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In this article, we derive source integrals, i.e., quasilocal expressions, for multipole moments in axially
symmetric and static spacetimes. Usually, these multipole moments are read off the asymptotics of the
metric close to spatial infinity. Whereas for the evaluation of the here derived source integrals the geometry
has to be known in the region containing all sources, i.e., matter as well as singularities. The source
integrals can be written either as volume integrals over such a region or as integrals over the surface of that
region. Eventually, these source integrals allow assigning to any spacetime regions its contribution to the
total multipole moments of the spacetime. Finally, we give an exemplary application that outlines the
usefulness and applicability of the source integrals in, e.g., (non)existence proofs.
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I. INTRODUCTION

In general relativity, several definitions of multipole
moments were proposed in the past. Since this theory is
nonlinear, it is, however, by no means obvious that a
meaningful definition can be found. Thus, it is not surprising
that in early works multipoles were considered only in
approximations to general relativity that lead to linear field
equations and allow a classical treatment. The most defi-
nitions in this direction were covered in Thorne’s review [1].
From the 1960s on, new definitions in the full theory of

isolated sources1 emerged. These definitions of multipole
moments can roughly be divided into two classes. In the
first, the metric (or a quantity derived from it) is expanded
at spacelike or null-like infinity. We will call these
asymptotic definitions or asymptotic multipole moments.
Amongst these are the definitions of Bondi, Metzner,
Sachs, and van der Burgh (BMSB) [2,3], Geroch and
Hansen (GH) [4,5], Simon and Beig2 [6], Janis, Newman,
and Unti (JNU) [7,8], Thorne3 [1], the Arnowitt-Deser-
Misner (ADM) approach [10], and the Komar integrals
[11]; for reviews see [1,12]. Their scope of applicability
varies greatly. Whereas the GH multipole moments are
defined only in stationary spacetimes, the BMSB, JNU,
Thorne, and ADM definitions hold in a more general
setting. The Komar expression for the mass (angular
momentum), on the other hand, requires stationarity
(stationarity and axial symmetry). Higher order multipoles
are not defined in the Komar approach. Despite their

conceptual differences, Gürsel showed in [13] the equiv-
alence of the GH and Thorne’s multipole moments, in case
the requirements of both definitions are met. Additionally,
the mass and the angular momentum in the GH, Thorne,
ADM, and Komar approach can be shown to agree.
Multipoles that are determined by the metric in a

compact region fall in the second class. Dixon’s multipoles
in [14] are of this kind. They are given in the form of source
integrals. However, it is not yet known how they are related
with the asymptotic multipole moments. A main applica-
tion of these multipoles is in the theory of the motion of test
bodies with internal structure. But for test bodies such a
relation between Dixon’s multipole moments and the
asymptotic multipole moments of the background space-
time cannot exist. Furthermore, Dixon’s definition is in
general not applicable if caustics of geodesics appear inside
the source, i.e., if the gravitational field is strong compared
to a characteristic radius of the source.
Ashtekar et al. defined in [15] multipole moments of

isolated horizons that are source integrals as well and
require only the knowledge of the interior geometry of the
horizon. In [15], it was also shown that the so defined
multipoles of the Kerr black hole deviate from the GH
multipoles. This effect becomes more pronounced the
greater the rotation parameter. In both cases [14,15], it is
interesting to find the relation of these multipole moments
to asymptotically defined GH multipole moments and the
interpretation of possible deviations. Also a comparison
with source integrals and multipole definitions in approx-
imations to general relativity like those recommended by
the International Astronomical Union (IAU) (see [16–18])
or those discussed in [19] might prove insightful.
Other definitions, in particular for the quasilocal mass

and the quasilocal angular momentum, can be found in
[20]. Here we aim at source integrals for all multipole
moments in static spacetimes for arbitrary sources; i.e., we

*norman.guerlebeck@zarm.uni‑bremen.de
1This means that all sources of the gravitational field (matter

and singularities) are located in a sphere of finite radius and the
spacetime is assumed to be asymptotically flat. A precise
meaning is given in Sec. II C.

2This approach reproduces the GH multipole moments.
3For a more recent approach following Thorne, see [9].
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want to express asymptotic multipole moments by surface
(volume) integrals, where the surface envelopes (the
volume covers) all the sources of the gravitational field.
That such source integrals can be found is not trivial. This is
due to the nonlinearity of the Einstein equations yielding a
gravitational field, which acts again as a source. To over-
come the principle difficulties, we will focus here on static
and axially symmetric spacetimes. In this case, the vacuum
Einstein equations can be cast in an essentially linear
form. Additionally, they allow the introduction of a linear
system [21–23]. The latter might seem superfluous, if the
former holds. However, we derive our source integrals
relying solely on the existence of the linear system and the
applicability of the inverse scattering technique. This will
allow us in future work to apply the same formalism to
stationary and axially symmetric isolated systems. This is
especially relevant for the description of relativistic stars.
We summarize possible applications in this direction below.
A generalization to spacetimes with an Einstein-Maxwell
field exterior to the sources seems also feasible. In all these
cases, multipole moments of the GH type exist, too.
Source integrals will prove useful in many respects, in

particular in the search of global solutions of Einstein
equations describing figures of equilibrium or relativistic
stars; for recent efforts see, e.g., [24–27] and references
therein. For example, an exterior solution can be con-
structed for a known interior solution by employing the
source integrals to calculate its multipole moments. From
these, the exterior solution can be completely determined.
This yields an exterior solution, which does not necessarily
match to the interior solution. However, if it does not, this
construction shows that there is no asymptotically flat
solution, which can be matched to the given interior.
Conversely, possible matter sources can be analyzed for
given exterior solutions. The latter approach is also of
astrophysical interest, since often only the asymptotics
of the gravitational field and the asymptotic multipole
moments are accessible to experiments. Source integrals
can be applied to restrict the equation of state of a rotating
perfect fluid from observed multipole moments.
Furthermore, source integrals can be used to compare

numerical solutions, analytical solutions, and analytical
approximations by calculating their multipole moments;
see, for example, [28]. This would also solve the difficulties
of extracting the multipole moments of a given numerically
determined metric as described in [29]. On the other hand,
such an approach can also be used to approximate the
vacuum exterior of a given numerical solution by an
analytical one, which exhibits the correct multipole
moments up to a prescribed order. The difference from
the earlier work by [30] is that source integrals determine
the multipole moments using the matter region only, which
captures the internal structure of the relativistic object and
is usually determined with high accuracy. Additionally,
source integrals provide the means to test the accuracy of

numerical methods, which are used to determine relativistic
stars (cf. [26,31,32]) by calculating the multipole moments
in two independent ways: First, using the asymptotics and,
second, using the source integrals. This will also give a
physical interpretation to possible deviations: Up to which
multipole moment is the numerical solution viable.
The paper is organized as follows: In Sec. II, we

introduce the different concepts used later, i.e., the GH
and the Weyl multipole moments as well as the inverse
scattering technique. Section III is devoted to the derivation
of the source integrals and includes the main results. In
Secs. IV and V, we discuss some properties of the source
integrals and their application.

