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a b s t r a c t

While collisions of electrons with hydrogen atoms pose a well studied and in some sense closed problem,
there is still no free computer code ready for ‘‘production use’’, that would enable applied researchers to
generate necessary data for arbitrary impact energies and scattering transitions directly if absent in on-
line scattering databases. This is the second article on the Hex program package, which describes a new
computer code that is, with a little setup, capable of solving the scattering equations for energies ranging
from a fraction of the ionization threshold to approximately 100 eV or more, depending on the available
computational resources. The program implements the exterior complex scaling method in the B-spline
basis.

Program summary

Program title: hex-ecs
Catalogue identifier: AETI_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AETI_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 44440
No. of bytes in distributed program, including test data, etc.: 322643
Distribution format: tar.gz
Programming language: C++11.
Computer: Any.
Operating system: Any system with a C++11 compiler (e.g. GCC 4.8.1; tested on OpenSUSE 13.1 and
Windows 8).
Has the code been vectorized or parallelized?: Parallelized by OpenMP and MPI.
RAM: Depending on input; 4.9 GiB for the test run.
Classification: 2.4.
External routines: GSL [1], HDF5 [2], UMFPACK [3], FFTW3 [4], optionally with OpenBLAS [5].
Nature of problem:
Solution of the two-particle Schrödinger equation in central field.
Solution method:
The two-electron states are expanded into angular momentum eigenstates, which gives rise to the
coupled bi-radial equations. The bi-radially dependent solution is then represented in a B-spline basis,
which transforms the set of equations into a largematrix equation in this basis. The boundary condition is
of Dirichlet type, thanks to the use of the exterior complex scalingmethod, which extends the coordinates
into the complex plane. The matrix equation is then solved by preconditioned conjugate gradients.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Running time:
Depending on input; 16 min for the test run on Intel i3 3.07 GHz processor (2 threads).
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1. Introduction

This paper presents to our knowledge the first release of a com-
puter code aimed at the solution of electron–hydrogen scattering
that is based on the exterior complex scaling method (see e.g. the
recent reviewby Bray et al. [1]). The code is a part of a larger project
calledHex consisting of several programs that implement different
methods based on quantum mechanics. The ultimate goal of the
project is to cover all physically relevant energies and processes
that occur during the electron–hydrogen scattering. The scope is
non-relativistic at the moment, but extension to relativistic effects
is expected to be done in the future. This program is aimed at low
and intermediate energies, from a fractions of electronvolt to sev-
eral times the ionization threshold. Other programs of the package
use different methods that are valid just for higher energies. Each
of these programs produces a unified output that is expected to be
merged into a single database and together with both an on-line
and off-line interface provided for further use by other researchers.
The database interface hex-db and the high-energy code hex-dwba
are described in the first paper of this series.

2. Theory

The theory closely follows the review article by Bartlett [2]. We
use atomic units throughout, that is h̄ = me = e = 4πϵ0 = 1 and
c = 1/α ∼ 137.

The Schrödinger equation

(E − Ĥfull)Ψ
S

= 0 (1)

for a state with a given spin S can be recast into a ‘‘scattering form’’
using the formulas Ψ S

= Ψ S
i + Ψ S

sc and (Ĥfull − Ĥint − E)Ψ S
i = 0,

so that

(E − Ĥfull)Ψ
S
sc = ĤintΨ

S
i , (2)

where the full hamiltonian Ĥfull is

Ĥfull = Ĥ1 + Ĥ2 + V12, Ĥj = −
∇

2
j

2
−

1
rj
,

V12 =
1

|r1 − r2|

(3)

and the interaction hamiltonian Ĥint contains potentials acting on
the projectile: the Coulomb force of the proton and of the other
electron. This is either

Ĥint = V12 −
1
r1

(4)

or the same expression with the indices interchanged, 1 ↔ 2, de-
pending on the identification of the electrons in the initial state
Ψ S
i (projectile/atomic electron). The separation of states with dif-

ferent spin is possible, thanks to the absence of spin-dependent
terms in the non-relativistic hamiltonian. See the previous pa-
per for a detailed discussion on the importance of relativistic cor-
rections. The only dependence on (total) spin is contained in the
anti/symmetrization of the initial state.

Eq. (2) is accompanied by the scattering boundary condition,
which has different forms for discrete and for continuum pro-
cesses. In the case of elastic scattering or excitation, the required
asymptotic behavior is

Ψ S
sc(r1, r2)

r1→∞

−→
r2/r1→0


j

fj(k̂j)
eikjr1

r1
Pj(r2), (5)

Ψ S
sc(r1, r2)

r2→∞

−→
r1/r2→0


j

fj(k̂j)
eikjr2

r2
Pj(r1). (6)

Here j denotes the scattering channels (different hydrogen excita-
tions), fj is the scattering amplitude of transition to the jth channel
from the initial state, kj is the outgoing electronmomentum and Pj
is the channel function (hydrogenic orbital). In the case of ioniza-
tion the asymptotic form of the scattering state can be expressed
using the Coulomb waves

φj = Γ (1 − iαj)e−
1
2παj1F1(iαj; 1; −i(kjrj + kj · rj)) (7)

as a product [3]

Ψ S
sc(r1, r2)

r1,r2→∞

−→
1

(2π)3
eik1·r1eik2·r2φ1φ2φ12. (8)

The important factors for the method of exterior complex scaling
used in this work are the complex exponentials. See [3] for more
details and definition of αj and the special functions contained in
the formula (7).

