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ABSTRACT: The method of analytical continuation in the coupling constant, which
allows us to determine the energy and width of a shape resonance, has been applied to
the study of the 2B2g shape resonance of ethylene. The procedure was done in two steps.
In the first step, we used commercially available quantum-chemistry programs to
calculate the electronic energy of a neutral molecule and of a negative ion. In both
calculations, the Hamiltonian was altered by the inclusion of an additional attractive
potential that helps to keep the negative ion bound. In the second step, the energy
difference between the neutral molecule and its negative ion was analytically continued
by the use of the statistical Pade ́ approximation.

■ INTRODUCTION

Ethylene, C2H4, belongs to a class of simple hydrocarbon
molecules that are present in the edge plasma of fusion reactors.
They result from erosion of the reactor walls due to plasma−
wall interactions.1 Collisional processes of electrons with these
hydrocarbon species may play a role determining the stability
and equilibrium conditions of the plasma bulk. Ethylene is also
present in planetary atmospheres.2 It has been identified as a
source of significant infrared absorption in the atmospheres of
Jupiter, Saturn, and Titan,3 while in the Earth’s atmosphere it
plays the role of a pollutant. It is produced by various sources
such as road traffic and biomass burning, and it has wide
applications in agriculture, where for example it serves as a
natural plant hormone used to force the ripening of fruits.4

As a result of the interest from these various fields, a
considerable amount of experimental and theoretical work has
been devoted to the study of low-energy collisions of electrons
with ethylene. A dominant feature appearing in the elastic and
vibrationally inelastic scattering at low energies is the 2B2g π*
shape resonance, which was first seen in transmission
experiments.5 It has been demonstrated experimentally that
this resonance drives vibrational excitation of several symmetric
modes at low energies6 with a hint of weak boomerang
structure centered around a collision energy of 1.8 eV. The
boomerang structure of the inelastic cross section was later
unambiguously confirmed in excitation of higher overtones of
the C−C symmetric stretch mode.7 Several measurements8,9

have shown that the resonance is strong and visible also in the
elastic channel. It is important to note that very recent
dissociative electron attachment (DEA) experiments10 did not
observe any anion fragments for collision energies under 6 eV.

The 2B2g π* resonance lies well below the DEA thresholds, and
thus, the resonance does not appear to play any role in the
DEA processes of ethylene.
The 2B2g resonance has also been the subject of several

theoretical studies. Donnelly11 attempted to stabilize the
resonance by application of a complex scaling method
combined with a second-order propagator. However, the
resulting resonance width appeared to be very unstable with
respect to the choice of Gaussian basis set. Another attempt
with a one-electron propagator method resulted in the correct
vertical energy, but the predicted width of the resonance was
too narrow.12 Schneider et al.13 employed complex Kohn
variational calculations and clearly showed that the 2B2g partial
cross section is dominated by a resonance at 1.84 eV with a
width of 0.46 eV. These results appear to be the first theoretical
calculations that agree quantitatively with the experimental
evidence described above. The complex Kohn scattering
calculations were later refined,14 and the full resonant curve
of the transient negative ion C2H4

− was obtained. The latter
authors used the Hartree−Fock approximation to describe the
target C2H4 state and only singly excited configurations of the
target were used after addition of the continuum electron. More
recently, the Schwinger multichannel method was applied to
compute the elastic cross section for ethylene.15 While the 2B2g
resonance is very clearly positioned in their cross sections at 2.0
eV, the authors did not mention the corresponding resonance
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width. The resonance position of 1.98 eV was also reported
very recently16 as a result of UK molecular R-matrix
calculations.
Therefore, one of goals of the present study was to

determine the resonance position and width as a function of
the C−C bond distance of ethylene by the use of a higher-order
correlation method than in previous scattering studies.13,14

Namely, we employed the coupled-cluster level of theory.
Moreover, the present calculations employed the analytical
continuation in the coupling constant (ACCC) method17,18

extended by the use of the statistical Pade ́ approximation.19
The ab initio data that form an input to the ACCC method are
vertical attachment energies. In order to stabilize the energy of
the resonant state, we used the method of Nestmann and
Peyerimhoff,20,21 in which the molecular Hamiltonian is altered
by the addition of a one-electron attractive force that binds the
resonance. In the present study, this attractive force was
represented by positive charges λ added to all of the nuclei. The
idea was to use standard quantum-chemistry codes designed to
calculate bound-state energies of the target molecule and its
anion with variable nuclear charges. The resulting curve of the
vertical attachment energy as a function of coupling constant λ
was then processed by the ACCC method described in the
following section. Since the necessary quantum-chemistry
computations involved only bound states of the neutral
molecule and its negative ion, we could apply the CCSD-T
level of theory. Although CCSD-T represents a gold standard
of quantum chemistry, its implementation in scattering theory
appears to be very diffucult. In the present study, we did not
attempt to solve this problem; we merely present a method that
is able to determine some of the scattering results (resonance
parameters) at the CCSD-T level of theory.