II. PRELIMINARIES

In this section, we will repeat the notions required in the
present paper. Note that we use geometric units, in which
G ¼ c ¼ 1, where c is the velocity of light andG Newton’s
gravitational constant. The metric has the signature
ð−1; 1; 1; 1Þ. Greek indices run from 0 to 3, lowercase
Latin indices run from 1 to 3 and uppercase Latin indices
from 1 to 2.

A. The line element and the field equation

We consider static and axially symmetric spacetimes
admitting a timelike Killing vector ξα and a spacelike
Killing vector ηα, which commutes with ξα, which has
closed orbits, and which vanishes at the symmetry axis. If
the orbits of the so-defined isometry group admit orthogo-
nal 2-surfaces,4 which is the case for vacuum, for static
perfect fluids, or for static electromagnetic fields (see, e.g.,
[34]), then the metric can be written in the Weyl form,

ds2 ¼ e2k−2Uðdρ2 þ dζ2Þ þW2e−2Udφ2 − e2Udt2; ð1Þ

where the functions U; k, and W depend only on ρ and ζ.
Note that the metric functionsU andW can be expressed by
the Killing vectors,

e2U ¼ −ξαξα; W2 ¼ −ηαηαξβξβ: ð2Þ

The Einstein equations simplify for the metric (1);
cf. [35]. Since we do not specify the matter here, we give
only a complete set of combinations of the nontrivial
components of the Ricci tensor,

4That this is not the general case can be seen from the
conformally flat, static, and axially symmetric spacetimes in
[33]. The field equations are not imposed there, but they can be
used to define a (rather unphysical) stress energy tensor.

NORMAN GÜRLEBECK PHYSICAL REVIEW D 90, 024041 (2014)

024041-2



0 ¼ e2k−4UWRtt −WΔð2ÞU −U;ρW;ρ −U;ζW;ζ;

0 ¼ WðRζζ − RρρÞ −W;ρρ þW;ζζ

− 2ðk;ζW;ζ−k;ρW;ρ þWðU2
;ρ −U2

;ζÞÞ;
0 ¼ e2k−4UW2Rtt − e2kRφφ −WΔð2ÞW;

0 ¼ WRρζ −W;ζk;ρ −W;ρk;ζ þ 2WU;ζU;ρ þW;ρζ;

0 ¼ ðRρρ þ RζζÞ − e2k−4URtt −
e2k

W2
Rφφ þ 2Δð2Þk; ð3aÞ

where ΔðnÞ ¼ ð ∂2∂ρ2 þ n−2
ρ

∂
∂ρ þ ∂2

∂ζ2Þ. The third equation
implies that we can introduce canonical Weyl coordinates
ð~ρ; ~ζÞ with W ¼ ~ρ via a conformal transformation in
vacuum or in matter regions, where Δð2ÞW ¼ 0 holds.
This includes the important case of a perfect fluid with
vanishing pressure, i.e., dust. After this coordinate system
is chosen in the vacuum region, we drop the tilde again. The
remaining coordinate freedom is a shift of the origin along
the symmetry axis, which is characterized by ρ ¼ 0. Note
that the metric functions are assumed to be sufficiently
smooth so that the field equations are well defined.
Equations (3a) simplify in vacuum to the well-known

equations

Δð3ÞU ¼ 0;

k;ζ ¼ 2ρU;ρU;ζ;

k;ρ ¼ ρððU;ρÞ2 − ðU;ζÞ2Þ: ð3bÞ

The last two equations determine k via a line integration
once U is known. This k automatically satisfies the last
equation in (3a). Hence, only a Laplace equation for U
remains to be solved. Therefore, the Newtonian theory and
general relativity can be treated on the same formal footing.
The disadvantage of using the canonical Weyl coordinates
is that they cannot necessarily be introduced in the interior
of the matter, where we have to use other (noncanonical)
Weyl coordinates.

B. The sources

We assume isolated sources of the gravitational field,
which are in compliance with Eq. (1). Hence, there exists a
2-sphere with radiusR0 ðρ ¼ R0 sin θ; ζ ¼ R0 cos θÞ, Sð2Þ

0 ,
enclosing all sources; cf. Fig. 1. The upper index in
brackets is necessary because of the axial symmetry. It
indicates the dimensionality of the respective set. It is used
to distinguish between, say Sð3Þ

0 and Sð2Þ
0 , where Sð3Þ

0 is the
direct product of Sð2Þ

0 with the orbits of ηα.
If there are black holes with horizons Hi present in the

spacetime, we assume that they admit a neighborhood,
which is free of any matter. This is satisfied for static black
holes in static spacetimes if the energy conditions are met;
see, e.g., [36]. Hence, we can define closed surfaces Sð3Þ

S;i
inside of Sð3Þ

0 enclosing only the black hole with Hi.
Similarly, we can introduce surfaces Sð3Þ

S;i enclosing other

kinds of singularities if they have a vacuum neighborhood.
Then, we define Vð3Þ

0 as the spacelike region bounded by
Sð3Þ
0 and Sð3Þ

S;i . The vacuum region exterior to Sð3Þ
0 is denoted

by Eð3Þ and extends to infinity. The regions Vð3Þ
i with the

surfaces Sð3Þ
i are those where the stress energy tensor is

nonvanishing. They are not necessarily connected.
Moreover, we assume that there are no matter layers at

the surfaces Sð3Þ
i for technical reasons. If surface layers are

present, Vð3Þ
i has to be chosen slightly bigger such that it

covers also some part of the vacuum. Then the first and the
second junction conditions (cf. [37]) are satisfied at its
surface.

