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Resonant states in electron molecule collisions mediate a variety of energy transfer processes in the plasma

edge region, such as vibrational excitation, dissociative recombination, dissociative attachment, associative de-

tachment etc. Here we show that the resonance parameters, in general difficult to obtain, can be computed from

standard bound-state ab initio data by means of analytical continuation in the coupling constant. The procedure

uses artificial neural network and statistical Pade approximation to extrapolate from the bound-state region to that

of the resonant state by varying the strength of the attractive potential term added. We present benchmark data

for the ethylene molecule and demonstrate a resonable stability of the results over the quantum chemical basis

sets employed.
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Electron-molecule collisions belong among the im-

portant processes taking place in fusion edge plasma

through which the energy is distributed in the divertor re-

gion of fusion reactors. We are interested in the processes

of dissociative attachment (electron-impact induced disso-

ciation of a target molecule accompanied by electron at-

tachment) and the reverse process of associative detach-

ment (formation of a bond among a target colliding with an

anion accompanied by electron detachment into the con-

tinuum). These processes are mediated by a resonant state.

One approach to determination of the location and the life-

time of the resonance is an ab-initio calculation using an

author’s e-mail: lukas@icu.ac.jp

extra attractive potential, coupling term, which renders the

resonant state to the bound-state regime.

The strength of the extra attractive term, i.e. the cou-

pling constant λ, is the key parameter for the method of

analytical continuation that determines the resonance pa-

rameters. In practice, the coupling term is usually an extra

charge on a Coulomb center in the molecule. The resonant

state is extrapolated from the series of the bound-state val-

ues in the limit of λ = 0 [1]. Taking E = κ2, we obtain

a series of bound-state values from the ab initio calcula-

tion, results of which are sampling the function κ(λ) for

λ ∈ {λi}, i = 1 . . .N. This is an increasing function, and

thus its inverse, λ(κ) exists. Both functions, λ(κ) and κ(λ),
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will be utilized in the method of analytical continuation.

In order to explain the method of the analytical contin-

uation in the coupling constant λ, we now introduce the ba-

sic tools - statistical Pade approximation and the artificial

neural network (ANN). Pade approximation to a function

f (x) is a rational polynomial function,

f (x) '
Pn(x)
Qm(x)

, Pn(x) =

n∑
i=0

aixi, (1)

Qm(x) = 1 +

m∑
i=1

bixi.

In order to obtain the coefficients ai and bi of the polyno-

mials, one has to solve the nonlinear least square problem,

N∑
i=1

∣∣∣∣∣ fi − Pn(xi)
Qm(xi)

∣∣∣∣∣2 → min. (2)

In order to initialize the procedure of the iterative solution,

we can first minimize

N∑
i=1

| fiQm(xi) − Pn(xi)|2 ,

which in turn results in a linear system of equations for

x = {a0, a1, . . . an, b1, . . . , bm}. We denote the matrix of the

coefficients as M. This over-determined linear system,

s∑
j=1

mi, jx j = yi, i = 1 . . .N, N > s (3)

can be solved by the singular value decomposition (SVD)

of the coefficient matrix M,

M = UΣV∗, (4)

where U is an N × N unitary matrix, Σ an N × s diagonal

matrix of rectangular shape (with non-negative values on

the diagonal), V an s × s unitary matrix, s = n + m + 1,

and the asterisk denotes its conjugate transpose. By means

of the matrix pseudoinverse based on Eq. (4), the unique

solution of Eq. (3) is routinely obtained, subject to

N∑
i=1

 s∑
j=1

Mi jx j − yi

2

→ min, (5)

which is the linear least square form for the residues. For

the nonlinear solution, this initial guess is further iterated.

The solution is obtained from the weighted least square

problem, where the weights εi for each residue are given as

1/ε(t)
i = Q(t−1)

m (xi) (t denotes the index of iteration). To sta-

bilize the rate of convergence, we also modify the iteration

scheme by a standard relaxation technique.