Next, the solution is expanded as

Ψ S
sc(r1, r2) =

1
r1r2


LMℓ1ℓ2

ψ LMS
ℓ1ℓ2

(r1, r2)YLM
ℓ1ℓ2

(r̂1, r̂2), (9)

where the bi-polar spherical functions YLM
ℓ1ℓ2

are defined as a com-
bination of the spherical functions Ym

l [4, Section 6.7] and Clebsch–
Gordan coefficients C LM

l1m1 l2m2
[5, Section 27.9],

YLM
ℓ1ℓ2

(r̂1, r̂2) =

ℓ1
m=−ℓ1

C LM
ℓ1mℓ2M−mY

m
ℓ1
(r̂1)YM−m

ℓ2
(r̂2), (10)

and are the eigenfunctions of the square of the total angular mo-
mentum L̂2, its third component L̂z and the squares of the angular
momenta of each electron L̂21, L̂

2
2. The spin is treated separately

from the angularmomentum L because no relevant coupling terms
exist in the non-relativistic hamiltonian given by (3). There will
be an independent solution (‘‘partial wave’’) for every allowed

http://www.hdfgroup.org/HDF5/
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combination of the conserved global quantum numbers L,M , S and
Π , whereΠ is the parity of the state. The two parities are also not
coupled by hamiltonian (3). Every such function solves the set of
bi-radial equations
E − Ĥ1 − Ĥ2


ψ LMSΠ
ℓ1ℓ2

−


ℓ′1ℓ

′
2


YLM
ℓ1ℓ2

 V12

YLM
ℓ′1ℓ

′
2


ψ LMSΠ
ℓ′1ℓ

′
2

= χ LMSΠ
ℓ1ℓ2

(11)

obtained from (2) by projecting on a coupled spherical function
YLM
ℓ1ℓ2

. The order of this set of equations is given by all the possi-
ble values of ℓ1 and ℓ2 satisfying

|ℓ1 − ℓ2| ≤ L ≤ ℓ1 + ℓ2, (12)

but in practice this set is truncated. The truncation is controlled
by an integer parameter nL introduced by Bartlett [2]; the set of
(ℓ1, ℓ2) pairs allowed by (12) is further restricted by the relation

L ≤ ℓ1 + ℓ2 ≤ L + nL. (13)

The convergence is achieved by raising the value of nL to include a
sufficient amount of angular momenta.

The matrix element of the two-electron potential can be
expressed in a multipole expansion
YLM
ℓ1ℓ2

 V12

YL′M ′

ℓ′1ℓ
′
2


= δLL′δMM ′ ⟨ℓ1ℓ2||V12||ℓ

′

1ℓ
′

2⟩L , (14)

where

⟨l1l2||V12||l3l4⟩L =


λ

f λl1 l2 l3 l4;L
rλ<
rλ+1
>

(15)

is the reduced matrix element of the inter-electron interaction
potential. The summation runs over all λ-s allowed by the explicit
form of f λ:

f λ
ℓ1ℓ2ℓ

′
1ℓ

′
2;L

= (−1)L+ℓ2+ℓ
′
2 [ℓ1ℓ2ℓ

′

1ℓ
′

2]


ℓ1 ℓ2 L
ℓ′

2 ℓ′

1 λ


×


ℓ1 λ ℓ′

1
0 0 0

 
ℓ2 λ ℓ′

2
0 0 0


, (16)

where [ℓ1ℓ2ℓ
′

1ℓ
′

2] ≡

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ′

1 + 1)(2ℓ′

2 + 1),
parentheses denote the Wigner 3j-symbol [6, Section 3.7] and the
braces the 6j-symbol [6, Section 6.1].