C. Asymptotic multipole moments

Isolated gravitating systems are described by an asymp-
totically flat spacetime. The precise meaning of this is given
below. It is used to define Geroch’s multipole moments.
Afterwards, Weyl’s multipole moments are introduced, and
they are compared with Geroch’s multipole moments. Let
us denote our static spacetime by ðM; gαβÞ with the metric
gαβ and by Mð3Þ a hypersurface that is orthogonal to ξα

endowed with the induced metric gð3Þαβ ¼ −ξγξγgαβ þ ξαξβ.
We use lowercase Latin indices for tensors on Mð3Þ. The
asymptotic flatness ofMð3Þ is sufficient for the definition of
Geroch’s multipole moments; see [4].
Definition 1 ðMð3Þ; gð3Þab Þ is asymptotically flat iff there

exists a point Λ, a manifold ~Mð3Þ, and a conformal factor
Ω ∈ C2ð ~Mð3ÞÞ such that
(1) ~Mð3Þ ¼ Mð3Þ∪Λ,
(2) ~gð3Þab ¼ Ω2gð3Þab is a smooth metric of ~Mð3Þ,

FIG. 1. The different surfaces Hi, S
ð2Þ
i , Sð2Þ

S;i and volumes Vð2Þ
i

are depicted for a black hole surrounded by a thick ring. The
curves A� and C are relevant in Sec. II D.
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(3) Ω ¼ ~DaΩ ¼ 0 and ~Da
~DbΩ ¼ 2~gð3Þab at Λ, where ~Da

is the covariant derivative in ~Mð3Þ associated with the
metric ~gð3Þab .

Let us define ~ψ ,

~ψ ¼ 1 − ð−ξαξαÞ12
Ω1

2

; ð4Þ

which is also a scalar in ~Mð3Þ. Introducing the Ricci tensor
~Rð3Þ
ab built from the metric ~gð3Þab , tensors Pa1… can be defined

recursively,

P¼ ~ψ ;

Pa1…ar ¼C

�
Pa2…arjja1 −

ðn−1Þð2n−3Þ
2

~Rð3Þ
a1a2Pa3…ar

�
; ð5Þ

where C½Aa1…ar � denotes the symmetric and trace-free part

of Aa1…ar . The covariant derivative with respect to ~gð3Þab is
indicated by jj. Geroch’s multipole moments are defined as
the tensors Pa1…ar evaluated at Λ,

Ma1…ar ¼ Pa1…ar jΛ: ð6Þ

This expansion at infinity is the reason for the name
asymptotic multipole moments. The degree of freedom
in the choice of the conformal factor reflects the choice
of an origin, with respect to which the multipole moments
are taken; see [4]. This definition was generalized to the
stationary case in [5], to the electrostatic case in [38], and
to the electrostationary case in [39]. Its merit is that both
multipole conjectures of Geroch can be proved. The first
states roughly that two spacetimes with the same asymp-
totic multipole moments are isometric in a neighborhood
of Λ. Thus, a spacetime is characterized by its multipole
moments. The proof of the second conjecture established
that a spacetime can be found for any given set of
asymptotic multipole moments, which satisfy a certain
convergence condition; cf. [40–44].
For axially symmetric spacetimes the multipole structure

simplifies to

mr ¼
1

n!
Pa1…ar ~z

a1 � � � ~zar
����
Λ
; ð7Þ

where ~za is the unit vector pointing in the direction of the
symmetry axis and the scalars mr define the multipole
moments completely. Hence, we will refer to them as
multipole moments, as well.
Although the definition due to Geroch is conceptually

pleasing, it is not always the most practical approach.
However, Fodor et al. showed in [45] that an expansion
of the potential U [cf. Eq. (1)] along the axis of symmetry
in powers of 1

jζj is sufficient to determine the mr. The

expansion coefficients UðrÞ, which will be called Weyl’s
multipole moments, are defined via

Uðρ ¼ 0; ζÞ ¼
X∞
r¼1

UðrÞ

jζjrþ1
: ð8Þ

Note that this expansion is well defined, since U is
harmonic in the vacuum region close to infinity
[cf. Eqs. (3b)]. The relation mrðUðjÞÞ can be obtained in
principle to any order. Thus, we limit ourselves here to
the calculation of the UðrÞ. Up to now, however, only the
m0;…; m11 were explicitly expressed using the UðrÞ;
see [45,46]. We give here the first four for illustration,

m0 ¼ −Uð0Þ; m1 ¼ −Uð1Þ;

m2 ¼
1

3
Uð0Þ3 − Uð2Þ; m3 ¼ Uð0Þ2Uð1Þ −Uð3Þ: ð9Þ

Equations (8) and (9) show that the mass dipole moment,
Uð1Þ, can be transformed away if the origin of ζ is chosen
appropriately. For a general discussion, further references,
and expressions of the center of mass in static spacetimes,
see [47]. In [48], a method to obtain the mr was proposed,
which could help to overcome the nonexplicit structure of
mrðUðjÞÞ. Also the results in [43,49] are useful in this
respect.

D. The linear problem of the Laplace equation

Last, we give a short review of the linear problem
associated with the Laplace equation. Although the equa-
tions involved are fairly simple, we employ this technique
here because it is readily generalizable to the nonlinear
stationary case.
In the more general case of stationarity and axially

symmetry, the Einstein equation simplifies to the Ernst
equation (see [50]). The solution of this equation can be
achieved by the inverse scattering technique (see, e.g.,
[21–23] and for a more recent account [51]). In the
static case, the linear problem associated with the field
equations (3b) reads5

σ;z ¼ ð1þ λÞU;zσ; σ;z̄ ¼
�
1þ 1

λ

�
U;z̄σ; ð10Þ

where z ¼ ρþ iζ. The spectral parameter λ ¼
ffiffiffiffiffiffiffiffi
K−iz̄
Kþiz

q
depends on a constant K ∈ C. A bar denotes complex
conjugation. The function σ depends on z; z̄, and λ. The
integrability condition of Eqs. (10) yields the first equation
in (3b).