■ ANALYTICAL CONTINUATION IN THE COUPLING
CONSTANT

To calculate bound-state energies and their square-integrable
wave functions is now a routine task even for large polyatomic
molecules, and many commercial programs are available.
However, the calculation of resonance energies and their
widths is a serious problem. It is therefore natural to ask
whether one can obtain the resonance energy and perhaps even
its width from a knowledge of the bound-state energies alone.
This problem has been studied, and some approximate results
were obtained (see, e.g., ref 20). Here we describe one method
developed in the field of nuclear physics that in principle is able
to provide the resonance energy and also the resonance width
to a high degree of accuracy using only bound-state energies as
input, the so-called method of analytical continuation in the
coupling constant. The ACCC method works as follows.22 Let
us for simplicity assume that motion of the electron in the
vicinity of a molecule is determined by a Hamiltonian H that
generates a resonance at an energy E given by

= − ΓE E
i
2R (1)

where ER is the resonance energy and Γ is the resonance width.
Let us now add to the original potential H an attractive short-
range interaction U multiplied by a real positive parameter λ:

λ→ +H H U (2)

As λ increases, the new Hamiltonian H becomes more
attractive, and some resonance states are eventually trans-
formed into bound states. It has been shown22 that a naive

extrapolation of the energy in terms of λ, E ≈ E0 + E1λ + E2λ
2 +

..., as is sometimes used in quantum chemistry, is not sufficient
to get both the resonance energy and the resonance width and
that the extrapolations must be replaced by an analytical
continuation. In addition, the parameter used for the
continuation is not the parameter λ itself but a new variable y
= (λ − λ0)

1/2, which will be discussed below. The function to be
analytically continued is the momentum k(λ(y)), where k2/2 =
E. The ACCC method was introduced by Krasnopolsky and
Kukulin17,18 and is described in detail in a monograph.22 The
ACCC approach has found several applications, mainly in
nuclear physics (see, e.g., refs 23−27). Recently, Horaćěk et
al.19 and Papp et al.28 applied the ACCC method to real
molecular resonances, discussing the 2Πg state of the N2

−

resonance of molecular nitrogen and resonances of amino
acid molecules (alanine, glycine, and valine), proving that the
ACCC method can yield accurate resonance energies and
widths for nonmodel situations based on data obtained using
standard quantum-chemistry codes.
In this work, we carried out the analytic continuation by

using the so-called statistical Pade ́ approximation (Pade ́ III
approximation).22 This approach has several advantages: (1) it
allows us to use low-order Pade ́ approximations even if a large
number of points are available; (2) it allows us to take into
account the inaccuracy of the input data; (3) it can describe a
much broader range of functions, such as functions with poles
and cuts; (4) it carries out the analytical continuation
automatically; and so on. Since an absolute majority of
molecular resonances possess nonzero angular momentum l,
we will consider here the ACCC method for l ≠ 0. The
situation for l = 0 is more complicated and will not be discussed
here. As has already been shown (see, e.g., ref 22), at small
values of k the function k(λ) behaves as k(λ) ≈ a(λ − λ0)

1/2,
where λ0 denotes the point k(λ0) = 0. At smaller values of λ
(i.e., λ < λ0), k(λ) becomes complex, and the resonance energy
acquires its imaginary part.
The standard ACCC method is in fact a two-step method

requiring two fits. In the first step the bifurcation point λ0 is
determined, and then by the second fit the resonance energy
and width are computed. We observed that the final values of
the resonance parameters are very sensitive to the precise value
of the bifurcation point λ0. Even minor changes in the λ0 value
may lead to significant changes of the obtained resonance
parameters. There is, however, another much simpler
modification of the ACCC method that requires only one
function to be fitted. This approach is based on the analytical
continuation of the function λ(κ) [the inverse function to the
function κ(λ)], where k = iκ. For this reason, we will call this
modification the inverse ACCC (IACCC) method. Let us start
from the first fit of the ACCC method:

λ κ
κ
κ

≈
P

Q
( )

( )
( )

N

M (3)

Then the resonance parameters may be obtained by solving the
simple polynomial equation

=P k( ) 0.N (4)

The process of determining the bifurcation point λ0 is implicitly
involved in this procedure and need not be carried out
separately. In addition, this approach may in principle be able
to determine the positions of virtual states and of other
resonances because solving eq 4 provides us with N solutions.