In order to compute the complex value of κ(0), and

thus obtain the resonance parameters, there are two ap-

proaches possible. We first perform the direct statistical

Pade approximation for the function λ(κ),

λ(κ) '
Pn(κ)
Qm(κ)

, (6)

and solve for the roots of the polynomial in the numerator,

i.e.

Pn(κc) = 0. (7)

In this approach, there are n complex roots, and the stable

solution is selected by tracking the results for different or-

ders of Pade approximation. Since the numerical problem

of the multipoint, or statistical, Pade approximation is ill-

conditioned, some care must be taken in the selection of

points, suitable order of the Pade approximation, and over-

all numerical precision of the calculation. The complex

energy of the resonance is obtained as Ec = κ2
c .

Next, we proceed to the inderect approach, making

better use of the analytical structure of the problem. First,

we determine the value of λ0 ≡ λ(0) for κ = 0, i.e. the

threshold value for which a bound state still exists. It is

known that κ is analytical in terms of
√
λ − λ0. For the

purpose of analytical continuation, we can now adopt e.g.

Pade approximation anew as

κ
( √

λ − λ0

)
'

P′n(
√
λ − λ0)

Q′m(
√
λ − λ0)

(8)
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Fig. 1 Artificial neural network in the feed-forward configura-
tion with a single hidden layer and scalar output

(here P′ and Q′ denotes polynomials different from those

of the direct method). Alhough being sensitive to the preci-

sion level of λ0, this Pade approximation is otherwise quite

stable, and the resonance parameter κc is obtained directly

as a single value from the straightforward substitution,

κc =
P′n(
√
−λ0)

Q′m(
√
−λ0)

. (9)

In order to obtain λ0 we could have used the value of

a0 from the direct method. It is, however, preferrable to

extrapolate this value by an independent method. We opt

for the feed-forward artificial neural network with a single-

hidden layer to learn the function λ(κ) and to determine λ0.

A single hidden layer with a sufficient number of hidden

neurons suffices as a universal approximator of arbitrary

analytical function [2]. The output of the neural network

is known to represent the statistical mean value in regard

to the noise hidden in the data. Last but not least, neural

networks are known from practice to represent rather well

data not covered in the training samples, provided suffi-

cient care is taken to avoid data overfitting. The ANN ar-

chitecture adopted in this paper is schematically depicted

in Fig. 1. Correspondingly, the propagation of input data

through the neural network is described by the formula

ŷ(θ) = σ2

 nh∑
i=1

w2
i σ

1

 n∑
j=1

w1
i, jx j + b1

i

 + b2

 , (10)

where ŷ is the output value computed by the network, θ de-

notes collectively all the parameters, i.e. the biases of the

hidden neurons b1
i , i = 1 . . . nh, the bias of the output neu-

ron b2, weights among the input values x j, j = 1 . . . n and

the hidden neurons, w1
i, j, and the weights among the hid-

den and output neurons, w2
i . Notice that the number of the

input values for the network is n = 1. The activation func-

tions of the hidden neurons are nonlinear, σ1
i (z) = tanh(z),

whereas the output activation function is commonly an

identity, σ2(z) = z (cf. Fig. 1). It is convenient to denote

the aggregate input of the hidden neuron i as s1
i , and the

aggregate input of the output neuron as s2. We also absorb

the bias term by setting an extra input, x0 = 1, and interpret

the bias term as the weight coefficient (index zero) for this

constant input. Then we have for the output of the neurons

in the hidden layer,

hi = σ1

 n∑
j=0

w1
i, jx j

 , i = 1 . . . nh, (11)

and for the output of the neural network,

ŷ = σ2

 nh∑
i=0

w2
i hi

 . (12)

The set of parameters θ is determined from non-linear op-

timization of the objective function using the least square

method for

J(t) =
1
2

[
ŷ(t) − y(t)

d

]2
, (13)

where t is an index of the training instance {x(t), y(t)
d },and ŷ(t)

is the corresponding output of the neural network for the

input {x(t)}. We now summarize the backpropagation algo-

rithm that determines the weight update from the residual

error (Eq. (13) as described in [3]). Since the function

represented by the neural network is analytical, we obtain

by the chain rule for the derivatives the expression for the

gradient of the objective function with respect to the gen-
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eralized weights. First for the set of weights connecting to

the output layer,

∂J
∂w2

i

= −(yd − ŷ)σ′2(s2)hi ≡ −δ
2hi, (14)

then for the set of weights connecting to the hidden layer,

∂J
∂w1

i, j

= −δ2w2
i σ
′1(s1

i )x j. (15)