5The formulas are easily inferred from [51] by setting gtφ ¼ 0.
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Next we repeat some known properties of σ, which we
need in the next section, without proof. For details we refer

the reader to [51]. The four curves A�, Sð2Þ
0 , and C in the

ðρ; ζÞ plane are of particular interest and are described
momentarily; cf. Fig. 1 as well. The axis of symmetry is

divided by Vð2Þ
0 into upper and lower parts Aþ and A−,

respectively. C describes a half circle with a sufficiently
large radius connecting Aþ with A−.
Along A� and C, Eq. (10) can be integrated. For a

suitable choice of the constant of integration, this gives

ð0; ζÞ ∈ Aþ∶ σðλ ¼ þ1; ρ ¼ 0; ζÞ ¼ FðKÞe2Uðρ¼0;ζÞ;

σðλ ¼ −1; ρ ¼ 0; ζÞ ¼ 1;

ð0; ζÞ ∈ A−∶σðλ ¼ þ1; ρ ¼ 0; ζÞ ¼ e2Uðρ¼0;ζÞ;

σðλ ¼ −1; ρ ¼ 0; ζÞ ¼ FðKÞ: ð11Þ

The function F∶ C → C is given for K ∈ R by

FðKÞ ¼
�
e−2Uðρ¼0;ζ¼KÞ ð0; KÞ ∈ Aþ;

e2Uðρ¼0;ζ¼KÞ ð0; KÞ ∈ A−:
ð12Þ

The integration along Sð2Þ
0 is the crucial part for our

considerations in the next section.

III. SOURCE INTEGRALS

Let us assume that the line element is written in
canonical Weyl coordinates in Eð3Þ; cf. Sec. II A. The
scalars U and W [cf. (2)] are supposed to be continuously

differentiable in Eð2=3Þ∪Sð2=3Þ
0 . Let us introduce the vectors6

ðsAÞ ¼ ðsρ; sζÞ ¼ ðdρds ; dζdsÞ and ðnAÞ ¼ ðnρ; nζÞ ¼ ð− dζ
ds ;

dρ
dsÞ

that are tangential and normal to the curve Sð2Þ
0 ∶s ∈

½sN; sS� → ðρðsÞ; ζðsÞÞ. The parameter values sN=S denote
the “north/south” pole, i.e., ðρ¼0;ζ¼ ζN=SÞ; cf. Fig. 1.
Analogously, the indices N=S indicate that a function is
evaluated at the respective pole. Note that sA and nA are not
necessarily normalized allowing an arbitrary parametriza-

tion of Sð2Þ
0 . If the vectors are normalized with respect to the

induced metric on Sð2Þ
0 , we distinguish them by a hat.

Moreover, the projection of the derivative of a function,
say U, in the direction of sA; nA; ŝA, and n̂A is denoted by
U;s; U;n; U;ŝ, and U;n̂, respectively. With this notation, we

can consider the linear problem (10) along Sð2Þ
0 ,

σ;s ¼
�
U;s þ

1

2

��
1

λ
þ λ

�
U;s þ i

�
1

λ
− λ

�
U;n

��
σ: ð13Þ

Equation (13) constitutes an ordinary differential equa-
tion of first order with the boundary conditions as given
in (11) assuming ð0; KÞ ∈ Aþ∪A−. As such it is an
overdetermined system and the boundary data have to
satisfy a compatibility condition, which corresponds to the
integrability of Eqs. (10). Nonetheless, Eq. (13) is readily
integrated and the compatibility condition can be read off
explicitly,

Uð0; KÞ ¼ UN −US

2
þ 1

4

ZsS
sN

ðNþU;s þ N−U;nÞds; ð14Þ

where we introduced the abbreviations Nþ ¼ λ−1 þ λ and
N− ¼ iðλ−1 − λÞ. Equation (14) determines the axis values
of U from the Dirichlet data and the Neumann data of U

along Sð2Þ
0 .

Weyl’s multipole moments follow from an expansion of
Eq. (14) with respect to K−1, which is possible because λ is
holomorphic for sufficiently large jKj. Let us denote by fðrÞ
the expansion coefficient to order jKj−r−1 of a function
fðKÞ, which is constant at infinity,

fðKÞ ¼
X∞
r¼−1

fðrÞjKj−r−1: ð15Þ

The coefficients NðrÞ
� depend still on ðρ; ζÞ, and they satisfy

the equations

NðrÞ
þ;ρ − NðrÞ

−;ζ ¼ 0;

NðrÞ
þ;ζ þ NðrÞ

−;ρ −
1

ρ
NðrÞ

− ¼ 0: ð16Þ

Equations (16) follow directly from the form of the spectral
parameter λ; cf. the text after Eq. (10). Furthermore, NðrÞ

�
and their radial derivatives evaluate at the axis to

NðrÞ
− ðρ ¼ 0; ζÞ ¼ 0 ∀r ≥ −1;

Nð−1Þ
þ ðρ ¼ 0; ζÞ ¼ 2;

NðrÞ
þ ðρ ¼ 0; ζÞ ¼ 0 ∀r ≥ 0;

Nð−1Þ
−;ρ ðρ ¼ 0; ζÞ ¼ 0;

NðrÞ
−;ρðρ ¼ 0; ζÞ ¼ −2ζr ∀r ≥ 0: ð17Þ

Together with Eq. (17), the zeroth order of Eq. (14) implies
Uð−1Þ ¼ 0. This reflects the assumption of asymptotic
flatness employed in the derivation of (11). Solving
Eqs. (16) with the initial values (17), a lengthy calculation
gives us the NðrÞ

� for r ≥ 0 everywhere,
6Capital Latin indices are used for objects that are projected

orthogonal to the orbits of ηα and ξα.
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NðrÞ
− ðx; yÞ ¼

X⌊r2⌋
k¼0

2ð−1Þkþ1r!x2kþ1yr−2k

4kðk!Þ2ðr − 2kÞ! ;

NðrÞ
þ ðx; yÞ ¼

X⌊r−12 ⌋

k¼0

2ð−1Þkþ1r!x2kþ2yr−2k−1

4kðk!Þ2ðr − 2k − 1Þ!ð2kþ 2Þ : ð18Þ

Here, ðx; yÞ replaces ðρ; ζÞ to avoid later confusion. Note

that NðrÞ
� ¼ OðxÞ for all r ≥ 0.

