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Abstract In this paper we calculate the Bondi mass of asymptotically flat spacetimes
with interacting electromagnetic and scalar fields. The system of coupled Einstein–
Maxwell–Klein–Gordon equations is investigated and corresponding field equations
are written in the spinor form and in the Newman–Penrose formalism. Asymptotically
flat solution of the resulting system is found near null infinity. Finally we use the
asymptotic twistor equation to find the Bondi mass of the spacetime and derive the
Bondi mass-loss formula. We compare the results with our previous work (Bičák et al.
in Class Quantum Gravity 27(17):175011, 2010) and show that, unlike the conformal
scalar field, the (Maxwell–)Klein–Gordon field has negatively semi-definite mass-loss
formula.

Keywords Asymptotic flatness · Einstein–Maxwell–Klein–Gordon equations ·
Bondi mass

1 Introduction

It is a well known fact that the energy-momentum of gravitational field cannot be
introduced at the local level which is, after all, the consequence of the equivalence
principle. Since it is highly desirable to have a meaningful notion of the energy and
the momentum, many suggestions have been made in order to define the quasi-local
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energy-momentum which is associated with, e.g., a compact spacelike hypersurface
Σ with boundary S, rather than with a spacetime point. The quasi-local quantities are
usually expressed as the surface integrals over the 2-surface S. The most influential
suggestions are, for example, those of Penrose [2], Hawking [3], Dougan and Mason
[4] and Brown and York [5]. For extensive reviews on the subject, see [6,7].

On the other hand, in the case of asymptotically flat spacetimes there is a well-
defined notion of global energy-momentum associated with the entire spacetime
(ADM mass [8] defined at spatial infinity) or energy-momentum associated with an
isolated gravitating source (Bondi mass [9] defined at null infinity). Hence, one of
the natural criteria of the plausibility of particular quasi-local energy-momentum is
whether it coincides with the ADM mass or the Bondi mass in the limit of the large
spheres near spatial or null infinity [6].

Standard expression for the Bondi energy-momentum of electro-vacuum space-
times in the Newman–Penrose formalism has the form

PAA′ = −
∮

S

(
Ψ

(0)
2 + σ (0) σ̇ (0)

)
ωA

0 ωA′
0 dS,

where Ψ
(0)
2 is the leading O

(
r−3

)
term in the asymptotic expansion of the Ψ2-

component of the Weyl spinor, σ (0) is the asymptotic shear of Newman and Penrose,
ω0

A and ω1
A are asymptotic spinors [6] and ωA

0 = ωA
AoA, where oA is the element of

GHP spinor dyad [10]. The dot means the derivative with respect to (retarded) time
u. In [1] we have shown that this result remains true for the spacetimes with con-
formally invariant scalar field sources. In the presence of the massless Klein–Gordon
scalar field, however, the scalar field contributes to the Bondi energy and the correct
expression for the Bondi mass (energy) is (in the conventions used in this paper)

MB = − 1

2
√

π

∮

S

(
Ψ

(0)
2 + σ (0) σ̇ (0) + 1

6
∂u(φ(0) φ(0))

)
dS, (1)

where φ(0) is now the leading O
(
r−1

)
term in the asymptotic expansion of the scalar

field.
A crucial property of the Bondi energy is that it should decrease whenever the

system emits gravitational (or another) radiation. As we have shown in [1], in the case
of massless Klein–Gordon field the mass-loss formula acquires the form

ṀB = − 1

2
√

π

∮ (
σ̇ (0) σ̇ (0) + φ̇(0) φ̇(0)

)
dS, (2)

so that the Bondi mass is a non-increasing function of time u. For the conformally
invariant scalar field, resulting “mass-loss” formula is indefinite and reads

ṀB = − 1

2
√

π

∮

S

(
σ̇ (0) σ̇ (0) + 2(φ̇(0))2 − φ(0) φ̈(0)

)
dS. (3)
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Hence, in this case the Bondi mass is not a monotonic function of time, which can be
traced back to the fact that the energy-momentum tensor for the conformally invariant
scalar field does not obey the energy condition Tablanb ≥ 0 for any future null vectors
la and na .

In this paper we investigate the natural generalization of these calculations and
we calculate the Bondi mass of the spacetimes with interacting electromagnetic and
scalar fields. The purpose is twofold. It seems that the analysis of the Bondi mass
of Maxwell–Klein–Gordon spacetimes in the Newman–Penrose formalism is miss-
ing (see, however, [11,12] for some results on the scalar field in the Hamiltonian
formalism). Hence, our first goal is to fill this gap.

