψ̄ψV 0 ð22Þ

made explicit after inverting it as

R ¼ ðm
2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

ð1
2
φ − 3

2
Þ ð23Þ

relating the Ricci scalar to the bilinear spinors, that is
linking the two additional interacting terms we have
decided to study. When Eq. (23) is substituted back into
the gravitational field equations, they become

~Rij − 1

2
~Rgij ¼

i
4φ

½ψ̄Γði ~DjÞψ − ~Dðjψ̄ΓiÞψ � þ
1

φ2

�
− 3

2

∂φ
∂xi

∂φ
∂xj þ φ ~∇j

∂φ
∂xi þ

3

4

∂φ
∂xh

∂φ
∂xk g

hkgij − φ ~∇h ∂φ
∂xh gij

�

þ 3

64φ2
ðψ̄γ5γτψÞðψ̄γ5γτψÞgij − 1

2φ
Vðψ̄ψÞgij þ

1

2φ
ðψ̄ψÞV 0ðψ̄ψÞgij − ϵψ̄ψðm

2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

2φð1
2
φ − 3

2
Þ gij:

ð24Þ

The substitution into the Dirac field equation instead gives

iΓh ~Dhψ − 3

16φ
½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5�ψ −

�−mþ V 0ðψ̄ψÞ þmϵψ̄ψ − 2ϵV þ ϵψ̄ψV 0
1
2
ϵψ̄ψ − 1

�
ψ ¼ 0 ð25Þ

showing now no sign of second-order time derivative, nor first-order time derivative apart from the usual Dirac operator, but
only the expected cubic term plus a new term containing the interaction with gravity encoded by the parameter ϵ and the
potential of self-interaction V alone, and so causality is preserved [12,13].
Clearly, a judicious choice of the potential V could give rise to correspondingly fine-tuned behaviors, but of particular

interest is the special case in which the potential of self-interaction is absent, giving

~Rij − 1

2
~Rgij ¼

1

φ
~Σij þ

1

φ2

�
− 3

2

∂φ
∂xi

∂φ
∂xj þ φ ~∇j

∂φ
∂xi þ

3

4

∂φ
∂xh

∂φ
∂xk g

hkgij − φ ~∇h ∂φ
∂xh gij

�

−
�

3

64φ2
fðψ̄ψÞ2 þ ðiψ̄γ5ψÞ2g þ

mϵψ̄ψψ̄ψ

2φðφ − 3Þ
�
gij ð26Þ
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and

iΓh ~Dhψ −m

�
3

16mφ
½ðψ̄ψÞþ iðiψ̄γ5ψÞγ5�þ

�
ϵψ̄ψ −1
1
2
ϵψ̄ψ −1

��
ψ

¼ 0; ð27Þ

in which we see that the new interaction with gravity has
the same influence as the torsionally induced nonlinearities
of the matter field. This remark will prove to be funda-
mental when discussing the issue of renormalizability.

C. Conservation laws

Having now the fundamental field equations, we will
employ the contracted Bianchi identities in order to derive
the conservation laws for the theory outlined above. The
derivation of these conservation laws is not a mere exercise,
but it is essential to show the validity of conservation laws
that are no longer given by the usual ones, but which are
instead improved by the presence of terms that due their
existence to the extra nonminimal interaction; the usual
form of conservation laws (as proven in Ref. [14], for
example) can be obtained from underlying symmetries by
applying Nöther’s theorem, but this has never been done
while taking into account the nonminimal coupling mixing
gravitational and material sectors: and the extra terms of the
modified conservation laws come from those terms.
Let us consider the fully contracted Bianchi identities

given according to (2) and the field equations (11b) as

φ

�
Rij − 1

2
Rgij

�
¼ Σij; ð28aÞ

φðTijh − Tigjh þ TjgihÞ ¼ ∇iφgjh − ∇jφgih þ Sijh;

ð28bÞ

so that through the divergences of (28) we get

∇iφ

�
Rij − 1

2
Rgij

�
þ φ∇i

�
Rij − 1

2
Rgij

�
¼ ∇iΣij;

ð29aÞ

∇hφðTijh − Tigjh þ TjgihÞ þ φ∇hðTijh − Tigjh þ TjgihÞ
¼ ½∇j;∇i�φþ∇hSijh: ð29bÞ

By inserting the content of (2) into (29) and evaluating
explicitly ½∇j;∇i�φ we obtain

∇iφ

�
Rij − 1

2
Rgij

�
þ 1

2
φTpqrRpqrj þ φTjpqRpq ¼ ∇iΣij;

ð30aÞ

∇iφTj − ∇jφTi − φTijpTp − φRij þ φRji ¼ ∇hSijh:

ð30bÞ

Moreover, from the antisymmetric part of (28a) we
have

φðRij − RjiÞ ¼ Σij − Σji; ð31aÞ

and the contractions of (28a) with torsion vector and
torsion yield

φRijTi − 1

2
φRTj ¼ ΣijTi; ð31bÞ

φRijThij − 1

2
φRTh ¼ ΣijThij; ð31cÞ

as well as the contractions of (28b) with curvature and
torsion vector give rise to

1

2
φTijhRijhk þ φTiRik ¼ −∇iφRik þ

1

2
SijhRijhk; ð31dÞ

φTijhTh ¼ ∇iφTj − ∇jφTi þ SijhTh ð31eÞ
as a final step. Eventually, by inserting (31) into (30),
we end up with the conservation laws

∇iΣij þ TiΣij − ΣpqTjpq − 1

2
SpqrRpqrj þ 1

2
R∇jφ ¼ 0;

ð32aÞ

∇hSijh þ ThSijh þ Σij − Σji ¼ 0; ð32bÞ
which the energy-momentum (13b) and spin (13a)
tensors have to satisfy. We see that Eq. (13b) is
different from the standard one because of the presence
of the last term R∇jφ which arises due to the coupling
of the condensate and geometry, that is the nonminimal
coupling we are studying in the present context.
For completeness and consistency, we verify that (12)

implies (32). We start decomposing the energy tensor as

Σij ¼ Σ̄ij þ Σ̂ij; ð33Þ

where

Σ̄ij ¼
i
4
ðψ̄ΓiDjψ −Djψ̄ΓiψÞ ð34Þ

and

Σ̂ij ¼ − 1

2
ϵðψ̄ψÞRgij − 1

2
Vðψ̄ψÞgij þ

1

2
ðψ̄ψÞV 0ðψ̄ψÞgij

ð35Þ
as the purely kinetic and potential parts. On the one hand
making use of (3) and (4) and taking the symmetry of Σ̂ij
into account, it is a straightforward matter to verify the
identities
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∇iΣ̂ij ¼ −TiΣ̂ij þ Σ̂pqTjpq þ ~∇iΣ̂ij