For orders r ≥ 0, Eq. (14) yields together with Eq. (18)
the following line integrals defining Weyl’s multipole
moments:

UðrÞ ¼ 1

4

Z
Sð2Þ
0

ðNðrÞ
þ U;ŝ þ NðrÞ

− U;n̂ÞdSð2Þ
0 ; ð19Þ

where dSð2Þ
0 denotes the proper distance along Sð2Þ

0 . We

define dSð2=3Þ
i , dSð2=3Þ

S;i , dVð2=3Þ
0 , and dVð2=3Þ

i analogously.
Equations (19) are already quasilocal expressions, since

they determine the multipole moments from the metric
given in a compact region. Subsequently, we rewrite these
multipole moments as volume integrals, and we generalize
them to arbitrary spacetime regions. Thereby, the term
source integral is justified. The main obstacle to overcome
is that Weyl’s multipole moments are given in Eq. (19)
using canonical Weyl coordinates. Hence, neither the
coordinate invariance of these expressions is transparent
nor is it obvious how to continue ρ and ζ into Vð2Þ

0 . Thus, we
express first Eq. (19) covariantly.
U can be expressed by the norm of the timelike Killing

vector; cf. Eq. (2). Moreover, ρ equals W in the vacuum
region Eð3Þ and, thus, can be expressed by the product of
the norms of the Killing vectors; see Eq. (2). Hence, a
continuation of these two functions to Vð3Þ

0 is straightfor-
ward. It only remains the coordinate ζ, for which we derive
a covariant expression and an unambiguous continuation
subsequently.
Let us introduce the 1-form

Zα ¼ ϵαβγδW;βW−1ηγξδ; ð20Þ

where ϵαβγδ denotes the volume form of the static space-
time. A simple calculation shows that Zα is closed in Eð3Þ
and hypersurface orthogonal in the entire spacetimes. Thus,
we can introduce a scalar potential Z with Z;α ¼ XZα,
where X ¼ 1 in Eð3Þ.7 In canonical Weyl coordinates and in
Eð3Þ, the potential Z has the form Z ¼ ζ þ ζ0. Because we
did not fix the origin of our Weyl coordinates, e.g., the
value of ζN , we can set the constant ζ0 ¼ 0 without loss of
generality. This integration constant describes the arbitrary
choice of the origin with respect to which the multipole

moments are measured. This allows us to change to the
center of mass frame, where the mass dipole moment
vanishes. Now, we can extend ζ to Vð3Þ

0 using Z, which is
defined everywhere and coincides with ζ in Eð3Þ. Note that
W;α and Z;α are orthogonal everywhere and have the same
norm in Eð3Þ. The line integral (19) becomes inherently
coordinate independent, if one reads NðrÞ

� not as functions
of ðρðsÞ; ζðsÞÞ but rather as a function of ðW;ZÞ, which in
turn depend on s. This dependence, however, will not be
shown explicitly in what follows.
In Eð3Þ, the functions W and Z satisfy the Cauchy-

Riemann equations as a consequence of the field equations,
which read along Sð2Þ

0 as

W;s ¼ Z;n; W;n ¼ −Z;s: ð21Þ
After an integration by parts, we rewrite the line integral
Eq. (19) as a surface integral using the axial symmetry and
Eqs. (21),

UðrÞ ¼
Z
Sð3Þ
0

ηðrÞa n̂adSð3Þ
0 ;

ηðrÞa ¼ 1

8π

eU

W
ðNðrÞ

− U;a − NðrÞ
þ;WZ;aU þ NðrÞ

þ;ZW;aUÞ: ð22Þ

Since we ruled out surface distributions, Israel’s junction
conditions imply that Eqs. (22) can be understood as
integrals over the surfaces Sð3Þ

0 as seen from the exterior
and the interior.
Using Stokes’ theorem, we rewrite the surface integral

in (22) as volume integrals over Vð3Þ
0 ,

UðrÞ ¼
Z
Vð3Þ
0

μðrÞdVð3Þ
0 þ

X
i

Z
Sð3ÞS;i

ηðrÞa n̂adSð3Þ
S;i ;

μðrÞ ¼ η
ðrÞa
∶a
: ð23Þ

A colon denotes a covariant derivative with respect to the

3-metric gð3Þab of Mð3Þ; cf. Sec. II C. Here we use the

extension of ηðrÞa described after Eqs. (19) and (20).

Moreover, the surface of Vð3Þ
0 is the union of Sð3Þ

0 and

all Sð3Þ
S;i ; cf. Fig. 1. Thus, the integrals over S

ð3Þ
S;i , the surfaces

enclosing singularities, have to be subtracted from the

volume integral over Vð3Þ
0 . We concentrate here on the

volume integral and simplify μðrÞ subsequently. The cal-
culation of the surface terms has to be carried out
independently.
To simplify μðrÞ, we use general Weyl coordinates and

the field equations (3a) for arbitrary matter. Additionally,
we employ the identities

W;aZa ¼ W;aZ;a ¼ Zα
;α ¼ W;αW;α − ZαZα ¼ 0 ð24Þ7Wherever Δð2ÞW ¼ 0 holds, X ¼ 1 can be chosen.
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and Eqs. (16). Then standard calculations yield

μðrÞ ¼ 1

8π
ffiffiffiffiffiffiffi
gð3Þ

p X
a

� ffiffiffiffiffiffiffi
gð3Þ

q
eU

W
gρρðNðrÞ

− U;a − NðrÞ
þ;WZ;aU þ NðrÞ

þ;ZW;aUÞ
�

;a

¼ 1

8π
ffiffiffiffiffiffiffi
gð3Þ

p X
a∈fρ;ζg

ððNðrÞ
−;W þ NðrÞ

þ;ZÞW;aU;a þ ðNðrÞ
−;Z − NðrÞ

þ;WÞZ;aU;a þ NðrÞ
− U;aa − NðrÞ

þ;WZ;aaU

þNðrÞ
þ;ZW;aaU þ NðrÞ

þ;WZðW;aW;a − Z;aZ;aÞUÞ; ð25Þ

where gð3Þ is the determinant of the metric gð3Þab in Weyl
coordinates. Analogously, we define the determinant gð4Þ of
the metric gαβ. They read

gð3Þ ¼ e4k−6UW2; gð4Þ ¼ −e4k−4UW2: ð26Þ

The second term in the sum in the second line of Eq. (25)
vanishes because of (16). The first simplifies to

1

8π
ffiffiffiffiffiffiffi
gð3Þ

p X
a∈fρ;ζg

NðrÞ
−

W
W;aU;a; ð27Þ

which in turn gives together with the third term and the first
equation in (3a)

e−U

8πW
NðrÞ

− Rtt ¼ −
eU

8πW
NðrÞ

− Rαβ
ξαξβ

ξγξγ
: ð28Þ

Using the third field equation in (3a), the fifth term in the
second line of (25) can be rewritten as