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp503075a | J. Phys. Chem. A 2014, 118, 6536−65416537



The standard ACCC method allows for the determination of
only one resonance that is connected with the bound-state
region through the origin. At first sight this method looks
extremely simple, even trivial, but obtaining stable accurate
results in real applications is a rather complicated task.
Let us first of all mention the calculation of the Pade ́

approximation. In the present application, we used the so-called
statistical Pade ́ approximation (Pade ́ III approximation). The
type-III Pade ́ approximant of order [N, M] representing a set of
empirical values f i (i = 1, 2, ..., J) of a function f(x) measured at
points xi with statistical errors εi is defined as the rational
function PN(x)/QM(x), where

∑ ∑= = +
= =

P x px Q x q x( ) , ( ) 1N
i

N

i
i

M
k

M

k
k

0 1 (5)

are polynomials of degrees N and M, respectively (with M + N
< J − 1) that minimize the functional

∑χ
ε

= −
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

P x
Q x

f
1 ( )

( )i

J

i

N i

M i
i

2

1
2

2

(6)

Since in the present case no information on the errors is
available, we kept all of the weights constant (i.e., εi = 1.0). The
minimization of χ2 represents a nonlinear problem with a
complicated surface that may possess many local minima, some
of which may have very small values of χ2 but give very different
values of resonance energies and widths (for more details, see,
e.g., refs 29−33).
The second problem is the right choice of the parameters N

and M. If the values of N and M are too small, the
approximation cannot describe correctly all of the physics,
and the obtained values of the resonance energies and widths
may be very imprecise. As N and M are increased, however, a
serious difficulty arises, namely, the appearance of so-called
Froissard doublets.34 A Froissard doublet is a pair consisting of
a pole and a zero of the Pade ́ approximation between which the
distance is very small. In this case, the polynomials PN(x) and
QM(x) have almost identical roots. These doublets cluster
around a circle with the center at the origin. The appearance of
Froissard doublets is characteristic of the Pade ́ approximation
and seriously limits its application. If such a doublet appears
close to the true position of the resonance, the accurate
determination of the resonance energy and width is almost
impossible.
The third problem is the selection of the data to be used for

the continuation process. One would expect that the data at the
lowest energies, which are as close to the resonance as possible,
would be the best choice. This might be true in the case of very
accurate data. In reality, however, the accuracy of the calculated
bound-state energies is rather limited, and one could expect
that the relative accuracy decreases as the bound-state energy
approaches the threshold simply because no finite set of
compact functions (typically represented by Gaussian func-
tions) can accurately describe spatially very extended wave
functions.
Other open questions include how many points to use in the

calculation the Pade ́ approximation and the energy at which to
stop, but probably the most important question is how to
choose the perturbation potential U. For simplicity, in this
present application we used the potential U in the form of
Coulomb potential. This is not the best choice from the point
of accuracy, but it greatly simplifies the use of quantum-

chemistry codes. Moreover, to get stable and accurate results,
one must also consider the analytical structure of the function
to be represented by the Pade ́ approximation. As mentioned
above, at small values of k the function k(λ) behaves as k(λ) ≈
a(λ − λ0)

1/2, where λ0 denotes the point k(λ0) = 0. Hence, the
function λ(κ) must have its minimum at the origin

λ κ λ λ κ λ κ≈ + + +( ) ...0 2
2

3
3

(7)

In order to comply with the low-energy behavior of the
function λ(κ) in eq 7, in the present calculations we
represented it as

λ κ
λ λ κ λ κ

μ κ μ κ
κ
κ

≈
+ + +

+ + +
=

P
Q

( )
...

1 ...
( )
( )

N

M

0 2
2

3
3

2
2

3
3

(8)

In the case of very precise data for a d wave (as in the present
study of the 2B2g resonance), we could also omit the κ3 terms.
However, for real quantum-chemistry computations this does
not improve the accuracy and stability of the calculation
because the representation of λ(κ) in the form of the Pade ́
approximation (eq 8) is approximative anyway [e.g., it ignores
possible square-root-type singularities of λ(κ)]. The calculation
now proceeds as follows: for a given N and M and the minimal
and maximal energies Emin and Emax, the polynomials PN and
QM are obtained and their roots calculated. If the value of χ2 is
sufficiently small and the calculated resonance position is found
to be far enough from the roots of QM, the result is considered
to be acceptable. Then the calculation is repeated for other
parameters to obtain a range of resonance positions. For good
data the spread in the resonance parameters is on the order of
±20 meV on average.

