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Abstract. We review the formalism used for the algebraic classification of higher-
dimensional spacetimes, together with a few basic results in this field. Then we
use this formalism to discuss some problems involving type I and II Kaluza–Klein
reductions of vacuum spacetimes and to present a few results.

Introduction

In 2004, a generalization of the Petrov algebraic classification to higher dimensional spacetimes was
presented [Coley et al., 2004]. It is based on the idea of counting the so-called multiplicities of null
directions aligned with the Weyl tensor. This strategy is sufficiently general to be applied to any tensor,
in addition to the Weyl one [Milson et al., 2005]. In the first section, we provide an introduction to the
higher dimensional algebraic classification, based on the papers by Coley et al. [2004] and Coley et al.
[2004], and summarize the basic results in this field.

In the second section, we provide an introduction to the method of Kaluza–Klein reduction, essen-
tially based on the review paper by Pope [n.d.].

In the last section, we briefly touch upon some problems regarding algebraic types of a spacetime
and of its Kaluza–Klein reduction.

Algebraic classification

In this section, based on the results of Coley et al. [2004] and Milson et al. [2005], we introduce the
higher-dimensional algebraic classification. For a more thorough review, see the paper by Ortaggio et al.
[2013].

Definition. We call a frame

` ≡ e(0), n ≡ e(1), e(i), i = 2, . . . , D − 1 (1)

in the tangent space the null frame, if the inverse metric takes the form

]]g = ` ∨ n +
D−1∑
i=2

e(i)e(i) . (2)

By indices in brackets, we will denote the tensor frame components, as in

C(0)(1)(i)(j) = Cabcd `
anbec(i)e

d
(j) . (3)

In these cases, i, j, . . . take values 2, . . . , D − 1 and the Einstein’s summation convention is used.

Definition. If some quantity q transforms under boosts

` 7→ λ` , (4a)

n 7→ λ−1n , (4b)

e(i) 7→ e(i) , i = 2, . . . , D − 1 (4c)

according to
q 7→ λbq , (5)

where b is an integer, then we say that q has a boost weight b.

Proposition. The boost weight of a frame component of some covariant tensor is the number of 0’s
minus the number of 1’s in the component indices.
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Definition. The boost order of a covariant tensor with respect to some null frame is the maximum of
boost weights of its non-zero frame components.

Proposition. The boost order of a covariant tensor is invariant under transformations of the null frame
that preserve the direction of `.

We will thus denote the boost order of a tensor T with respect to the null direction ` by bo〈`〉 T .

Definition. The maximum boost order of a covariant tensor is the maximum of boost orders of that
tensor taken over all null directions `:

bomax T := max
{

bo〈`〉 T | ` is null
}
. (6)

Observation. One can show that any nonzero tensor with the Riemann tensor symmetry has bomax

equal to 2.

Observation. By exchanging the roles of ` and n, one can show that:

−bomax T ≤ bo〈`〉 T ≤ bomax T . (7)

Definition. Given a covariant tensor T , we define the multiplicity of a null direction ` as

mul〈`〉 T := bomax T − bo〈`〉 T . (8)

Proposition. From (7), it is evident that:

0 ≤ mul〈`〉 T ≤ 2bomax T . (9)

Definition. Choose a point in the manifold.
If the Weyl tensor C is nonvanishing and the manifold admits a null vector field ` such that locally,

mul〈`〉C ≥ 1 , or (10a)

mul〈`〉C ≥ 2 , or (10b)

mul〈`〉C ≥ 3 , or (10c)

mul〈`〉C = 4 , (10d)

then we say that the manifold is of type I, II, III, or N 1, respectively, around the chosen point. We then
call 〈`〉 a Weyl aligned null direction (WAND), multiple WAND (mWAND), 3-WAND, or 4-WAND,
respectively.

If the Weyl tensor is nonvanishing and the manifold locally admits two distinct mWANDs, we say
that the manifold is of type D around the chosen point.

If for all null vector fields `,
mul〈`〉C = 0 (11)

around the chosen point, then we say that the manifold is there of type G.
If the Weyl tensor vanishes around the chosen point, we say that the manifold is of type O there.