NðrÞ
þ;ZU

8π
ffiffiffiffiffiffiffi
gð3Þ

p X
a∈fρ;ζg

W;aa ¼
NðrÞ

þ;ZU

8π
ffiffiffiffiffiffiffi
gð3Þ

p Δð2ÞW

¼ −
eU

8π
NðrÞ

þ;ZURαβ

�
ξαξβ

ξγξ
γ þ

ηαηβ

ηγη
γ

�
: ð29Þ

A semicolon denotes the covariant derivative with
respect to gαβ. The last equality follows from Eq. (3a).
Analogously, we have

−
NðrÞ

þ;WU

8π
ffiffiffiffiffiffiffi
gð3Þ

p X
a∈fρ;ζg

Z;aa ¼ −
eU

8π
NðrÞ

þ;WU

�
Z;α

W

�
;α

¼ −
eU

8πW
NðrÞ

þ;WUX;αZα: ð30Þ

The last equality uses the definition of the potential Z of Zα;
see the discussion after Eq. (20). Also the last two terms in
Eq. (25) can be expressed in terms of X as

1

8π
ffiffiffiffiffiffiffi
gð3Þ

p NðrÞ
þ;WZU

X
a∈fρ;ζg

ðW;aW;a − Z;aZ;aÞ

¼ eU

8πW
NðrÞ

þ;WZUW;αW;αð1 − X2Þ: ð31Þ

Thus, we arrive at the covariant form

μðrÞ ¼ eU

8πW

�
−Rαβ

�
WUNðrÞ

þ;Z

�
ηαηβ

ηγηγ
þξαξβ

ξγξγ

�
þNðrÞ

−
ξαξβ

ξγξγ

�

−NðrÞ
þ;WUX;αZαþNðrÞ

þ;WZUW;αW;αð1−X2Þ
�
: ð32Þ

In Eq. (32), it is apparent that μðrÞ vanishes in vacuum,
where Rαβ ¼ 0 and X ¼ 1. Hence, the integrals have to be
evaluated only in the matter regions Vð3Þ

i ,

UðrÞ ¼
X
i

Z
Vð3Þ
i

μðrÞdVð3Þ
i þ

X
i

Z
Sð3Þ
S;i

ηðrÞa n̂adSð3Þ
S;i : ð33Þ

This form justifies the term source integrals: Only the
regions with sources contribute to the asymptotic Weyl
multipole moments, and they all can be linearly superposed
to yield the total asymptotic Weyl multipole moments.
However, the transformation from Weyl’s multipole
moments to Geroch’s is nonlinear except for the mass
and the mass dipole; cf. Eq. (9). Thus, there is no linear
superposition of the multipole contributions of the indi-
vidual sources to the total Geroch multipole moments,
and a mixing of the contributions of the individual sources
takes place, which can be disentangled using the above
source integrals. For example, Weyl’s quadrupole moment
of a spacetime containing two sources with the source
quadrupole moments Uð2Þ

i is Uð2Þ
tot ¼ Uð2Þ

1 þ Uð2Þ
2 . Let us

define now Geroch’s mass and quadrupole moment for
individual sources following Eq. (9) by

m0;i ¼ −Uð0Þ
i ; m2;i ¼

1

3
Uð0Þ

i
2 − Uð2Þ

i : ð34Þ

Then Geroch’s (total) quadrupole moment is given by

m2;tot ¼ m2;1 þm2;2 þ 2m0;1m0;2: ð35Þ
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Thus, an additional term mixing the masses appears. This
can be generalized to higher orders beyond the quadrupole
moment and arbitrary sources: The total Geroch multipole
moment mðrÞ

tot will always be given as a sum of the source
multipole moments of order r of all individual sources and
additional terms mixing the source multipole momentsmðkÞ

i
of lower order k < r.
Using Eq. (33), we can assign multipole moments to

any spacetime region Vð3Þ as integrals over the μðrÞ and, if
singularities are present, over the ηðrÞa . We only have to
substitute the corresponding regions in Eq. (33) with Vð3Þ
and Sð3Þ. If the metric and its derivatives are not known
explicitly in Sð3Þ but on its surface Sð3Þ, a form of the source
integral analogous to Eq. (22) can be used to determine the
multipole moments. For this, the aforementioned calcula-
tions have to be retraced to arrive at the surface integral form,

UðrÞ ¼
Z
Sð3Þ

ηðrÞa n̂adSð3Þ: ð36Þ

If Sð3Þ is bounded by vacuum from one side, we can again
use Eq. (21) to write Eq. (36) in a line integral form,

UðrÞ ¼ 1

4

Z
Sð2Þ

ðNðrÞ
þ U;ŝ þ NðrÞ

− U;n̂ÞdSð2Þ: ð37Þ

Which of the derived forms of the source integrals (19),
(22), (23), (33), (36), (37) together with (32) and (33) are
employed is a matter of the concrete applications.
So far, we used the Einstein equations only in Eð3Þ.

Thus, as long as the used quantities are well defined, the
above derivation is also valid for line elements of the form
(1). There is a wide variety of alternative theories of gravity
equivalent to general relativity in vacuum, e.g., the
Eddington-inspired Born-Infeld theory and subclasses of
theories admitting a nonminimal coupling; see, e.g.,
[52–54]. However, note that we can express the Ricci tensor
by the stress-energy tensor in Einstein’s theory of gravity.

IV. PROPERTIES OF THE SOURCE INTEGRALS

In this section, we discuss the properties of the source
integrals in more detail.

A. The Newtonian limit

First we recover the well-known Newtonian multipole
definitions taking the Newtonian limit of the source
integrals given in Eq. (33). Expanding the metric functions
in powers of c−1 and keeping only terms of the Newtonian
order yields

W¼ρþOðc−1Þ; Z¼ ζþOðc−1Þ; X¼1þOðc−1Þ;
U¼UNc−2þOðc−3Þ; k¼1þOðc−1Þ; ð38Þ

where UN denotes the Newtonian gravitational potential
generated by a mass density μN. Hence, the scalars W and
Z, which play an important role in the derivation detailed
in the last section, are the cylindrical coordinates in the
Newtonian limit. This implies that all but one term in μðrÞ
vanish; see Eq. (25) and the discussion afterwards. Then the
source integrals, excluding singular sources, read

UðrÞ
N ¼ 1

8π

Z
V

NðrÞ
−

ρ
Δð3ÞUNdV ¼ 1

2

Z
V

NðrÞ
−

ρ
μNdV: ð39Þ

A comparison with the well-known formulas of
Newtonian theory suggests that

NðkÞ
− ðρ; ζÞ ¼ −2ρrkPkðcos θÞ; ∀k ≥ 0; ð40Þ

where ρ ¼ r sin θ and ζ ¼ r cos θ. This can be verified
explicitly using Eq. (18) and Legendre’s differential
equation.
Thus, the source integrals derived in the last section have

the correct Newtonian limit. In a future work, we will go
beyond the leading order. A first post-Newtonian approxi-
mation will enable us to compare the source integrals with
those used by the IAU; see [16–18].