■ QUANTUM-CHEMISTRY COMPUTATIONS
Ab initio calculations were done using the CCSD-T
method35,36 as implemented in the MOLPRO 10 package of
quantum-chemistry programs37 and Dunning’s augmented
correlation-consistent basis set of quadruple-ζ quality (aug-cc-
pVQZ).38 The equilibrium configuration given by the CCSD-T
method and the aug-cc-pVQZ basis set is defined by the
following parameters: the bond distances RC−C = 1.339 Å and
RH−C = 1.086 Å and the C−C−H angle of 121.2°.
The function λ(κ) in eqs 3 and 8 is determined from the

inverse function ΔE(λ) = κ2(λ)/2. The symbol ΔE(λ) stands
for the vertical electron affinity:

λ λ λΔ = − −E E E( ) ( ) ( )0
(9)

in which the energy E0(λ) represents the ground-state energy of
the ethylene molecule and the energy E−(λ) is the ground-state
energy of ethylene anion. Both energies were obtained under
the influence of an additional Coulomb field created by
additional charges λ positioned at all of the nuclear centers. The
parameter λ was varied from 0.001 to 0.1 au in steps of 0.001
au. Depending on RC−C, this required 40 to 90 points to
describe the ΔE(λ) curve. The internuclear distance RC−C was
also varied from 1.04 to 2.4 Å. Typical behavior of the vertical
electron affinity ΔE(λ) for three selected values of RC−C is
shown in Figure 1. It can be seen that the ethylene molecule
requires a weaker additional Coulomb field to stabilize and bind
the 2B2g shape resonance at larger RC−C. Furthermore, we
excluded data with binding energies under 1 eV in order to
avoid basis set effects in the long-range Coulomb field. A more
detailed discussion of this topic with a numerical analysis can be
found in ref 19.
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■ RESULTS AND DISCUSSION
The calculated resonance positions and widths for different
separations RC−C are summarized in Table 1. The remaining
geometric parameters (RH−C and the C−C−H angle) were kept
fixed at the equilibrium values listed in the previous section. For
each reported value, the number after the ± symbol indicates
the spread of the value obtained by modifying a set of

parameters used in the determination of the Pade ́ approx-
imation (eq 3). In particular, the following parameters were
varied: the polynomial orders N and M, the number of points
selected from the ΔE(λ) curves (displayed in Figure 1), and the
lowest and highest energies of the ΔE(λ) curve chosen for the
process of analytical continuation. These quantities serve as
estimations of the stability of the procedure of analytical
continuation with respect to the parameters that cannot be
determined beforehand and must be found during the data
analysis. We believe that these numbers represent the accuracy
of the described continuation process. However, these errors
represent only estimates of the stability of the analytical
continuation method. The errors arising from the quality of
CCSD-T theory, incompleteness of basis set, or systematic
errors are difficult to estimate and are not included.
The calculated energies and widths of the 2B2g shape

resonance are displayed in Figure 2. We compare our results

with three data points obtained previously by scattering
calculations employing the complex Kohn method.14 In the
latter work, the authors used the Hartree−Fock method to
describe the neutral target C2H4. In the description of the
resonant 2B2g state, the authors applied the so-called Relaxed-
SCF approximation, in which the target’s relaxation in the
presence of the scattered electron is formed by singly excited
determinants that belong to the same symmetry as the
reference Slater determinant describing the neutral target
molecule. Figure 2 demonstrates that this approximate
modeling of the target’s response to the presence of the
scattered electron in the 2B2g resonant state results in resonance
widths that are in a very good accord with the present results
based on coupled-cluster (CCSD-T) theory. The agreement is
less satisfactory in the case of the resonance energy. At the
equilibrium geometry RC−C = 1.339 Å, we again get excellent
agreement with the previous calculations: the present results
give ER = 1.856 eV, while the complex Kohn computations
yielded ER = 1.852 eV. However, for shorter RC−C we obtained
lower resonance energies, while for larger RC−C our values
surpass those of the previous calculations.
These differences are also visible in Figure 3, which displays

potential energy curves for the 1Ag ground state of the neutral
target molecule and the 2B2g negative ion resonance. It can be
clearly seen that the Hartree−Fock description of the neutral
target state leads to higher RC−C dissociation energy compared
with the present CCSD-T dissociation curve. The second

Figure 1. Vertical electron affinity ΔE(λ) as a function of the
parameter λ for three internuclear distances RC−C = 1.04 Å (red curve),
1.34 Å (black curve), and 2.0 Å (blue curve).