In this case we say that for any null `,
mul〈`〉C = 4 , (12)

In four dimensions, the sum of multiplicities of all distinct WANDs is 4 [see, e.g., Stephani et
al., 2003]. There are therefore exactly 5 possibilities of combinations of multiplicities at each point of
the manifold, corresponding to the types I, II, D, III and N. These types correspond to the Petrov
classification (for introduction to the Petrov classification, see e.g. [Stephani et al., 2003, chap. 4]).

On the other hand, in higher dimensions, further combinations could be achieved. There are however
some general results, restricting the allowed combinations [Milson et al., 2005], e.g.,

• If the manifold is of type III, then it admits exactly one mWAND.

• If the manifold is of type N, then it admits exactly one WAND (which, by definition, is a 4-WAND).

Later we will need the notion of the so-called optical matrix and non-geodesity.

1Note that a type N manifold is also of type III, and so on.
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Definition. For a given null frame, we define:

ρ(i)(j) := `(i);(j) ≡ `a;b ea(i)e
b
(j) (optical matrix), (13a)

κa := `a;b`
b (non-geodesity of `). (13b)

Proposition. ` is geodetic (not necessarily affinely geodetic), iff κ(i) = 0.

From the Ricci identity `(i);(0)(j) − `(i);(j)(0) = R(0)(i)(0)(j), we get for a geodetic ` and a parallelly
transported null frame the transport equation for the optical matrix (Sachs equation):

ρ(i)(j);a`
a = −ρ(i)(k)ρ

(k)
(j) −R(0)(i)(0)(j) . (14)

For the precise derivation and more discussion, see [Pravda et al., 2004; Ortaggio et al., 2007].

Kaluza–Klein reduction

In this section, based on the review by Pope [n.d.], we provide a basic introduction to the method
of Kaluza–Klein reduction.

Let us consider a (D+1)-dimensional manifold admitting a Killing vector field and choose coordinates
adapted to this Killing vector field, with z being the Killing coordinate. This choice of coordinates
defines a set of natural embeddings, parametrized by z, of the D-dimensional manifold z = const. into
the (D + 1)-dimensional one. The chosen coordinates are then coordinates adapted to this embedding.

The (D + 1)-dimensional metric ĝAB can be decomposed into a D-dimensional metric, vector field
and scalar field in many ways. Among them, there is one that leads to very simple field equations; it has
the following form [Pope, n.d.]:

ĝab = e2αφgab + e2βφAaAb , (15a)

ĝaz = e2βφAa , (15b)

ĝzz = e2βφ , (15c)

or equivalently
ĝ = e2αφg + e2βφ (dz + A)2 , (16)

where α and β are some nonvanishing constants (for fixed D) and where the respective D-dimensional
fields are pullbacks by the embeddings mentioned above of the fields g, A and φ (where g and A are
orthogonal to ∂z and, together with φ, independent of z), whilst ĝab and ĝaz are orthogonal projections
by the vector field ∂z of ĝAB and ĝAz, respectively.

Assuming the original spacetime is vacuum, we can write the (D+1)-dimensional Einstein equations
as:

Rab =
(
β + (D − 2)α

)
φ;ab +

(
β2 − 2αβ − (D − 2)α2

)
φ;aφ;b + (17a)

+ e(2β−2α)φ

2

(
F2
ab + α

2βF
2gab

)
,(

e((D−4)α+3β)φgbcFab
)
;c = 0 , (17b)

e(2β−2α)φF2 = 4βgab
(
φ;ab + (β + (D − 2)α)φ;aφ;b

)
, (17c)

where we have introduced the analog of the Maxwell tensor:

Fab := Ab;a −Aa;b , (18a)

F2
ab := gcdFacFbd , (18b)

F2 := gabF2
ab . (18c)

Choosing
β + (D − 2)α = 0 , (19)

the reduced field equations (17) could be further simplified.2

2The assumption (19) is needed if we wish to interpret φ as the scalar in the Einstein–Maxwell–scalar system. For this
reason, it is assumed throughout the paper by Pope [n.d.] as well.
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The form of the Kaluza–Klein ansatz (15) is preserved by any z-independent coordinate transfor-
mation