¼ −TiΣ̂ij þ Σ̂pqTjpq − 1

2
~∇jðϵψ̄ψÞR

− 1

2
ϵψ̄ψ ~∇jRþ 1

2
½ ~∇jV 0ðψ̄ψÞ�ðψ̄ψÞ; ð36Þ

while on the other hand, we can calculate the divergence of
Σ̄ij as

DiΣ̄ij ¼ i
4
ðDiψ̄ΓiDjψ þ ψ̄ΓiDiDjψ −DiDjψ̄Γiψ

−Djψ̄ΓiDiψÞ; ð37Þ

so that by adding and removing the terms ψ̄ΓiDjDiψ and
DjDiψ̄Γiψ in Eq. (37) we get

DiΣ̄ij ¼ i
4
ðψ̄Γi½Di;Dj�ψ − ½Di;Dj�ψ̄Γiψ

þDiψ̄ΓiDjψ þ ψ̄ΓiDjDiψ −DjDiψ̄Γiψ

−Djψ̄ΓiDiψÞ ð38Þ

in which the commutator of covariant derivatives
can be computed in terms of curvature and torsion terms;
by inserting the Dirac equations (12) into (38) we
obtain

DiΣ̄ij ¼ −TiΣ̄ij þ TjikΣ̄ik þ
1

2
SabiRabij

− 1

2
½ ~∇jV 0ðψ̄ψÞ�ðψ̄ψÞ þ 1

2
ϵψ̄ψ ~∇jR: ð39Þ

Adding (36) and (39) gives (32a). As to the conservation
law for the spin, we first calculate the divergence

DhSijh ¼
i
2
ðDhψ̄ΓhSijψ þ ψ̄ΓhSijDhψ þDhψ̄SijΓhψ

þ ψ̄SijΓhDhψÞ; ð40Þ

and then we sum and subtract the terms ψ̄SijγhDhψ and
Dhψ̄γ

hSijψ , obtaining

DhSijh ¼
i
2
ðψ̄ ½Γh; Sij�Dhψ þDhψ̄ ½Sij;Γh�ψ

þ 2Dhψ̄ΓhSijψ þ 2ψ̄SijΓhDhψÞ; ð41Þ

where the commutator of gamma and sigma matrices can
be evaluated in terms of their algebraic relationships; upon
insertion of the Dirac equations (12) into (41) we get

DhSijh ¼
i
2
ðψ̄ ½Γh; Sij�Dhψ þDhψ̄ ½Sij;Γh�ψ

− Thψ̄fΓh; SijgψÞ ð42Þ

similarly as above: finally, using ½Γi; ½Γj;Γh�� ¼
4ðΓhgij − ΓjgihÞ as well as of the symmetry of Σ̂ij, we
derive (32b).
For later use, we now show that the conservation laws

(32b) [and then the Dirac equations (12)] ensure that the
Levi-Civita divergence of the symmetrized Einstein-like
equations (18) vanishes. To start, recall that

Rh
iqj ¼ ~Rh

iqj þ ~∇jKqi
h − ~∇qKji

h þ Kji
pKqp

h

− Kqi
pKjp

h; ð43Þ
where the contorsion tensor Kij

h is expressed as in (4).
Taking (14) and (15) into account gives

− 1

2
ShiqRhiqj ¼ −ShipŜjipT̂h − 1

2
φ ~∇jðŜqihŜqihÞ

− φ ~∇iðŜhqiŜjqhÞ þ φ ~∇iðŜhqiÞŜjqh ð44Þ

as an identity; also, making use again of (14) and (15), it is
seen that

∇iΣij þ TiΣij − ΣihTjih ¼ ~∇iΣ̄ðijÞ þ ~∇iΣ̄½ij� þ ~∇iΣ̂ij

− Kih
jΣ̄½ih� − Tj

ihΣ̄½ih�; ð45Þ
and moreover, it is an easy matter to verify that
Σ̄ðijÞ ¼ ~Σij − φŜhipŜjph, as well as that the conservation
laws (32b) amount to the identities 1

φ Σ̄
½ij� þ ~∇hŜ

jih ¼ 0,
which is the antisymmetrized part of the Einstein-like
equations. From this identity and relationships (14) and
(15) we deduce the following relations:

~∇iΣ̄ðijÞ ¼ ~∇i
~Σij − ~∇iðφŜhipŜjphÞ; ð46aÞ

~∇iΣ̄½ih� ¼ −φi
~∇hŜ

jih; ð46bÞ

−Kih
jΣ̄½ih� ¼ −φT̂h

~∇qŜ
hjq þ φŜih

j ~∇qŜ
hiq; ð46cÞ

−Tj
ihΣ̄½ih� ¼ φT̂i

~∇qŜ
jiq − 2φŜjih ~∇qŜ

hiq; ð46dÞ

where for simplicity we have defined φi ¼ ∂φ
∂xi. Inserting

(44)–(46) into the conservation law for the energy (32a),
the latter can be expressed in the equivalent form given by
the following expression:

~∇i
~Σij þ ~∇iΣ̂ij − 1

2
φ ~∇jðŜhqpŜhqpÞ þ

1

2
R ~∇jφ ¼ 0: ð47Þ

In addition to this, from (5) and again (14) and (15) we
derive the identity

R ¼ ~Rþ 3

2

1

φ2
φiφ

i − 3

φ
~∇iφ

i − ŜhqpŜ
hqp; ð48Þ

and we write the symmetrized and decomposed Einstein-
like equations in the form
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φ ~Rij − φ

2
~Rgij ¼ ~Σij þ Σ̂ij þ

1

φ

�
− 3

2
φiφj þ φ ~∇jφi þ

3

4
φhφ

hgij þ φ ~∇hφhgij

�
− 1

2
φŜhqpŜ

hqpgij: ð49Þ

The Levi-Civita covariant divergence of (49) is

ð ~∇jφÞ ~Rij þ φ ~∇j ~Gij − 1

2
~R ~∇iφ ¼ ~∇j ~Σij þ ~∇jΣ̂ij þ ð ~∇j ~∇j

~∇i − ~∇i
~∇j ~∇jÞφ

þ ~∇j
�
1

φ

�
− 3

2
φiφj þ

3

4
φhφ

hgij

��
− 1

2
~∇iðφŜhqpŜhqpÞ; ð50Þ

and the fact that ~∇j ~Gij ¼ 0 and ð ~∇jφÞ ~Rij ¼ ð ~∇j ~∇j
~∇i − ~∇i

~∇j ~∇jÞφ reduces (50) to

− 1

2
~R ~∇iφ ¼ ~∇j ~Σij þ ~∇jΣ̂ij þ ~∇j

�
1

φ

�
− 3

2
φiφj þ

3

4
φhφ

hgij

��
− 1

2
~∇iðφŜhqpŜhqpÞ: ð51Þ

From (48) it is seen that

1

2
Rφi ¼ þ 1

2
~Rφi þ ~∇j

�
1

φ

�
− 3

2
φiφj þ

3

4
φhφ

hgij

��
− 1

2
φiŜhqpŜ

hqp; ð52Þ

and then (51) amount to the decomposed conservation
laws (47).