This can be finalized in the same form as above,

∂J
∂w1

i, j

= −δ1
i x j, δ1

i = σ′1(s1
i )δ2w2

i . (16)

The above equations, Eq. (14) and (16), provide the gra-

dient of all the weights in the neural network, the essential

component of the backpropagation algorithm. The gradi-

ent vector can then be used directly in the steepest descent

method or applied more efficiently using the conjugate gra-

dient method for the nonlinear optimization problem of

the ANN architecture parameters. We apply the sequential

learning method, in which for every training instance, the

input data propagate forward through the neural network,

the output value is computed, the difference between the

desired and obtained output determined, and the value of

this residue then propagates backward through the network

updating all of its parameters.

Having outlined the theoretical method, we now

benchmark the above algorithm computationally and

present the results for ethylene molecule. The stability

of the results is investigated with respect to the quantum-

chemical basis sets employed, namely the cc-pvDZ, cc-

pvTZ, cc-pvQZ, cc-pv5Z and cc-pv6Z. First, we show the

curve of E(λ) for the largest basis in Fig. 2.

The variance of input data with respect to the smaller

basis sets employed is shown in Fig. 3.

Table 1 shows the results for the direct method. The

resonance location varies less than the resonance width.

All data were obtained with the Pade(2,2) approximation.

Fig. 2 Electron affinity as a function of coupling constant λ for
the cc-pv6z basis

Table 2 shows the values of λ0 as extrapolated by the

artificial neural network, and the overal results for the en-

ergy and width of the resonance. With the exception of the

resonance width for the cc-pvQz basis, the results are in

good accord and demonstrate the good applicability of the

indirect method for ethylene molecule, and of the analyti-

cal continuation in the coupling constant in general.

Since the location of the resonance varies at the third

Fig. 3 Electron affinity relative to the cc-pv6z basis value as a
function of coupling constant λ
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Table 1 Resonance parameters for the direct method

Basis set Energy (eV) Width (eV)
cc-pvDz 1.957 0.365
cc-pvTz 1.881 0.371
cc-pvQz 1.864 0.410
cc-pv5z 1.844 0.435
cc-pv6z 1.820 0.436

Table 2 Resonance parameters for the indirect method

Basis set λ0 Energy (eV) Width (eV)
cc-pvDz 0.016133 1.9434 0.39875
cc-pvTz 0.015148 1.8795 0.36737
cc-pvQz 0.014911 1.8167 0.47298
cc-pv5z 0.014715 1.8703 0.38795
cc-pv6z 0.014677 1.8734 0.35461

significant digit, with the exception of the cc-pvDz basis,

and the resonance width variation does not exceed 10%,

with the exception of cc-pvQz basis, these results are con-

sidered quite satisfactory. All values in Table 2 have been

obtained with the Pade(2,2) approximation. In fact, for

the cc-pVDz basis, we can obtain a more consistent value

Eres = 1.8997 eV and Γ = 0.39113 eV within the Pade(4,4)

approximation. Similarly, for cc-pVQz, Γ = 0.39725 eV

within the order of Pade(3,4). These diffences may be at-

tributed in part to the noise in the data, and in part to the

existence of Froissart doublets, in which case the roots of

P′ and Q′ are located very close to each other, thus pre-

senting a sharp step between zero and a pole of the Pade

approximant [4]. We conclude here that the accuracy of the

result data within a fixed order of Pade approximation suf-

fices for their application in the nonlocal resonance model

of Horáček et al. [5]. The present work is not only of prac-

tical significance for the particular molecular system stud-

ied, but also generally relevant to the resonance parameter

determination in a variety of electron-molecule collision

processes, and thus believed to be of interest for the plasma

fusion community.
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