δxA = δxA(xa) . (20)

In this case, φ transforms as a D-dimensional scalar:

δφ = −Lδx̃ φ , (21a)

gab transforms as a D-dimensional symmetric second-order tensor:

δgab = −Lδx̃ gab (21b)

and Aa transforms as a D-dimensional U(1) gauge field:

δAa = −Lδx̃Aa − δxz,a . (21c)

Here, the Lie derivatives are taken along the orthogonal projections by ∂z of the vector field δxA. It is
thus not a surprise that the D-dimensional field equations also have the U(1) gauge symmetry, and the
electromagnetic potential can be eliminated from them in favor of the Maxwell tensor.

Type I and II Kaluza–Klein reductions

Given a null frame (1) in the reduced manifold, it is natural (in the sense that it simplifies compu-
tations) to define the null frame in the original manifold the following way [Pope, n.d.]:

ê[a] = e−αφ (e(a) −A(a)∂z) , a = 0, . . . , D − 1 , (22a)

ê[z] = e−βφ ∂z , (22b)

where e(a) is meant as the pushforward of the null frame (1) by the natural embedding mentioned in
the previous section. The notation using the tensor frame components in this frame will be governed by
conventions similar to those for the reduced frame (1).

The frame (22) is indeed a null frame:

]]ĝ = ˆ̀∨ n̂ +
D−1∑
i=2

ê[i]ê[i] + ê[z]ê[z] . (23)

Its dual is

ε̂[a] = eαφ ε(a) , a = 0, . . . , D − 1 , (24a)

ε̂[z] = eβφ (dz + A) , (24b)

where ε(a) is the dual of e(a) in the subspace orthogonal to ∂z.
Assuming the original spacetime is vacuum, we would now like to determine the conditions necessary

and sufficient for ˆ̀ to be a WAND with multiplicity at least m, provided that ` is a WAND with
multiplicity at least m of the reduced manifold.3 After expressing the (D + 1)-dimensional Riemann
tensor (which is equal to the Weyl tensor) in terms of the D-dimensional Weyl tensor and requiring the
corresponding components to vanish, we arrive at the following results for Kaluza–Klein reductions of
types I and II:

Proposition 1. Let D ≥ 4. Let ` be a WAND of a D-dimensional spacetime. Suppose that this spacetime
is a Kaluza–Klein reduction of a (D + 1)-dimensional vacuum spacetime. Then ˆ̀ is a WAND of this
(D + 1)-dimensional spacetime, iff the following holds locally:(

e(β−2α)φ
)
;(0)(0)

= 0 , (25a)

F(0)(i) = 0 , (25b)

F(i)(j)κ
(j) = 0 , (25c)

F(0)(1)κ
(i) = 0 . (25d)

3It should be noted that one can also ask whether ĝ is more special than g. For a subset of the cases studied here, this
question has been addressed by Ortaggio et al. [2011].
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Proposition 2. Let D ≥ 4. Let ` be a mWAND of a D-dimensional spacetime. Suppose that this
spacetime is a Kaluza–Klein reduction of a (D+1)-dimensional vacuum spacetime. Then ˆ̀ is a mWAND
of this (D + 1)-dimensional spacetime, iff the following holds locally:(

e(β−2α)φ
)
;(0)(i)

= 0 , (26a)(
e(4β−4α)φF(i)(j)

)
;(0) = 0 , (26b)(

F(i)(k) + F(0)(1)g(i)(k)

)
ρ
(k)

(j) + (i↔ j) = −4αF(0)(1)g(i)(j) , (26c)

together with the conditions (25).

Remark. The condition (25b) is equivalent to saying that

mul〈`〉F ≥ 1 . (27)

The conditions (25a), (26a) is equivalent to saying that

mul〈`〉

(
e(β−2α)φ

)
;ab
≥ 2 . (28)

Remark. The special case of A = 0 and φ = const. was studied earlier by Ortaggio et al. [2011] as a
subset of metrics with a warped extra dimension. For this case, the results correspond with those covered
by propositions 1 and 2.
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