III. THE EFFECTS OF NONMINIMAL COUPLING:
RECOVERING RENORMALIZABILITY AND

PARITY VIOLATION

Now that the nonminimal dynamics has been defined,
we will investigate some consequences: as with torsion
there are many nonminimal terms, even if we restrict
ourselves to the simplest nonminimal couplings, our
general behavior will be that of focusing on the previous
one as prototype, since we believe it to embody the most
important properties; nevertheless, later on we will also
switch to other nonminimal couplings, to show that indeed
the features we will investigate are general aspects of
the nonminimally coupled models, and not only for the
simplest of them.

A. Recovering renormalizability

As well known, the Dirac equation is nonrenormalizable
if torsion is present, in the usual situation of nonminimal

coupling; in parallel, it is also well known that such an
equation is nonrenormalizable even without torsion, when-
ever nonminimal couplings are accounted for: given these
premises, one would expect that the nonrenormalizability
would be much worsened if both torsion and nonminimal
coupling are assumed. Contrary to this intuition, however,
it will turn out that the Dirac equation with torsion and
nonminimal coupling is renormalizable; in fact, it is even
superrenormalizable. As one of the reasons for which
torsion had always been neglected was precisely the alleged
nonrenormalizability of the resulting Dirac equations, this
result is fundamental because the renormalizability of the
Dirac equation does not impose us to neglect torsion, but it
merely suggests that more nonminimal couplings might
have to be considered, when dealing with Dirac fields in a
gravitational underlying background.
So, to show that with both torsion and nonminimal

coupling, the Dirac field is renormalizable, we will first
focus on the case of no self-interaction of the spinor field,
given when the potential V is absent: (26) and (27)
reduce to

~Rij − 1

2
~Rgij ¼

1

φ
~Σij þ

1

φ2

�
− 3

2

∂φ
∂xi

∂φ
∂xj þ φ ~∇j

∂φ
∂xi þ

3

4

∂φ
∂xh

∂φ
∂xk g

hkgij − φ ~∇h ∂φ
∂xh gij

�

−
�

3

64φ2
fðψ̄ψÞ2 þ ðiψ̄γ5ψÞ2g þ

mϵψ̄ψψ̄ψ

2φðφ − 3Þ
�
gij ð53Þ

and

iΓh ~Dhψ −m

�
3

16mφ
½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5� þ

�
ϵψ̄ψ − 1
1
2
ϵψ̄ψ − 1

��
ψ ¼ 0; ð54Þ
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in which the nonminimal coupling and the torsionally
induced terms have the same influence on the matter field.
Focusing on the matter field equations, we consider

Wilson’s analysis of renormalizability: the general idea is
that of assigning a scaling transformation property to the
fundamental fields, checking the behavior at very short
distances. If the kinetic term becomes negligible with
respect to the interaction, the equation is nonrenormaliz-
able; if the kinetic term survives, the equation is renorma-
lizable; and in particular if it survives alone dominating all
interactions, the equation is superrenormalizable [1]. In our
case, we only have spinors, which scale according to σ−3

2;
correspondingly

0 ¼ iΓh ~Dhψ − 3mσ−1
16mð1þ ϵψ̄ψσ−3Þ ½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5�ψ

−
�
2ϵψ̄ψσ−3 − 2

ϵψ̄ψσ−3 − 2

�
mσ2ψ

≈ iΓh ~Dhψ − σ2
�

3

16ϵψ̄ψ
½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5� − 2m

�
ψ

≈ iΓh ~Dhψ ; ð55Þ

implying that the nonminimal coupling and the torsionally
induced nonlinear interactions work together to render the
interaction, like the mass term, renormalizable. Or to be
even more precise, superrenormalizable.
This is an important feature, and in order to avoid the

thought that such a property could be ascribed to the specific
form of the action we have been considering up to now, we
will repeat the analysis in terms of another, simpler action.
Let us consider, for instance, a nonminimal coupling

arising as a direct product between bilinear spinors and
torsion terms, for which in general there are up to 20 such
interactions. However, since we are dealing with a toy
model to exemplify the main idea, there will be no great
loss in choosing a case special enough to simplify
computation.
In addition, since among the three irreducible decom-

positions of torsion the completely antisymmetric one
has a peculiar significance [15–19], we will pick torsion to
be completely antisymmetric for the moment. Therefore
we restrict torsion to be given by Tijh ¼ ϵijhkWk in terms
of the axial vector Wk, so that the total number of
possible terms reduces down to the three ψ̄ψWkWk,
iψ̄γ5ψ∇kWk, ψ̄γ5Sijψ∇iWj alone, and the torsional inter-
action Lagrangian is

Linteraction ¼ ðAψ̄ψWkWk þ iBψ̄γ5ψ∇kWk

þ Cψ̄γ5Sijψ∇iWjÞ
ffiffiffiffiffi
jgj

p
ð56Þ

in terms of three parameters A, B, C only, which will be
further reduced.
When all these terms are taken in the total action with

matter, we have that variation with respect to all torsion or
spin connection and the spinor field gives the torsion-spin
field equations

ð2Aψ̄ψ þ 3ÞWk ¼ − 3

4
ψ̄γkγ5ψ

þ∇iðCψ̄γ5Sikψ þ iBψ̄γ5ψgikÞ ð57Þ

and the matter field equations

iΓiDiψ − C∇iWjγ
5Sijψ − iB∇kWkγ5ψ

− AWkWkψ −mψ ¼ 0: ð58Þ

The former equation can be inverted as to give the torsion
in terms of the spinor fields and their derivatives, and then
substituted into the latter equation. The resulting matter
field equations contain second-order derivatives of the
spinor that cannot be present in the Dirac field equations,
much as in the previous case: to avoid such difficulty
however, in this case it is enough to require B ¼ C ¼ 0, and
so the matter field equation is given by

iΓi ~Diψ þ 9A
16ð2Aψ̄ψ þ 3Þ2 ψ̄γ

kψψ̄γkψψ

− 9

16ð2Aψ̄ψ þ 3Þ ψ̄γ
kψγkψ −mψ ¼ 0 ð59Þ

with no further derivatives of the spinor, and thus consis-
tently defined and causal. It possesses a torsionally induced
nonlinear interaction given in terms of an undetermined
coupling constant A similarly to what happened in the case
of minimal coupling discussed in [20], although now the
nonlinearities are higher, and again such torsionally induced
nonlinear terms and the new interaction coming from the
nonminimal coupling have a similar essence.
Performing the same analysis as above, following the

Wilson criteria for renormalization by scaling the spinor
according to the transformation σ−3