Table 1. Resonance Energies and Widths of the 2B2g State of
Ethylene Calculated at a Set of Internuclear Distances RC−C

a

RC−C (Å) energy (eV) width (eV)

1.04 2.307 ± 0.084 1.715 ± 0.154
1.08 2.375 ± 0.054 1.524 ± 0.131
1.12 2.385 ± 0.054 1.274 ± 0.120
1.16 2.329 ± 0.048 1.102 ± 0.125
1.20 2.264 ± 0.037 0.937 ± 0.103
1.24 2.176 ± 0.026 0.766 ± 0.066
1.28 2.055 ± 0.016 0.635 ± 0.053
1.32 1.918 ± 0.011 0.511 ± 0.034
1.34 1.856 ± 0.007 0.467 ± 0.021
1.36 1.788 ± 0.005 0.417 ± 0.016
1.40 1.649 ± 0.004 0.334 ± 0.009
1.44 1.508 ± 0.003 0.268 ± 0.008
1.48 1.365 ± 0.005 0.218 ± 0.014
1.52 1.240 ± 0.005 0.147 ± 0.018
1.56 1.109 ± 0.004 0.115 ± 0.016
1.60 0.984 ± 0.006 0.090 ± 0.014
1.64 0.859 ± 0.007 0.073 ± 0.011
1.70 0.694 ± 0.008 0.045 ± 0.010
1.76 0.522 ± 0.012 0.043 ± 0.005
1.80 0.439 ± 0.006 0.024 ± 0.005
1.84 0.350 ± 0.014 0.021 ± 0.005
1.88 0.258 ± 0.010 0.016 ± 0.002
1.92 0.192 ± 0.009 0.009 ± 0.001
1.96 0.124 ± 0.008 0.005 ± 0.001
2.00 0.084 ± 0.007 0.002 ± 0.001
2.04 0.012 ± 0.009 0.000 ± 0.001
2.20 −0.111 ± 0.004 0.000 ± 0.001
2.30 −0.145 ± 0.013 0.000 ± 0.001

aThe numbers following the ± symbols serve as estimations of the
accuracy of the respective values. For a more detailed explanation, see
the text.

Figure 2. Resonance position and width as functions of the bond
length RC−C. Circles denote the results of previous complex Kohn
scattering calculations.14
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visible difference between the two calculations is the crossing
point of the neutral and anionic curves. The crossing point
defines the value of RC−C beyond which the resonant state
becomes bound. The crossing point obtained in the present
work (RC−C = 2.04 Å) is further away from equilibrium
compared with that found in the complex Kohn calculations
(RC−C = 1.82 Å). A summary of all of the theoretical results for
the energy and width of the 2B2g resonance at the equilibrium
geometry is given in Table 2.

■ CONCLUSIONS
In summary, we would like to emphasize that in the present
study we combined two very different techniques that allowed
us to determine the 2B2g resonance energies and widths of
ethylene. The first technique was carried as a first step in which
we computed vertical affinities of ethylene submerged into an
attractive Coulomb field parametrized by variable additional
nuclear charges λ. This additional attractive interaction
stabilized the resonance state and made it bound. The
technique allowed us to employ a quantum -chemistry method
with an advanced correlation treatment, namely, CCSD-T, to
perform the bound-state calculations for the neutral molecule
and for the negative ion.

In the second step, we applied the method of analytical
continuation in the coupling constant, which enabled us to
determine not only the resonance energy (often seen in the
literature as the extrapolation λ → 0) but also the resonance
width. The computed resonance energy and width at the
equilibrium geometry agree very well with the results of
previous scattering calculations using the complex Kohn
method.14 Upon variation of RC−C, the agreement between
the resonance widths holds but resonance energy determined
by complex Kohn method follows a steeper descent compared
with the present results.
The computed potential energy surfaces for the neutral C2H4

molecule and the transient negative ion C2H4
− suggest that the

2B2g resonance does not play any role in the dissociative
electron attachment process. This suggestion is in accord with
the experimental evidence,10 in which the authors found no
negative ion signal at collision energies under 7−8 eV. On the
other hand, the shapes of the computed energy surfaces do
suggest the existence of the boomerang mechanism in the
process of vibrational excitation by electron impact. These
boomerang oscillations in vibrationally inelastic cross sections
were seen experimentally for excitation of the CH2 bending
mode (ν3)

6 and for excitation of the C−C symmetric stretch
mode (ν2).

7 The obtained data may serve as an input for the
construction of the boomerang model describing the vibrational
excitation of ethylene by impact of low-energy electrons.
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