The right-hand side of Eq. (11) has the form

χ LMSΠ
ℓ1ℓ2

(r1, r2) =
2
ki


l


4π(2l + 1)C LM

limi l0i
l

×


χ
(1)L
ℓ1ℓ2 l

(r1, r2)+ (−1)L+S+ℓ1+ℓ2χ
(2)L
ℓ1ℓ2 l

(r1, r2)

, (17)

χ
(1)L
ℓ1ℓ2 l

(r1, r2) =


⟨l1l2||V12||lil⟩L −

1
r2
δ
li
l1
δll2


Pni li(r1)ĵl(kir2), (18)

χ
(2)L
ℓ1ℓ2 l

(r1, r2) =


⟨l1l2||V12||lli⟩L −

1
r2
δll1δ

li
l2


ĵl(kir1)Pni li(r2). (19)

In the above lines, the original incoming wave function

Ψi(r1, r2) =
4π

kir1r2
Pni li(r1)Y

mi
li
(r̂1)


l

il ĵl(kir2)Y 0
l (r̂2)Y

0
l (k̂i) (20)

has been anti/symmetrized (depending on the spin) to account for
the indistinguishability of the two electrons and thus for electron
exchange. Without loss of generality we also assume the projectile
to arrive along the z direction, so that its angular momentum pro-
jection to the z axis is zero. It also means that the projection of the
total angular momentum is exactly equal to the initial magnetic
quantum number of the atom, M = mi, both before and after the
Fig. 1. ECS coordinate transformation. The original real radial coordinate r
is transformed to a complex contour ρ(r). In the case of hex-ecs both radial
coordinates are complexified in this way.

Fig. 2. The function ψ000
00 (r1, r2) for the energies 0.6 Ry (left) and 4 Ry (right). The

fast exponential damping of the wave function beyond the R0 rotation radius can
be observed. In this case R0 is approximately in four fifths of the radial grid length.

collision. For this reason M is often omitted in the further expres-
sions.

In our approach the equations for the partial wave ψ LMSΠ
sc are

not explicitly accompanied by a boundary condition. Instead, the
difficulties ofmatching the asymptotic scatteringwave are avoided
by the method of exterior complex scaling [7] (referred to as ‘‘ECS’’
in the further text). The ECS is a complexification of the real radial
coordinates by a rotation of the coordinate in the complex plane.
Up to some distance R0 the coordinate is kept real, larger radii are
transformed by the mapping

r → ρ(r) =


r [r < R0]

R0 + (r − R0)eiθECS [r > R0].
(21)

This process is graphically represented in the well-known Fig. 1.
The reason for the complex rotation is that the sought solutions
should contain an outgoing wave factor e+ikr ; cf. Eqs. (5), (6) and
(8). For θECS > 0 the scattered wave will be exponentially damped
in the complex region of the coordinates. Thus, the requirement
(boundary condition) for the asymptotic scattering form can be
recast into a zero boundary condition at some far distance Rmax,
provided that Rmax is sufficiently distant to enable damping of
the expected solution to the numerical zero. The mathematical
problem then simplifies to solving a set of two-dimensional
differential equations with Dirichlet condition at origin and at the
outer boundary; cf. the Fig. 2.

Extraction of the scattering variables is being done using the
formula for the T -matrix

T S
=


Ψf

 Ĥint
Ψ S

sc


=


Lℓ

T LS
ℓ Y

mi−mf
ℓ . (22)

This expression is valid only for the real coordinates, i.e. in the
limit R0 → ∞. The interaction part of the hamiltonian has been
truncated at R0. If we further use the equation (Ĥfull−Ĥint−E)Ψ S

f =

0 for the asymptotic final state

Ψf (r1, r2) =
4π

kf r1r2
Pnf lf (r1)Y

mf
lf

× (r̂1)

lm

il ĵl(kf r2)Ym
l (r̂2)Y

m
l (k̂f ) (23)
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we arrive at

T LS
l =

1
√
2

4π
kf

i−lC Lmi
lf mf lmi−mf


Λ
(1)LmiS
l +Λ

(2)LmiS
l


, (24)

Λ
(1)LMS
l = lim

R0→∞

 R0

0
Pnf lf (r1)W


ψ LMS

lf l (r1, •), ĵl(kf •)

R0

dr1, (25)

Λ
(2)LMS
l = lim

R0→∞

 R0

0
ĵl(kf r2)W


ψ LMS

lf l (•, r2), Pnf lf (•)

R0

dr2 (26)

where W[a, b]x0 = a′(x0)b(x0) − a(x0)b′(x0) is the Wronskian of
the two functions, here with respect to the variable replaced by
a bullet symbol. The second contribution Λ(2)LMS

l is negligible be-
cause both the hydrogenic function Pnf lf and its derivative should
be almost zero at R0.

Hex-ecs does extract the ionization amplitude as well, using
the method of the Peterkop integral [8]. Whereas the integration
in (25) and (26) runs along one of the two far edges of the real
section of the bi-radial (r1, r2) plane, which is in accordance with
the assumption that only one of the electrons escapes to the
continuum, in the case of ionization the extractionhas to be done in
a more symmetrical way—along a quarter-circle contour far from
the origin in the coordinate plane. This is easy to express in the
hyperspherical coordinates

R =


r21 + r22 , α = arctan

r2
r1
. (27)

In the hyperspherical coordinates the extraction contour has the
form R = ρ = const, α ∈ ⟨0, π/2⟩. The expression valid for
asymptotic ρ → ∞ then reads

F S(k1, k2) =


ℓ1ℓ2LM

i−ℓ1−ℓ2ei(σ1+σ2)YLM
ℓ1ℓ2

(k̂1, k̂2)f LMS
ℓ1ℓ2

(k1, k2), (28)

where

f LMS
ℓ1ℓ2

(k1, k2)

=
2

√
π

ρ

k1k2

 π/2

0


φ1φ2

∂

∂ρ
ψ LMS
ℓ1ℓ2

− ψ LMS
ℓ1ℓ2

∂

∂ρ
φ1φ2


dα. (29)

The newly introduced symbols σj ≡ σℓj(kj) stand for the Coulomb
phase shifts and φj ≡ φℓj(kj, rj) for the Coulomb partial wave
functions, which are the terms of the partial wave expansion of the
Coulomb wave (7).