2, we have that the matter
field equation scales into

0 ¼ iΓi ~Diψ þ 9Aσ−5
16ð2Aψ̄ψσ−3 þ 3Þ2 ψ̄γ

kψψ̄γkψψ − 9σ−1
16ð2Aψ̄ψσ−3 þ 3Þ ψ̄γ

kψγkψ −mσ2ψ ≈ iΓi ~Diψ

− σ2
�
− 9

64Ajψ̄ψ j2 ψ̄γ
kψψ̄γkψ þ 9

32Aψ̄ψ
ψ̄γkψγk þm

�
ψ ≈ iΓi ~Diψ ; ð60Þ
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implying that whatever is the coupling constant of such
self-interaction, its mass dimension must be negative, so
that despite the fact that the nonrenormalizability from
which we started was higher than the one previously
encountered, still the usual torsionally induced nonlinear
contribution and the new self-interaction given by the
nonminimal coupling are, just like the mass term, not only
renormalizable, but even superrenormalizable.
The results above give a second example in which the

nonrenormalizability due to the torsionally induced non-
linear effects and the ones coming from the nonminimal
coupling compensate leaving a renormalizable (and in fact
superrenormalizable) matter field equation; in fact, it does
so in a case with a higher degree of nonlinearity. This
pushes us to look for a third example, possibly with an even
higher degree of nonlinearity, or nonminimality in the
coupling: this can be done with an interaction Lagrangian
given by

Linteraction ¼ kjψ̄ψ jbWkWk

ffiffiffiffiffi
jgj

p
ð61Þ

in terms of the parameter k and the index b > 1 represent-
ing the degree of nonminimality of the coupling.
When all these terms are taken in the total action,

variation with respect to torsion and spinor fields gives
the torsion-spin field equations

ð2kjψ̄ψ jb þ 3ÞWk ¼ − 3

4
ψ̄γkγ5ψ ð62Þ

and the matter field equations

iΓiDiψ − kbWkWkjψ̄ψ jb−1ψ −mψ ¼ 0 ð63Þ

as it can be checked; the former equation can be inverted as
to give the torsion in terms of the spinor fields and then
substituted into the latter equation yielding the explicit
matter field equation

iΓi ~Diψ þ 9kbjψ̄ψ jb−1
16ð2kjψ̄ψ jb þ 3Þ2 ψ̄γ

kψψ̄γkψψ

− 9

16ð2kjψ̄ψ jb þ 3Þ ψ̄γ
kψγkψ −mψ ¼ 0 ð64Þ

possessing a torsionally induced nonlinear interaction that
is much worse, and again such torsionally induced non-
linear terms and the new interaction coming from the
nonminimal coupling give analogous contributions.
Nevertheless, Wilson criteria for renormalization can be

applied to the matter field equation to see that

0 ¼ iΓi ~Diψ þ 9kbjψ̄ψ jb−1σ−3b−1
16ð2kjψ̄ψ jbσ−3b þ 3Þ2 ψ̄γ

kψψ̄γkψψ − 9σ−1
16ð2kjψ̄ψ jbσ−3b þ 3Þ ψ̄γ

kψγkψ −mσ2ψ ≈ iΓi ~Diψ

− σ2
�
σ3ðb−1Þ

�
− 9b
64kjψ̄ψ jbþ1

ψ̄γkψψ̄γkψ þ 9

32kjψ̄ψ jb ψ̄γ
kψγk

�
þm

�
ψ ≈ iΓi ~Diψ ; ð65Þ

showing that the torsionally induced nonlinear contribution
and the self-interaction given by the nonminimal coupling
are together such that the nonminimal terms go to zero even
faster than the mass term, so that what might have been a
worse nonminimal coupling was instead proven to be a
much stronger renormalizability.
The idea is clear: our last mass dimensional analysis

shows that in general, torsionally induced nonlinear poten-
tials in the matter field equations are such that if taken in
nonminimal coupling they are not only renormalizable but
also superrenormalizable, and the higher the nonminimal
coupling becomes, the stronger the superrenormalizabil-
ity is.
This is an interesting result, and so far as we are aware, it

depends on the presence of torsion and the nonminimal
coupling, in the sense that no other theory of which we have
any knowledge does that.
These results are about renormalizability of ultraviolet

divergences, that is the worst we may encounter. It would
however be better to check also that in the infrared regime
all equations work nicely. This can actually be done very

quickly by considering the limit of weak fields given when
the spinorial bilinear tend to zero: we have that in the three
cases we had considered the matter field equations were
given by (54), (59) and (64), or equivalently

iΓh ~Dhψ −m

�
3

16mð1þ ϵψ̄ψÞ ½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5�

þ
�
ϵψ̄ψ − 1
1
2
ϵψ̄ψ − 1

��
ψ ¼ 0 ð66Þ

and

iΓi ~Diψ þ 9Aðjψ̄ψ j2 þ jiψ̄γ5ψ j2Þ
16ð2Aψ̄ψ þ 3Þ2 ψ

− 9

16ð2Aψ̄ψ þ 3Þ ½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5�ψ −mψ ¼ 0

ð67Þ

together with
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iΓi ~Diψ þ 9kbðjψ̄ψ j2 þ jiψ̄γ5ψ j2Þjψ̄ψ jb−1
16ð2kjψ̄ψ jb þ 3Þ2 ψ

− 9

16ð2kjψ̄ψ jb þ 3Þ ½ðψ̄ψÞ þ iðiψ̄γ5ψÞγ5�ψ −mψ ¼ 0

ð68Þ

after some Fierz rearrangement; in the infrared regime we
are allowed to take iψ̄γ5ψ ¼ 0 so that we have

iΓh ~Dhψ −m

�
3ψ̄ψ

16mð1þ ϵψ̄ψÞ þ
�
ϵψ̄ψ − 1
1
2
ϵψ̄ψ − 1

��
ψ ¼ 0

ð69Þ

and

iΓi ~Diψ þ 9Ajψ̄ψ j2
16ð2Aψ̄ψ þ 3Þ2 ψ

− 9

16ð2Aψ̄ψ þ 3Þ ψ̄ψψ −mψ ¼ 0 ð70Þ

together with

iΓi ~Diψ þ 9kbjψ̄ψ jbþ1

16ð2kjψ̄ψ jb þ 3Þ2 ψ

− 9

16ð2kjψ̄ψ jb þ 3Þ ψ̄ψψ −mψ ¼ 0 ð71Þ

and so for small ψ̄ψ they all reduce to the same

iΓi ~Diψ − 3

16
ψ̄ψψ −mψ ¼ 0 ð72Þ

which is the matter field equation we have in the minimal
case, which we know to have no infrared problem.
This concludes the survey about the properties of short-

scale approximation as well as low-energy regimes, where
we have shown that there are no problems for the matter
field equations. On the other hand, there still are problems
in the gravitational field equations, much like in the
minimally coupled models. In fact we point out that for
the gravitational field equations the problems of non-
renormalizability are a little different, since the dynamical
behavior of the field equations (Einstein and Einstein-like
equations) still comes from the fact that at short-distance
ranges the kinetic term becomes irrelevant compared to the
interacting term, not because the interacting term tends to
become large, but because the kinetic term tends to become
small. We will not deal with them in this paper because this
suggests that the way out does not come from nonminimal
coupling, but it has to be addressed within the framework of
higher-order derivative theories. If we want no problem of
renormalizability, we have to specifically focus on mass

dimension 4 theories [21]. Thus, conformal gravity might
be a possibility [22–25].