B. A special case

The Einstein equations are nonlinear and, hence, we
could not expect a result like Eq. (39), which depends only
on the mass density. We rather find source integrals
containing terms that are not expressed explicitly by the
Ricci tensor or equivalently by the stress-energy tensor;
cf. the last two terms in Eq. (32). However, these terms
vanish in vacuum. They also vanish in geometries or matter
distributions, for which we can choose W ¼ ρ in the
interior of the matter as for dust, i.e., where ΔWð2Þ ¼ 0
is satisfied. In those cases, the density for the source
integrals simplifies to

μðrÞ ¼ −eUNðrÞ
− Rαβ

ξαξβ

ξγξγ
: ð41Þ

Inserting the Einstein equations, μðrÞ is expressed entirely
by the stress-energy tensor.

C. The connection to the Komar mass

In general, the first Weyl multipole moment Uð0Þ
coincides with the negative Geroch mass m0 and, hence,
must coincide with the well-known Komar mass.
Equations (18) imply Nð0Þ

þ ¼ 0 and Nð0Þ
− ¼ −2W. Thus,

the first multipole moment in Eq. (33) simplifies to
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m0 ¼
1

4π

X
i

Z
Vð3Þ
i

Rαβξ
αξβffiffiffiffiffiffiffiffiffiffiffiffi

−ξγξγ
p dVð3Þ

i þ 1

4π

X
i

Z
Sð3Þ
S;i

eUU;n̂dS
ð3Þ
S;i :

This is, of course, exactly Komar’s integral of the mass
in static spacetimes. The contributions of singularities can
also be cast in the standard form,

MSð3Þ
S;i

¼ 1

4π

Z
Sð3Þ
S;i

eUU;n̂dS
ð3Þ
S;i ¼

1

8π

Z
Sð3Þ
S;i

ϵαβγδξ
α;β: ð42Þ

D. Alternative derivation

Let us also mention an alternative derivation of the
source integrals using Green’s theorem. Suppose U is a
solution to the Laplace equation in Eð3Þ (cf. Fig. 1), then it is
given by virtue of Green’s theorem by

UðxÞ ¼ 1

4π

Z
Sð3Þ
0

�
UðyÞ ∂Gðx; yÞ∂ya −Gðx; yÞ ∂UðyÞ

∂ya
�
n̂adSð3Þ

0;y;

ð43Þ

where Gðx; yÞ denotes an arbitrary Green’s function, dSð3Þ
0;y

a surface element of the boundary Sð3Þ
0 , and x ∈ Eð3Þ. n̂a is

the unit normal to Sð3Þ
0 at y pointing into Eð3Þ.

Staring with Eq. (43), we arrive at Eq. (14) in three steps:
First, we restrict x to the symmetry axis and use the axial
symmetry to rewrite the right hand side of Eq. (43) as a line
integral. Second, the choice Gðx; yÞ ¼ − 1

4πjx−yj allows

integration by parts for the second term, which brings
the line integral in the form of Eq. (14). Last, a lengthy but
straightforward calculation shows that the functions in front
of theU and theU;n coincide with the N� and the approach
of Sec. III can be followed.
Thus, the multipole moments still contain crucial

information of Green’s theorem (43) with the difference
that the latter is not accessible for stationary, axially
symmetric, and isolated sources in general relativity. We
chose the approach using the linear system, since it is easily
generalizable also to that setting.

V. EXAMPLES

We will first verify the source integrals in their surface
integral form and in their volume integral form using the
axially symmetric Chazy-Curzon solution and the interior
Schwarzschild solution describing a spherically symmetric
star with homogeneous mass density. Afterwards, we apply
the source integrals to recover a well-known nonexistence
result for static, axially symmetric, and isolated dust
configurations.

A. The Chazy-Curzon solution

The Chazy-Curzon solution is given in the form (1), if
we choose

U ¼ C
r
; W ¼ ρ: ð44Þ

Here, we used polar coordinates as in Eq. (40). For an
interpretation of this solution and the constant C, see [55].
The solution is singular for ρ ¼ ζ ¼ 0 but otherwise it is
smooth. The Weyl moments are given by

Uð0Þ ¼ C; UðkÞ ¼ 0 ∀k ≥ 1: ð45Þ

Following Eq. (9), the Geroch moments read

m0 ¼ −C; m1 ¼ 0; m2 ¼
1

3
C2;…: ð46Þ

Thus, the Geroch quadrupole moment is not vanishing, and
the solution is not spherically symmetric.
To calculate the multipole moments using source inte-

grals, we choose as an integration surface a sphere SR of
radius r ¼ R > 0 centered around r ¼ 0, which contains
the sources and which is located in the vacuum region.
Hence, we can choose canonical Weyl coordinates, i.e.,

W ¼ ρ and Z ¼ ζ. Then the surface density ηðiÞa n̂a in
Eq. (22) can be written as

ηðiÞa n̂a ¼ 1

8π
e2U−kðNðiÞ

− U;r þ UNðiÞ
− − UNðiÞ

−;rÞ
����
r¼R

; ð47Þ

where we used Eqs. (16). Taking Eqs. (40) and (44) into
account, Weyl’s multipole moments are given by

UðkÞ ¼ kþ 1

2
CRk

Zπ

0

sin θPkðcos θÞdθ: ð48Þ

The orthogonality of the Legendre polynomials implies
Weyl’s multipole moments (45).