3. Numerical solution

Whereas the outgoing complex exponential is damped if suffi-
ciently far in the complex region, the incoming waves in the de-
composition of the initial wave function (20) diverge under the
transformation (21). This difficulty can be tracked up to the right
hand sides of (18) and (19). To avoid the divergence, the poten-
tials V1, V2 and V12 are usually set to zero just after R0. Because
a sharp termination of the potentials would result in reflections,
some smooth weight factor has to be employed. In hex-ecs it is
represented by the factor ξ(r) proportional to a hyperbolic tangent
that has the node shortly after R0. Then

V ′

i (ri) = ξ(ri)Vi(ri), V ′

12(r1, r2) = ξ(r>)V12(r1, r2). (30)

Eq. (11) is solved in the basis of B-splines, which are already
an established tool in the atomic physics [9]. The B-splines are
polynomial functions of a given order with a compact support and
they are illustrated in Fig. 3. The compactness brings sparsity into
the matrices created by projecting equations on this basis and,
moreover, the sparsity level can be adjusted by changing their
order. An overlap matrix of the basis will have 2n + 1 diagonals,
0 5 10 15 20

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.2

-0.1

-0.3

Fig. 3. B-spline set of order n = 6 and equidistant knots from 0 to 20, with
multiplicities shown above the plot. The set has been constructed on an ECS contour
rotated by θECS = π/5 with R0 = 10. Black curves are the real parts of the B-spline
and red curves the imaginary parts. Note the sharp features at R0 . Also note that
only such B-splines whose support includes R0 are complex; all other B-splines are
real. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

where n is the B-spline order. Combination of B-splines with the
ECS is easy due to the fact that the B-splines can be defined by the
order and a set of knots {ti}Ni=0 on the radial grid only, by the Cox–de
Boor recursion formula [10,11]

B(0)i (r) =


1 ti ≤ r ≤ ti+1
0 else, (31)

B(k)i (r) =
r − ti

ri+k − ti
B(k−1)
i (r)+

ti+k+1 − r
ti+k+1 − ti+1

B(k−1)
i+1 (r). (32)

When these knots are taken from the rotated ECS contour, the basis
will bewithoutmodification compatiblewith the new coordinates,
i.e. it will naturally contain the discontinuity at R0, so that no
special considerations are necessary there.Multiplicity of the knots
influences density of the B-splines. Maximal allowed multiplicity
is n + 1. If only n (or less) is used as the multiplicity at the origin
and the end, then none of the basis elements will be nonzero there,
which promptly enforces the zero Dirichlet boundary condition.
The B-splines are normalized,


i Bi(x) = 1, and a derivative of

a B-spline is again a combination of B-splines,

dB(k)i (r)
dr

=
k

ti+k − ti
B(k−1)
i (r)−

k
ti+k+1 − ti+k

B(k−1)
i+1 (r). (33)

Being polynomials, the B-splines can be effectively integrated
by the Gauss–Legendre quadrature. The N-point Gauss–Legendre
rule can integrate accurately polynomials up to the degree of 2N +

1. A product of two B-splines of order n has a degree of 2n, so the
n-point rule is sufficient. Integral moments

M(α)
ik = ⟨Bi| rα |Bk⟩ (34)

with a positive exponent raise this number only by α/2. This does
not hold for α < 0, which is an equally important ingredient for
the computation. It is assumed that the integrand in this case still
closely resembles a polynomial, even in the r → 0 limit (thanks
to the zero boundary condition), and that simple addition of more
integration points leads to a satisfactory result.

Beside the moment (34), which is necessary for the evaluation
of both the diagonal blocks of (11) and the right hand side, one also
needs the two-electron integrals

Rλijkl =

Bi(r1)Bj(r2)

 rλ<
rλ+1
>

Bk(r1)Bl(r2)

, (35)
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that serve for the evaluation of the matrix elements of V12 and
of the right-hand side of (11). This could be a bottleneck of the
computation, as there is N4 double integrations to do, where N is
the number of basis B-splines. Fortunately, the elements Rλijkl have
several symmetries,
(1) Rλijkl = Rλkjil,

(2) Rλijkl = Rλilkj,

(3) Rλijkl = Rλjilk
and their combinations (altogether six symmetries), which can
speed up the calculation. Only |i − k| ≤ n and |j − l| ≤ n give
nonzero integrals, thanks to the compactness. We end with circa
(2n+1)2N2/6 nonzero elements perλ. Most of themare also easily
computable: For i ≠ k and j ≠ l the double integral separates into
a product of integral momentsM(λ) and M(−λ−1).