B. Parity violation

Now that we have settled the issue about renormaliz-
ability, let us try to investigate other phenomena related to
these interactions, starting from the issue of parity viola-
tion: in the past, there has been some discussion about the
possibility to allow parity violation in the gravitational
action, so to have torsion inducing parity violation on the
fermionic action as well [26–28]; we are not going to
discuss here the implications about the Holst action and the
Immirzi parameter, but merely we wish to point out that in
the case of Dirac matter minimally coupled there remains
no parity oddness in the effective action [29]. Here we
discuss what happens for Dirac matter nonminimally
coupled.
To this extent, we return to study the case of mass

dimension 5 interaction, but now in parity-odd terms: take
for example the interaction Lagrangian similar to the
previous one, but now given in terms of the pseudoscalar

Linteraction ¼ ðXψ̄ψ þ Yiψ̄γ5ψÞWkWk

ffiffiffiffiffi
jgj

p
ð73Þ

in terms of the generic parameters X and Y.
Variation with respect to torsion and spinor fields gives

the torsion-spin field equations

ð2Xψ̄ψ þ 2Yiψ̄γ5ψ þ 3ÞWk ¼ − 3

4
ψ̄γkγ5ψ ð74Þ

and the matter field equations

iΓiDiψ − ðX þ iYγ5ÞWkWkψ −mψ ¼ 0: ð75Þ
Inversion of the torsion-spin field equation and substitution
into the matter field equations gives

iΓi ~Diψ þ 9ðjψ̄ψ j2 þ jiψ̄γ5ψ j2Þ
16ð2Xψ̄ψ þ 2Yiψ̄γ5ψ þ 3Þ2 ðX þ iYγ5Þψ

− 9

16ð2Xψ̄ψ þ 2Yiψ̄γ5ψ þ 3Þ ðψ̄ψ þ iψ̄γ5ψiγ5Þψ

−mψ ¼ 0 ð76Þ

which is not parity even. The low-energy limit is such that
iψ̄γ5ψ ≈ 0 and then

iΓi ~Diψ þ
���� 3ψ̄ψ

4ð2Xψ̄ψ þ 3Þ
����2ðX þ iYγ5Þψ

− 9ψ̄ψ

16ð2Xψ̄ψ þ 3Þψ −mψ ≈ 0 ð77Þ

still without a definite parity because of the term propor-
tional to Yγ5, and therefore it is only in the case in which
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the additional weak field approximation is taken that
we have

iΓi ~Diψ − 3ψ̄ψ

16
ψ −mψ ≈ 0 ð78Þ

as above, and parity conservation is restored.
Again, the reason of parity violation is due to the

nonminimal coupling.

C. Additional couplings

To conclude this section, we would like to reconsider a
somehow peculiar circumstance given by a nonminimal
coupling that is nevertheless given for interactions of mass
dimension 4 (that is a coupling that is nonminimal) not
because of the mass dimension but because of its non-
standard structure: the mass dimension 4 parity-even most
complete interacting Lagrangian is given by

Linteraction ¼ ðpWμψ̄γμγ5ψ þ qTμψ̄γμψÞ
ffiffiffiffiffi
jgj

p
ð79Þ

in terms of two constants p and q undetermined. We will
employ the kinetic Lagrangian that has been given in [20]

L ¼ ðRþ ATih
iTjh

j þ BTijhTijh þ CTijhTjihÞ
ffiffiffiffiffi
jgj

p
;

ð80Þ
where A, B and C are coupling constants. When the total
Lagrangian is considered, we may decompose the curvature
in the torsionless curvature plus torsional terms, and further
decompose these torsional terms into the three irreducible
parts of torsion: when this is done, it is immediate to
acknowledge that the noncompletely antisymmetric irre-
ducible part of torsion must vanish identically, and the two
remaining vector parts of torsion are given by the system of
field equations for torsion

Wk ¼
�
3

8b
þ p
2b

�
ψ̄γkγ5ψ ; ð81Þ

Tk ¼ q
2a

ψ̄γkψ ; ð82Þ

where a and b are suitable combinations of the coupling
parameters A, B and C, while the field equation for the
spinor field is expressed as

iΓi ~Diψ −
�
16bq2 − að4pþ 3Þ2

32ab

�
ψ̄γμψγμψ −mψ ¼ 0:

ð83Þ
We notice that with respect to the minimal case q ¼ p ¼ 0
here not only the coefficient of the coupling between dual-
axial torsion and spinor pseudovector is shifted but addi-
tionally there is a new interaction between the trace torsion

and the spinor vector, and in this sense the model is not
minimally coupled; in the matter field equation, such a
nonminimal scheme only shifts the value of the constant in
front of the interaction. The interacting potential can thus
be made attractive or repulsive, weak or strong by simply
tuning the four constants. In particular, the tuning 16bq2 −
að4pþ 3Þ2 ¼ 0 even renders the matter field equation free.
By squaring the torsion-spin field equations and employ-

ing Fierz rearrangements, we get that

−W2

�
8b

3þ 4p

�
2

¼ T2
4a2

q2
¼ ðψ̄ψÞ2 þ ðiψ̄γ5ψÞ2 > 0;

ð84Þ
showing thatW2 < 0while T2 > 0, and thus indicating that
the dual-axial torsion has one physical component but the
torsion trace has three physical components; the first result
is as usual but the second result tells us that there are three
supplementary degrees of freedom. Therefore, we face here
a peculiar circumstance, in which despite the fact that there
appear to be three more degrees of freedom that take place
in the dynamics, nevertheless all equations for all obser-
vational purposes are exactly like those one would have had
in the minimally coupled counterpart.
All this seems to suggest that the degrees of freedom

related to the torsion trace are not physical, or maybe
they are real but dummy in the Dirac theory, due to the
constrained structure of the Dirac spinor.