B. Spherically symmetric star

A spherically symmetric perfect fluid star of radius Rs
with a homogenous mass density is given in Schwarzschild
coordinates ðrs; θsÞ by
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ds2 ¼ −e2Udt2 þ 1

ΔðrsÞ2
dr2s þ r2sðdθ2s þ sin θ2sdφ2Þ;

eU ¼
(

3
2
ΔðRsÞ − 1

2
ð1 − 2Mr2s

R3
s
Þ12 for rs ≤ Rs;

ΔðrsÞ for r > Rs;

ΔðrsÞ ¼
�
1 −

2mðrsÞ
rs

�1
2

;

mðrsÞ ¼
�
M r3s

R3
s

for rs ≤ Rs;

M for rs > Rs;

pðrsÞ ¼
3M
4πR3

s

ΔðRsÞ − ΔðrsÞ
ΔðrsÞ − 3ΔðRsÞ

: ð49Þ

We choose a homogeneous mass density solely for brevity
and concreteness. The steps presented shortly can also
be carried out for more general Tolman-Oppenheimer-
Volkoff stars.
The canonical Weyl coordinates read in the vacuum

region

ρ ¼ rsΔðrsÞ sin θ; ζ ¼ ðrs −MÞ cos θ: ð50Þ

An expansion of U along the axis of symmetry in ζ−1

defines Weyl’s multipole moments. They also follow from
Geroch’s multipole moments using Eq. (9). The latter
vanish all except for the mass due to symmetry. Thus,
the Weyl multipole moments are

Uð0Þ ¼ −M; Uð1Þ ¼ 0; Uð2Þ ¼ −
1

3
M3;…: ð51Þ

In fact, all odd Weyl multipole moments vanish. Since
the even ones do not vanish, the Weyl multipole structure is
more difficult than in the case of Geroch’s multipole
moments. This contrasts the situation for the Chazy-
Curzon solution, and it relates to the fact that the canonical
Weyl coordinates are not very well adapted to spherical
symmetry.
For the evaluation of the source integrals using the

density μðrÞ of Eq. (32), W, some components of the Ricci
tensor, Z, and X have to be calculated. The former are

W ¼ ΔðrsÞrs sin θs;
Rtt ¼ −ΔðrsÞ2

m;rsrs

rs
; Rφφ ¼ 2m;rssin

2θs; ð52Þ

and the latter follow from the fact that X is defined as the
integrating factor of Zα, i.e.,

Zα ¼ eUX½ΔðrsÞ−1 cos θsdrs−ΔðrsÞðrs þ r2sU;rsÞ sin θsdθs�
¼ Z;rsdrþ Z;θsdθs: ð53Þ

This equation is easily solved yielding

Z ¼ XðrsÞeUΔðrsÞðrs þ r2sU;rsÞ cos θs;

XðrsÞ ¼ exp

�
16π

Z
Rs

rs

r2pðrÞ
r −mðrÞ þ 4πr3pðrÞ dr

�
; ð54Þ

where the integration constant was chosen such that
XðRsÞ ¼ 1 and ZðRsÞ ¼ ζ. In fact, the assumption
X ¼ XðrÞ allows one to determine the integrating factor
also for Tolman-Oppenheimer-Volkoff stars with inhomo-
geneous density.
Inserting Eqs. (49), (52), and (54) into Eq. (25) yields

the density for the source integrals Eq. (33). It can easily
be checked that this density is even (odd) in θs for even
(odd) r. Thus, all odd Weyl moments vanish. The density
for the mass monopole reads

μð0Þ ¼ −
3M
4πR3

s
ΔðrsÞ; ð55Þ

which gives after integration Uð0Þ ¼ −M. The density μð2Þ
is a rather lengthy expression, which, however, gives after a
numerical integration the expected result of Eq. (51) to
working precision.

C. An application of the source integrals to dust

Although the main goal of this paper is to present the
derivationanddefinitionof thesource integrals,wegiveashort
application here. We show that static, axially symmetric, and
isolated dust configurations do not exist in general relativity.
This is an old result8 but can easily be recovered using source
integrals. This demonstrates also how the quasilocal expres-
sions (36) can be employed in general.
The energy-momentum tensor for static and axially

symmetric dust configurations reads in Weyl coordinates

Tαβ ¼ μe2Uδtαδtβ: ð56Þ
The Bianchi identity implies U;α ¼ 0 in the interior of the
dust and, thus, at its surface. In fact, this yields together
with the quasilocal surface integrals for the Weyl moments
Eq. (22)

UðrÞ ¼ 0: ð57Þ
Hence, the dust distribution has no mass or any other
multipole moment, which implies flat space in the vacuum
region. This is clearly a contradiction to a dust source with
positive mass density. Note that the source integrals
enabled us here to determine the metric close to spatial
infinity from the metric and its derivatives at the boundary
of the matter region. That this can be achieved is astonish-
ing for a nonlinear theory and is the merit of the source
integrals.

8For more general nonexistence results for dust, see also
[56–59].

NORMAN GÜRLEBECK PHYSICAL REVIEW D 90, 024041 (2014)

024041-10



VI. CONCLUSIONS

We have derived in this article source integrals or
quasilocal expressions for Weyl’s multipole moments
and, thus, for Geroch’s multipole moments for axially
symmetric and static sources. These source integrals—
written as surface integrals or volume integrals—determine
for any spacetime region its contribution to the total
asymptotic multipole moments. A priori, one could not
expect to find any kind of source integrals at all, because of
the nonlinear nature of the Einstein equations. That this is,
nonetheless, possible in the here considered setting, is not
due to the staticity and axial symmetry and the peculiarly
simple form of the field equations. But rather a linear
system must be available offering a notion of integrability
of the Einstein equation. Thus, it appears feasible to find
source integrals for stationary and axially symmetric
isolated systems, which describe (electro)vacuum close
to spatial infinity. These generalizations will be investigated
in future work.
We want to study also how the source integrals are

connected to the already known source integrals for
isolated horizons [15] and to the multipole moments and

their source integrals recommended by the IAU (see
[16–18], or those discussed in [19]). In [15], it was shown
that a horizon is uniquely characterized by a certain set of
source multipole moments. However, these specific source
integrals do not reproduce the Geroch-Hansen multipole
moments in the case of a Kerr black hole. In our approach,
the agreement of the source integrals and the asymptoti-
cally defined Weyl or Geroch multipole moments is given
by construction. Therefore, these source integrals might
prove useful for identifying the contributions to the
multipole moments, which yield the discrepancies between
the isolated horizon multipole moments and those of
Geroch-Hansen.
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