The remaining B-spline matrix element is the kinetic energy
term. Due to the fact that all B-splines decrease to zero the
integration per parts transforms the second derivative into the
following integral with no boundary terms:

Dik = ⟨Bi(r)|


−
d2

dr2


|Bk(r)⟩ = +


dBi(r)
dr

dBk(r)
dr

dr. (36)

According to (33), the integrand in (36) is again a polynomial, now
of the degree 2(n − 1).

To express the right-hand side of (17) in the language of the B-
splines it is necessary to expand the initial atomic radial function
Pni li(r) and the initial projectile partial wave radial function ĵl(kir)
in the B-spline basis. This is done by the computation of overlaps

Ja =


Ba(r)ĵl(kir)dr, Πa =


Ba(r)Pni li(r)dr (37)

and by solving two sets of linear equations for the components
[ĵlki ]b and [Pni li ]b

Sab[ĵlki ]b = Ja, Sab[Pni li ]b = Πa (38)
where Sab = ⟨Ba|Bb⟩ is the overlap matrix of the basis.

The main computation part then for all requested initial states
constructs a right-hand side of (17) and executes preconditioned
conjugate gradients solver. The full matrix of the set of equations
is never explicitly constructed as it would be too huge and there
is actually no benefit of having it. Instead, the conjugate gradients
algorithm as described in [12] needs only matrix multiplication,
which is easy to compute per individual blocks. The blocks are
composed of sums and Kronecker products of basic matrices S,
M(α), D and Rλ presented earlier, which may be stored in the main
memory without considerable requirements on its size.

For larger grids (and resulting matrices) the iterative method
has to be aided by a preconditioner. Hex-ecs contains several
preconditioners, their list and short descriptions can be retrieved
by running
> hex-ecs -P

and one of the implemented preconditioners can then be selected
for computation by
> hex-ecs -p <preconditioner>

The default, fastest and most robust of them is the drop-tolerance
incomplete LU factorization of the diagonal blocks. These are the
sections of the matrix of the set of equations that conserve the
angular momentum of each electron (they do not couple differ-
ent angular momentum states). Preconditioning is done by ap-
plying (approximately) inverse diagonal blocks on the respective
segments of the iterated right-hand side. The sparse algebra com-
puter package SuiteSparse is used to compute the factorization,
particularly its library UMFPACK [13]. Together with another
free library OpenBLAS [14]implementing optimized dense linear
algebra kernels the factorizations can run in multiple threads with
a very good scaling.

For a quick checking of the results the program outputs cross
sections in a format suitable for direct plotting by Gnuplot. But
the main results are the T -matrices in the form of SQL statements,
that are used to update a scattering database. This database can
then be accessed using an accompanying interface code which is
intended as the back end for a web interface: the hex-db program.
It uses the well-spread SQL standard as provided by SQLite [15]
for the data storage, so that the contents of the database can be
efficiently managed by custom scripting whenever the provided
interface would lack desired features. For more info on hex-db see
the first article of the series.

4. Program input and output

The input data for the program hex-ecs have to be specified by
a text file, by default called hex.inp. If using a different name,
one has to tell the program the correct name using the --input
switch. The file is unstructured, i.e. the entries do not have a
specific position in the file, only a fixed order inwhich they appear.
Lines beginning with the symbol ‘‘#’’ are comments. The following
item list describes the entries. Every item is accompanied by a
reference to the input file from the test run in Appendix A (lines
14–39), with the explanation of the entries given there.

• Order of the B-splines (line 16: fourth order).
• ECS angle in radians (line 16: θECS = 0.63).
• Sequence of real knots as three sets of numbers: (a) starting

points of uniformly sampled intervals and ‘‘−1’’ denoting end
of the starting points sequence, (b) end points of the intervals,
(c) number of uniform samples including the starting and end
points. The last two sets are not terminated by ‘‘−1’’ as their
count is already known—to be equal to the length of the first
set. The first knot should be zero with multiplicity equal to the
order, the last knot should be equal to R0, which is the ECS
rotation point. This and all other coordinates are expected in
atomic units, i.e. Bohr radii a0 (lines 18–20: real knot sequence
0.0 (4×), 0.1, 0.2, . . . , 1.9, 2, 3, 4, . . . , 79, 80).

• Sequence of the complex-to-become knots. The first knot ought
tomatch the last real knot; the last knot should equal Rmax (lines
22–24: sequence 80, 81, . . . , 119, 120).