IV. AVOIDING COSMOLOGICAL
SINGULARITIES

As we have already mentioned, the issue of renormaliz-
ability of the Dirac equation has always been a sensible one
since it has always been taken as one of the theoretical
arguments against the presence of torsion; on the other
hand, an issue that has always been considered as a
theoretical argument in favor of torsion is the fact that
the presence of torsion evades the singularity of the
spacetime, as discussed in the already cited [3,4] and
[5,6]. In this paper, we have shown that torsion may still
be present since there is no problem of nonrenormaliz-
ability for the Dirac equation in the case of nonminimal
coupling; on the other hand, it would just be ironic if the
nonminimal coupling were to spoil the singularity avoid-
ance that torsion allowed. Therefore, we should check that
the presence of the nonminimal coupling does not create
problems for the singularity avoidance torsion permitted.
The singularity avoidance in the presence of torsion and

fermions in minimal coupling is ensured by the fact that
the Dirac equations do not admit singular solutions, as
discussed in [3,4]; nevertheless, in these two papers the
avoidance of singularity that is discussed is that of the Dirac
particle itself, and therefore it may not necessarily apply to
cosmological situations. The avoidance of singularity at a
cosmological level must be studied independently as it has
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been done in [5,6], for instance. Other recent works are
for instance [7–9].
Here we would like to see that those results could be

recovered also in the nonminimal coupling we are consid-
ering. To see that, let us begin by considering a Bianchi-I
metric of the form

ds2 ¼ dt2 − a2ðtÞdx2 − b2ðtÞdy2 − c2ðtÞdz2 ð85Þ

with tetrad fields

eμ0 ¼ δμ0; eμ1 ¼ aðtÞδμ1;
eμ2 ¼ bðtÞδμ2; eμ3 ¼ cðtÞδμ3 ð86Þ

and dual

e0μ ¼ δ0μ; e1μ ¼
1

aðtÞ δ
1
μ;

e2μ ¼
1

bðtÞ δ
2
μ; e3μ ¼

1

cðtÞ δ
3
μ ð87Þ

for μ ¼ 0, 1, 2, 3; the nontrivial coefficients of connection
are

~Γ10
1 ¼ _a

a
; ~Γ20

2 ¼
_b
b
; ~Γ30

3 ¼ _c
c
;

~Γ11
0 ¼ a _a; ~Γ22

0 ¼ b _b; ~Γ33
0 ¼ c_c; ð88Þ

and in this case the matrices Γi ¼ eiμγμ assume the explicit
form

Γ0 ¼ γ0; Γ1 ¼ 1

aðtÞ γ
1;

Γ2 ¼ 1

bðtÞ γ
2; Γ3 ¼ 1

cðtÞ γ
3; ð89Þ

so that the spinorial-connection coefficients ~Ωi are given by

~Ω0 ¼ 0; ~Ω1 ¼
1

2
_aγ1γ0;

~Ω2 ¼
1

2
_bγ2γ0; ~Ω3 ¼

1

2
_cγ3γ0; ð90Þ

and so the spinorial-covariant derivative induced by the
Levi-Civita connection is

~Diψ ¼ ∂iψ − ~Ωiψ : ð91Þ

Taking (90) and (91) into account, and defining τ ¼ abc,
the gravitational and material equations assume the form

_a
a

_b
b
þ

_b
b
_c
c
þ _a
a
_c
c
¼ 1

2φ
mψ̄ψ − 3

64φ2
ðψ̄γ5γτψÞðψ̄γ5γτψÞ

þ 1

φ2

�
− 3

4
_φ2 − φ _φ

_τ

τ

�
− 1

2φ
Vðψ̄ψÞ;

ð92aÞ

b̈
b
þ c̈
c
þ

_b
b
_c
c
¼ 1

φ2

�
φ _φ

_a
a
þ 3

4
_φ2 − φ

�
φ̈þ _τ

τ
_φ

��

þ 3

64φ2
ðψ̄γ5γτψÞðψ̄γ5γτψÞ

− ϵðψ̄ψÞðm
2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

2φð1
2
φ − 3

2
Þ

− 1

2φ
Vðψ̄ψÞ þ 1

2φ
ðψ̄ψÞV 0ðψ̄ψÞ; ð92bÞ

ä
a
þ c̈
c
þ _a
a
_c
c
¼ 1

φ2

�
φ _φ

_b
b
þ 3

4
_φ2 − φ

�
φ̈þ _τ

τ
_φ

��

þ 3

64φ2
ðψ̄γ5γτψÞðψ̄γ5γτψÞ

− ϵðψ̄ψÞðm
2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

2φð1
2
φ − 3

2
Þ

− 1

2φ
Vðψ̄ψÞ þ 1

2φ
ðψ̄ψÞV 0ðψ̄ψÞ; ð92cÞ

ä
a
þ b̈
b
þ _a
a

_b
b
¼ 1

φ2

�
φ _φ

_c
c
þ 3

4
_φ2 − φ

�
φ̈þ _τ

τ
_φ

��

þ 3

64φ2
ðψ̄γ5γτψÞðψ̄γ5γτψÞ

− ϵðψ̄ψÞðm
2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

2φð1
2
φ − 3

2
Þ

− 1

2φ
Vðψ̄ψÞ þ 1

2φ
ðψ̄ψÞV 0ðψ̄ψÞ; ð92dÞ

and

_ψ þ _τ

2τ
ψ þ imγ0ψ þ 3i

16φ
½ðψ̄ψÞγ0 þ iðiψ̄γ5ψÞγ0γ5�ψ

þ iϵRγ0ψ − iV 0γ0ψ ¼ 0; ð93aÞ

_̄ψ þ _τ

2τ
ψ̄ − imψ̄γ0 − 3i

16φ
ψ̄ ½ðψ̄ψÞγ0 þ iðiψ̄γ5ψÞγ5γ0�

− iϵRψ̄γ0 þ iV 0ψ̄γ0 ¼ 0; ð93bÞ

together with the conditions

~Σ12 ¼ 0 ⇒ a _b − b _a ¼ 0 ∪ ψ̄γ5γ3ψ ¼ 0; ð94aÞ
~Σ23 ¼ 0 ⇒ c _b − b_c ¼ 0 ∪ ψ̄γ5γ1ψ ¼ 0; ð94bÞ
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~Σ13 ¼ 0 ⇒ a_c − c _a ¼ 0 ∪ ψ̄γ5γ2ψ ¼ 0; ð94cÞ
arising from the nondiagonal part of the gravitational
equations [equations ~Σ0A ¼ 0 (A ¼ 1, 2, 3) are automati-
cally satisfied]. There are three ways of satisfying these
conditions: one is to impose constraints of purely geomet-
rical origin by insisting that a _b − b _a ¼ 0, a_c − c _a ¼ 0,
c _b − b_c ¼ 0 giving an isotropic universe filled with fer-
mionic matter fields; another is to impose constraints of
purely material origin by insisting that ψ̄γ5γ1ψ ¼ 0,
ψ̄γ5γ2ψ ¼ 0, ψ̄γ5γ3ψ ¼ 0 giving an anisotropic universe
without fermionic torsional interactions; the third and last
way is of both geometrical and material origin by insisting
that a _b − b _a ¼ 0 with ψ̄γ5γ1ψ ¼ 0, ψ̄γ5γ2ψ ¼ 0 giving a
partial isotropy.
For the remaining equations, following [10], we can

suitably combine (92), to obtain the equations

φτ
d
dt

�
_a
a
− _b
b

�
þ φ_τ

�
_a
a
− _b
b

�
þ _φτ

�
_a
a
− _b
b

�
¼ 0; ð95aÞ

φτ
d
dt

�
_a
a
− _c
c

�
þ φ_τ

�
_a
a
− _c
c

�
þ _φτ

�
_a
a
− _c
c

�
¼ 0; ð95bÞ

which can be directly integrated as

a
b
¼ AeðB

R
dt
φτÞ; ð96aÞ

a
c
¼ CeðD

R
dt
φτÞ; ð96bÞ

A, B, C and D being suitable constants; from (96) we get
immediately

a ¼ τ
1
3ðACÞ13eðBþD

3

R
dt
φτÞ; ð97aÞ

b ¼ τ
1
3A−2

3C
1
3eð

−2BþD
3

R
dt
φτÞ; ð97bÞ

c ¼ τ
1
3A

1
3C−2

3eð
B−2D

3

R
dt
φτÞ; ð97cÞ

and multiplying (92a) by 3, adding the result to the sum of
(92b), (92c) and (92d), we get the dynamical equation