• Initial atomic principal quantum number (line 26: ni = 1).
• Initial atomic angular quantum numbers. The program can

handle several initial states at one run, but only with the same
energy. The angular numbers li andmi are then specified in the
same fashion as the knot sequences, i.e. (a) the li values followed
by ‘‘−1’’ and (b) the valuemi for every li. Optionally, if anymi is
set to the wildcard symbol ‘‘*’’, all values of mi allowed by the
corresponding li will be used (lines 27 and 28: just one state
with li = mi = 0).

• Final atomic states. Here only nf and lf are to be given, because
the computation of T -matrices for differentmf does not involve
further solving of the equations and is done automatically. So
nf and lf are given, again, in the same manner as the knot
sequences. The wildcard symbol ‘‘*’’ can be used now in place
of lf if all values of lf are to be computed for the corresponding
nf (lines 30 and 31: just one state with nf = 1, lf = 0).

• Total angular momentum L, total spin S and parityΠ (line 33: L
and S are being set by the script,Π is always zero, because only
Π = 0 contributes to elastic scattering H(1s)→H(1s)).

• Electron angular momentum limit nL, see the Eq. (13) (line 33:
nL = 4).

• Projectile energies Ei in Rydberg units in the format (a) starting
energies of uniformly sampled intervals, ‘‘−1’’, (b) last energy
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of the interval and (c) sample counts including the starting and
end points (lines 35–37: only one itemwith E = 4 Ry = 2 a.u.).

• Third component of a uniform (weak) magnetic field in atomic
units. This is included in the computation only as a first-order
perturbation effect: the change of the magnetic energy of the
atomic electron, ∆E = (mf − mi)Bz , is added to the energy of
the outgoing scattered electron (line 39: Bz = 0 a.u.).

The program hex-ecs outputs – apart from some progress
information – also several text files. One group is namedsigma-ni-
li-mi-nf -lf -mf -L-S .dat and contains integral cross section for this
particular LS partial wave. Its purpose is mostly for diagnosis and
convergence checking. The other is named ni-L.sql and contains
SQL statements to be imported into the hex-db database, typically
BEGIN TRANSACTION;
INSERT OR REPLACE INTO "tmat" VALUES (1,0,0, 1,0,0, 0,0, 4.0e+00, 0,

4.6,3.5, 0.0,0.0);
INSERT OR REPLACE INTO "tmat" VALUES (1,0,0, 1,0,0, 0,1, 4.0e+00, 0,

6.3,5.2, 0.0,0.0);
COMMIT;

The data inserted are: ni, li,mi, nf , lf ,mf , L, S, Ei, l, Re T
LmiS
l , Im T LmiS

l ,
Re T LmiS

l,Born and Im T LmiS
l,Born. The last two entries are the approximate

Born T-matrices which, if present, are used in the Born subtraction
procedure; see the first article of this series for details.

In the case of ionization, a simple T -matrix element is not
sufficient to hold all information. Instead, the whole function
f LMS
ℓ1ℓ2

(k1, k2) defined in (29) is needed. This function is one-
dimensional if we assume the energy conservation k21 + k22 =

2Ei − n−2
i , which is asymptotically valid in the infinite proton

mass approximation. The radial amplitude f LMS
ℓ1ℓ2

(k1, k2) is rather
oscillatory. In the Hex package it is stored as a Chebyshev
expansion [4]

f LMS
ℓ1ℓ2

(k1(x), k2(x)) =
c0
2

+

N
k=1

ckTk(x), (39)

k1(x) = kmaxx, k2(x) = kmax


1 − x2, kmax =


2Ei −

1
n2
i
,

that contains enough terms, ‘‘enough’’ meaning that the last of
the Chebyshev coefficients (cN ) contributes by a given fraction
(e.g. 10−10) to the sum of absolute values of the others. The array of
coefficients is then stored, byte after byte, in the raw hexadecimal
format as an SQL blob, like in the following listing:
BEGIN TRANSACTION;
INSERT OR REPLACE INTO "ionf" VALUES (1,0,0, 0,0, 4.000000e+00, 0,0,

x’a46a54ff64fa65...’);
INSERT OR REPLACE INTO "ionf" VALUES (1,0,0, 0,1, 4.000000e+00, 0,0,

x’10af32fa54faf6...’);
COMMIT;

The data inserted are: ni, li, mi, L, S, Ei, ℓ1, ℓ2 and {ck}Nk=0.

5. Results

The validity of the exterior complex scaling method has been
already convincingly demonstrated in several articles [2,16,7]. This
section contains results from several computations that verify the
presented computer code. Comparison is done with the data from
Aladdin database [17] and with the available experimental data.

The low-energy elastic scattering is themost easily computable
process; the ground state of hydrogen does not span a large space
in contrast to the excited states and a small spatial basis reaching
not much further than 100 atomic units is mostly sufficient. The
number of partial waves necessary to obtain a result converged to
within 1% is small, typically less than ten, except for high-partial-
wave resonances. An example of such computation is presented in
Fig. 4.

While increasing the impact energy, the partial wave count
rises, too, and the spatial basis needs refinement to allow descrip-
Fig. 4. The integral cross section for the excitation from the ground state H(1s)
to states H(2s) (top) and H(2p) (bottom), labeled ‘‘Hex’’. The experimental points
come from themeasurement ofWilliams [19] and the other data from the database
Aladdin (computation by Bray& Stelbovics [17] using converged close coupling) and
from the computation of Bartlett [2] using the propagating exterior complex scaling
(labeled PECS).

Fig. 5. Contribution of different partialwaves to the complete integral cross section
of the elastic scattering on H(1s) starting from L = 0 (bottom red) up to L = 9 (top
blue). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

tion of the rapidly oscillating wave functions. Fig. 5 demonstrates
the increase of influence of higher partial waves towards higher
energies. The evaluation of the differential cross section, ionization
cross section and electron–photon correlation coefficients requires
even more partial waves, as these quantities make use of the T -
matrix phase, besides its modulus. The composition of phases con-
verges much more slowly than the simple sum of absolute values
squared. This is illustrated in Figs. 6–8, respectively. Particularly in
the case of ionization the amplitudes may, for some combination
of electronmomenta, oscillate regardless of the extraction distance
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Fig. 6. The summed differential cross sections for transitions from the ground state to n = 1, 2, 3 and 4 levels at the impact energy E = 30 eV. The experimental data
are taken from [20] (n = 1), [21,22] (n = 2) and [23] (n = 3, 4). The convergence with respect to the partial wave count is shown using the gradation of saturation. The
converged results correspond to approximately 25 partial waves.
Fig. 7. The coplanar equal energy sharing triple differential cross section for the ionization of the ground state H(1s) at the impact energy E = 17.6 eV and for different
outgoing angles of the electrons. Red curves show the singlet contribution (S = 0), green curves the triplet (S = 1) and blue curves the sum. The convergence with respect to
the partial wave count is shown using the gradation of saturation. The converged results correspond to approximately 15 partial waves. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Source: The experimental data are taken from [24].
used, unless a more sophisticated form of extraction formula is
used. A recent article by Kadyrov et al. [18] presents such a for-
mula. For discrete transitions the Born T-matrices produced e.g. by
the intermediate-energy module hex-pwba2 (to be published as
the third article of this series) can be used to accelerate the conver-
gence of the partial wave series by the Born subtraction method.
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Fig. 8. The reduced Stokes parameter vector P and derived variables Pl , γ and P+ for the transition H(1s) to H(2p) at the impact energy E = 54.4 eV compared with the
experiments [25] (open red circles), [26] (black boxes) and [27] (green triangles). The convergence with respect to the partial wave count is shown using the gradation of
saturation. The result of summing 70 partial waves is outlined by a stronger black curve. Apparently, the computation would need more partial waves to fully converge.
Fig. 9. Equal energy sharing triple differential cross section 3-D plot for the
ionization of the ground state H(1s) at the impact energy E = 17.6 eV and for
the scattering angle ϑ1 = 45◦ of one of the electrons. The coordinate system is
aligned to the outgoing direction of that electron (green z axis) and the other axis
that lies in the scattering plane is the x axis. The black line is the impact direction
and hence lies in the xz plane as well. The large binary peak of the second electron
is oriented mostly in the opposite direction with respect to the first electron. The
small recoil peak is oriented approximately perpendicular to the direction of the
first electron. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9 shows a complete 3-D triple differential cross section
diagram. The script that has been used for its construction is shown
in Appendix B.

6. Conclusion

We have created a free implementation of the exterior complex
scaling method for the solution of the electron–hydrogen scatter-
ing (non-relativistic, at the moment). The presented program hex-
ecs is a part of the larger program package Hex that is intended to
enable computation of scattering cross sections and other quanti-
ties for various electron–hydrogen processes. The expected audi-
ence are the applied atomic physics fields, like the plasma physics
or the physics of the stellar atmospheres. With this in mind, a par-
ticular emphasis has been put to the simplicity of the interface to
allow a straightforward usage.

The computation module hex-ecs solves the two-electron
Schrödinger equation and produces intermediate computational
results (partial T -matrices) that are being aggregated in the
common storage, which is a SQLite database. Other modules have
been presented in the first article of this series and others are in
development. We also plan to include the relativistic effects in Hex
to account for the astrophysically interesting transitions in the fine
structure.

The user interface module hex-db accesses the intermediate
database and can be used to generate required scattering
quantities (various amplitudes, cross sections and other statistics)
from the basic data acquired by the computational modules.
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Appendix A. Test run

The test run computes the differential elastic cross section of
the electron incident on the hydrogen atom in the ground state, at
the impact energy Ei = 4 Ry = 54.4 eV. The radial grid extends
to Rmax = 120a0 with R0 = 80a0. Knots are spaced by 1a0 except
for a region near to the origin, where the spacing is ten times finer.
Angular momenta of the electrons are restricted to ℓ ≤ 4 and the
total angular momenta L range from 0 to 3.