2
̈τ
τ
¼ −3 φ̈

φ
− 5

_τ

τ

_φ

φ
− 3mψ̄ψ − 3ðV − ψ̄ψV 0Þðφþ 1Þ

φðφ − 3Þ ;

ð98Þ

which can only be solved once a specific form of V is given.
It is worth noticing that (92a) plays the role of a

constraint on the initial data: thus for consistency we have
to check that, if satisfied initially, this constraint is
preserved in time. To see this point, we first observe that
the Einstein-like equations (24), and thus also (92), can be
written in the equivalent form

~Rij ¼ ~Tij − 1

2
~Tgij; ð99Þ

where

~Tij ¼
1

φ
~Σij þ

1

φ2

�
− 3

2

∂φ
∂xi

∂φ
∂xj þ φ ~∇j

∂φ
∂xi þ

3

4

∂φ
∂xh

∂φ
∂xk g

hkgij − φ ~∇h ∂φ
∂xh gij

�
þ 3

64φ2
ðψ̄γ5γτψÞðψ̄γ5γτψÞgij

− ϵðψ̄ψÞðm
2
ψ̄ψ − 2V þ 3

2
ψ̄ψV 0Þ

2φð1
2
φ − 3

2
Þ gij − 1

2φ
Vðψ̄ψÞgij þ

1

2φ
ðψ̄ψÞV 0ðψ̄ψÞgij ð100Þ

denotes the effective stress-energy tensor appearing on
the right-hand side of (24), while ~T is its trace. It is
then a straightforward matter to verify that (95) and
(98) can be equivalently obtained by suitably combin-
ing the space-space equations of the set (99); thus,
we have that solving (95) and (98) amounts to solve
all the space-space equations of the set (99). In
addition, the conservation laws automatically imply
the vanishing of the four-divergence with respect to the
Levi-Civita covariant derivative of the Einstein-like
equations (49). These two facts allow to apply a
result by Bruhat (see [30], Theorem 4.1, p. 150)
which ensures that the constraint (92a) is actually
satisfied for all time.
Also the Dirac equations (93) can be suitably combined,

giving

d
dt

ðτψ̄ψÞ þ 3τ

8φ
ðiψ̄γ5ψÞðψ̄γ5γ0ψÞ ¼ 0 ð101aÞ

and

d
dt

ðiτψ̄γ5ψÞ − 3τ

8φ
ðψ̄ψÞðψ̄γ5γ0ψÞ − 2mτðψ̄γ5γ0ψÞ

− 2ϵRτðψ̄γ5γ0ψÞ þ 2V 0τðψ̄γ5γ0ψÞ ¼ 0 ð101bÞ

and also

d
dt

ðτψ̄γ5γ0ψÞ þ 2mτðiψ̄γ5ψÞ þ 2ϵRτðiψ̄γ5ψÞ
− 2V0τðiψ̄γ5ψÞ ¼ 0; ð101cÞ

altogether implying
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ðψ̄ψÞ2 þ ðiψ̄γ5ψÞ2 þ ðψ̄γ5γ0ψÞ2 ¼ K2

τ2
; ð102Þ

where K is a constant.
As in [10], we may search for solutions of the Dirac

equations such that iψ̄γ5ψ ¼ ψ̄γ5γ0ψ ¼ 0, in such a way
that ψ̄ψ ¼ K

τ and therefore in such a way that (98) reduces
to a differential equations for the only unknown τ. We
notice that, in the standard representation for the spinor
field ψ̄ ¼ ðA†; B†Þ, it is possible to take the nonrelativistic
approximation where the expression for the bilinear scalar
spinor reduces to ψ̄ψ ¼ A†A − B†B ≈ A†A ⩾ 0; because
the volume of the universe is positive, this implies that
K ¼ τψ̄ψ ⩾ 0 in such a limit, and since K is a constant,
then K ⩾ 0 in general. This is very important for the
following of the paper.
In this way, we may multiply (98) by φ and taking into

account that φ ¼ 1þ ϵψ̄ψ and ψ̄ψ ¼ K
τ we obtain

2
̈τ
τ
φþ 3φ̈þ 5

_τ

τ
_φ ¼ 3mK

τð2 − ϵK
τ Þ

− 3ðϵK þ 2τÞðV − K
τ V

0Þ
τð2 − ϵK

τ Þ
;

ð103Þ
which, together with the identity 2̈τφþ 3τφ̈þ 5_τ _φ ¼
d2

dt2 ð2τ − ϵK ln τÞ, yields

d
dt

�
d
dt
ð2τ− ϵK ln τÞ

�
2

¼ 6½mK − ðϵKþ 2τÞðV − ψ̄ψV 0Þ�_τ:

ð104Þ

The complexity of Eq. (104) depends on the explicit form
of the potential of self-interaction V, but in the special case
in which V vanishes, Eq. (104) simplifies considerably
since it may be written as

d
dt

�
d
dt

ð2τ − ϵK ln τÞ
�
2

¼ 6mK_τ: ð105Þ

The latter can be integrated as

d
dt

ð2τ − ϵK ln τÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ − A

p
; ð106Þ

yielding a first-order differential equation for τ with
integration constant A. Assuming A be negative,
Eq. (106) can be integrated as

tþ B ¼ 2
ffiffiffiffiffiffijAjp

3mK

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
jAj τ þ 1

s !

þ 2ϵKffiffiffiffiffiffijAjp arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
jAj τ þ 1

s !
; ð107Þ

but as it is also clear, A negative (with of course τ positive)
means that the argument of the arctanh is larger than one

and thus such function is ill defined. Therefore we are
forced to assume A ≥ 0: in the case A > 0 the differential
equation is integrated as

tþ B ¼ 2
ffiffiffiffi
A

p

3mK

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
A

τ − 1

r �

− 2ϵKffiffiffiffi
A

p arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
A

τ − 1

r �
; ð108Þ

which is well defined whenever the volume is larger than a
given lower bound τ0 ⩾ A