A listing of the script that runs the sequence follows. For
every partial wave L a new configuration file is created and
the computations (hex-ecs) are sequentially launched. After the
computations are done, the SQL database is created using the
interface program hex-db and the differential cross sections are
extracted into the text files singlet.dcs and triplet.dcs in
the format ready for visualization in Gnuplot. It is assumed that
both hex-ecs and hex-db are in the executable path. The resulting
plot is shown in Fig. A.10.

#!/bin/bash

# limit CPU usage to 4 threads
export OMP_NUM_THREADS=4

# create new database
rm -f hex.db
hex-db --new

# compute the T-matrices using hex-ecs
for L in 0 1 2 3; do
for S in 0 1; do

cat > hex.inp <<-EOF
# B-spline parameters
# order theta

4 0.63
# real knot sequences

0 0.1 3 -1
0 2.0 80
4 20 78

# complex knot sequences
80 -1

120
41

# initial atomic state
1
0 -1
*

# final atomic states
1 -1
*

# angular momenta (L, S, Pi, limit)
$L $S 0 4

# initial energies in Rydbergs
4 -1
4
1

# magnetic field
0

EOF
hex-ecs | tee hex-L$L-S$S.log
hex-db --import 1-$L-$S-0.sql

done
done

hex-db --update

# extract differential cross sections using hex-db
seq 1 179 | hex-db --dcs \

--ni=1 --li=0 --mi=0 \
--nf=1 --lf=0 --mf=0 \
--Ei=4 --S=0 > singlet.dcs
Fig. A.10. The test run output. For the above settings, the differential cross section
is not yet converged—more partialwaveswould be needed to obtain a smooth curve
without oscillations.

seq 1 179 | hex-db --dcs \
--ni=1 --li=0 --mi=0 \
--nf=1 --lf=0 --mf=0 \
--Ei=4 --S=1 > triplet.dcs

# show graphics
gnuplot <<EOF
set title "Differential cross section"
set xlabel "scattering angle [degrees]"
set ylabel "dcs [a{0}^{2}]"
set logscale y
plot "singlet.dcs" with lines title "singlet", \

"triplet.dcs" with lines title "triplet", \
"< paste singlet.dcs triplet.dcs" \

using 1:(\$2+\$4) with lines title "sum"
pause mouse
EOF

Appendix B. Construction of the TDCS 3-D plot

The output of hex-db consists of plain column data. It is de-
signed for work with one-dimensional functions, like the depen-
dency of the scattering amplitude on angle, cross section on energy
etc. However, the column output is unsuitable for visualization
of the three-dimensional full triple differential cross section. The
transformation from a table of data produced by hex-db to an OBJ
model, that can be easily viewed e.g. in ParaView, can be accom-
plished by a simple shell script. In the following listing an example
of such script is presented. It has been used to create the Fig. 9.

#!/bin/bash

# create file containing evaluation directions
rm -f tdcs.out dirs.inp
for theta2 in $(seq 1 179); do
for phi2 in $(seq 0 359); do

echo "(45 0 1) ($theta2 $phi2 1)" >> dirs.inp
done
done

# launch two processes evaluating the TDCS
cat dirs.inp | hex-db --tdcs \

--Eunits=eV --ni=1 --li=0 --mi=0 \
--S=0 --Ei=17.6 > tdcs3D.singlet.out &

cat dirs.inp | hex-db --tdcs \
--Eunits=eV --ni=1 --li=0 --mi=0 \
--S=1 --Ei=17.6 > tdcs3D.triplet.out &

# wait for completition of the launched processes
for job in ‘jobs -p‘; do

echo $job
wait $job

done

# extract only interesting information from the output
grep -v "#" tdcs3D.singlet.out | \

cut -f3- | awk ’{ print $2, $3, $1; }’ \
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> tdcs3D.singlet.sph
grep -v "#" tdcs3D.singlet.out | \

cut -f3- | awk ’{ print $2, $3, $1; }’ \
> tdcs3D.triplet.sph

paste tdcs3D.singlet.sph tdcs3D.triplet.sph | \
awk ’{ print $1, $2, $3 + $6; }’ > tdcs3D.sph

# convert into Cartesian format and write to OBJ file
awk ’{ print "v", $3*sin($1/57.29578)*cos($2/57.29578),

$3*sin($1/57.29578)*sin($2/57.29578),
$3*cos($1/57.29578); }’ tdcs3D.sph \
> tdcs3D.obj

# append quadrangle information to the OBJ file
for theta2 in $(seq 0 178); do
for phi2 in $(seq 0 359); do

a=$(echo "$theta2*360+$phi2" | bc)
b=$(echo "(($theta2+1)%179)*360+$phi2" | bc)

c=$(echo "(($theta2+1)%179)*360+($phi2+1)%360" | bc)
d=$(echo "$theta2*360+($phi2+1)%360" | bc)
echo "f $a $b $c $d" >> tdcs3D.obj

done
done
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