6mK and thus showing that, regard-
less the value of B, there is no way in which the minimal
volume τ0 can be zero; if A ¼ 0, we get the solution

tþ B ¼
ffiffiffi
2

p ðϵK þ 2τÞffiffiffiffiffiffiffiffiffiffiffiffi
3mKτ

p ; ð109Þ

from which again we cannot have zero scale volume at a
finite time. In all these cases then, singularities are avoided
as in the case of spin fluids [31]. It is worth noticing that,
according to the previous discussion, the avoidance of
singularities would seem strictly due to the presence of
the nonminimal coupling term present in (104). In fact, if
ϵ ¼ 0, (107) would reduce to

tþ B ¼ 2
ffiffiffiffiffiffijAjp

3mK

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK
jAj τ þ 1

s !
; ð110Þ

allowing zero scale volume τ ¼ 0 at the finite time

t ¼ −Bþ 2
ffiffiffiffi
jAj

p
3mK . This would seem in contrast to the results

presented in [5] where the author shows the absence of
cosmological singularity also in the case of minimal
coupling. In this regard, it should be pointed out that our
analysis is based exclusively on the exact field equations and
therefore it is of purely mathematical nature, while in [5]
some physical assumptions are made (e.g. the stress-energy
tensor of the Dirac field is averaged to one of a prefect fluid,
the relation between the square of the spin fluid and the
number density of the fermions as well as the use of the
effective numbers of thermal degrees of freedom, etc.) in
order to get the stated results. In addition, there are
characteristics the geometry of the spacetime considered
which are different in our case like e.g. the value of the
spatial curvature parameter or the isotropy of the metric.
Such differences make the comparison of our results with
the ones of [5] not as straightforward as it might appear at
first sight.
Another interesting aspect associated with the nonmini-

mal coupling we are studying is that if there was a
(cosmological) time interval in which the first term on
the right-hand side of Eq. (108) is negligible with respect to
the second one, then in such a time interval we would have
an expansion of the universe according to τ ∼ ðtan tÞ2,
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which could account for an accelerated behavior possibly
fitting inflationary scenarios. The above mentioned circum-
stance could be achieved for example by assigning initial
data and then integration constants such that

ffiffiffiffi
A

p
=K is

very small.
The model outlined above is therefore rather intriguing,

because it can solve the problem of the cosmological
singularity in quite elegant a way and simultaneously it
can address the issue of inflationary scenarios.
Unfortunately, the model with V ¼ 0 is unable to account
for cosmic acceleration at late time. This is easily seen still
considering Eq. (108), this time evaluated for large values
of τ, obtaining an expansion of the scale volume as τ ∼ t2;
due to Eq. (97), this assures isotropization of spacetime but
under a Friedmann dynamical behavior.
Being the fermionic nonminimal coupling alone insuffi-

cient to address the dark energy issue, to face this problem
we should allow a potential to enter in the Lagrangian,

therefore taking Eq. (104) into account with a given
potential V. As an example, we consider the potential

Vðψ̄ψÞ ¼ 1

12
ϵψ̄ψ ln

�
ϵψ̄ψ þ 2

ψ̄ψ

�
− 1

6
ð111Þ

picked specifically to simplify the structure of Eq. (104)
and render it easily integrable. Indeed, with the choice
(111), Eq. (104) can be integrated as

ð2τ − ϵKÞ_τ
τ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ þ τ2 þ 2C

p
ð112Þ

with C denoting an integration constant. It is evident that if
C is negative, there exists automatically a strictly positive
minimum value of the scale volume. Therefore, we discuss
the caseC > 0; in such a circumstance, a further integration
yields

tþD ¼ 2 ln ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ þ τ2 þ 2C

p
þ 3mK þ τÞ þ ϵKffiffiffiffiffiffi

2C
p ln

�
2Cþ 3mKτ þ ffiffiffiffiffiffi

2C
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6mKτ þ τ2 þ 2C
p

τ

�
: ð113Þ

From Eq. (113), it follows that τ ¼ 0 is possible only at
infinite cosmological time; moreover, for large values of τ
we have an exponential expansion of the scale volume,
ensuring that the scale factors of the metric tensor iso-
tropize and undergo an accelerated expansion. For the sake
of completeness, in the case C ¼ 0 we have

tþD ¼ ϵð6mK þ τÞ
3m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mKτ þ τ2

p þ 4 ln ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6mK þ τ

p þ ffiffiffi
τ

p Þ;

ð114Þ

showing that the same qualitative results as for C > 0 hold.
We have shown that fermionic nonminimal couplings

possibly together with self-interacting potentials can be
useful to face issues as inflation and late-time accelerated
behavior of the universe, without losing the results about the
cosmological singularity, already established and existing
in the literature. In the framework of the fermionic non-
minimal coupling we have proposed, we will devote a
forthcoming paper to a systematical analysis of cosmologi-
cal models associated with different kinds of potentials V.

V. CONCLUSION

In this paper, we have considered the basic field content
for a background filled with Dirac matter, and we have
relaxed the hypothesis of minimally coupled fields: we
have mainly considered nonminimal couplings of the type
Rψ̄ψ as a prototype, but we have also investigated other
nonminimal interactions, in order to be as little dependent
as possible on the specific kind of coupling, increasing the

generality of the results; in the nonminimal couplings we
have studied, we have essentially investigated mass dimen-
sion 5 couplings, but eventually we have also considered
specific situations in which nonminimal coupling was
achieved for mass dimension 4 couplings, and we have
also seen that parity-violating gravitational terms could
nontrivially be included in the action.
Our results spanned a variety of problems: first of all

we have discussed how the spin and energy tensors are
improved, but in these nonminimal couplings also the
conservation laws are improved, and we have given not
only their form but also demonstrated their validity; we
did it in one specific example, since the exact structure of
the extra terms is strongly model dependent. Then, we
have been addressing the fundamental issue related to the
problem of renormalizability. We have seen that when we
take both nonminimal coupling and torsion, the renor-
malizability of Dirac equation is not only restored, but it
is also improved up to superrenormalizability. As an
additional point of strength, we have seen that the larger
the mass dimension of the nonminimal coupling, the
more superrenormalizable the effective coupling of the
interactions within the matter field equations themselves.
In addition, we have shown that cosmological singularity
formation can be avoided by torsion also in the case of
the nonminimal coupling we have considered, thus
achieving results analogous to those already obtained for
other minimally and nonminimally coupled theories; this
too has been done in the specific case of the Bianchi-I
universe, but again the arguments followed were rela-
tively general.
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We note that our analysis was focused on the nonminimal
coupling, but it was not devoted to study higher-order
derivative theories: thus, even if the renormalizability of
the matter field equations came as an interesting surprise,
that such renormalizability will not be extended to the
gravitational field equations is at the same time unfortunate
but expected. In fact, the nonrenormalizability of the matter
field equations is due to the fact that at short distances the
kinetic term tends to become irrelevant because the effective
interactions tend to become more relevant, and thus

renormalizability can be regained by diminishing the scaling
weight of such effective interactions, by changing the type of
coupling. But the nonrenormalizability of the gravitational
field equations is due to the fact that at short distances the
kinetic term tends to become irrelevant regardless the
structure of the interactions, and thus renormalizability
can be regained by changing the type of kinetic term.
This would imply having a different type of theory that

would lie outside our aim, but we have suggested possible
directions for enterprising such an extension.
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