The Penrose mass has been calculated for a wide class of spacetimes in [13–15], but
the spacetimes with scalar field sources are not included. In fact, only a very few exact
solutions of coupled Einstein–Maxwell–Klein–Gordon equations are known, e.g. [16].
On the other hand, there is a chance that at least some properties of the Penrose mass
can be understood without having an exact solution. The idea is to apply standard
3+1 decomposition of the spacetime with electromagnetic and scalar field sources and
analyse the constraints which must be satisfied on the initial Cauchy hypersurface.
The 2-surface S can be chosen to lie in this initial hypersurface and one can hope that
the constraints will be easier to solve than the full set of equations. In this context,
the present paper is a preliminary work: the Penrose mass calculated by the analysis
sketched in this paragraph can be examined to have the correct large sphere limit.

The paper is organized as follows. In the Sect. 2 we introduce standard equations
governing the system of coupled gravitational, electromagnetic and scalar fields and
translate them into the spinor formalism. In the Appendix 7 we present the Newman–
Penrose projections of these equations. Next we consider an asymptotically flat space-
time with the electromagnetic and scalar field sources which is analytic at the future null
infinity I +. The asymptotic behaviour of the Newman–Penrose quantities describing
the gravitational, scalar and electromagnetic fields is investigated in the Sect. 3. In the
next Sect. 4 we present the asymptotic solution of Einstein–Maxwell–Klein–Gordon
equations and finally in the Sect. 5 we calculate the Bondi mass of the spacetime
and find corresponding mass-loss formula which is presented both in terms of the
four-potential and in the gauge invariant form.

2 Field equations

In this section we introduce field equations of interacting electromagnetic, scalar and
gravitational fields in the spinor form. Resulting system of equations will be referred
to as the Einstein–Maxwell–Klein–Gordon equations and corresponding spacetime
will be called electro-scalar spacetime for the sake of brevity.

The gauge invariant Lagrangian of the coupled scalar and electromagnetic fields
can be written in the form [17]

L = (Daφ)(Daφ) − m2 φ φ − 1

4
Fab Fab, (4)
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where φ is a scalar field with charge e, φ its complex conjugate with charge −e, m is
the mass of the scalar field and Fab is standard Faraday 2-form. When acting on the
uncharged fields, the gauge covariant derivative Da coincides with the usual covariant
derivative ∇a , otherwise its action on an arbitrary tensor field T a..b

c..d with the charge e
is defined by [18]

D f T a..b
c..d = ∇ f T a..b

c..d + i e A f T a..b
c..d , (5)

with Aa being the four-potential. The Lagrangian (4) yields, through the standard
Euler–Lagrange equations, familiar field equations

(
DaDa +m2

)
φ=0,

(
DaDa + m2

)
φ = 0, ∇a Fab = i e

(
φDbφ − φDbφ

)
.

(6)

Next we wish to rewrite these equations as a system of first-order spinorial equa-
tions. Electromagnetic spinor φAB is related to the potential Aa by

φAB = ∇X ′(A AX ′
B). (7)

We reduce the gauge freedom imposing standard Lorenz condition ∇a Aa = 0, so that
the Eq. (7) simplifies to

∇ A′
A AB A′ = −φAB . (8)

Because we prefer our equations to be of the first order, we retain both φAB and AAA′ in
future formulae and Eq. (8) will be regarded as a dynamical equation for the potential
Aa . Spinor form of (6) then implies the equation for φAB :

∇ A
B′φAB = ie

2

(
φDbφ − φDbφ

) = ie

2

(
φ ϕb − φ ϕb

) − e2 φ φ Ab. (9)

In order to derive first-order equations for the scalar field, we introduce notation
(cf. [1])

ϕa = ∇aφ and ϕAA′ = ∇AA′φ (10)

which eliminates formally the second derivatives of the scalar field φ that are present
in the Eq. (6). These equations are equivalent to the wave equation

�φ = −2 i e Aa ϕa +
(

e2 Aa Aa − m2
)

φ (11)

and its complex conjugate. At this point we could employ the Newman–Penrose for-
malism and express �φ with the help of only the first derivatives of ϕa and the spin
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coefficients. However, it is more convenient to decompose spinor ∇ A
A′ϕAB′ into its

symmetric and antisymmetric parts,

∇ A
A′ϕAB′ = ∇ A

(A′ϕB′)A + 1

2
εA′ B′ ∇ A

X ′ϕX ′
A = −�A′ B′φ − 1

2
εA′ B′ �φ,

and use �A′ B′φ = 0. (Commutator �AB = ∇X ′(A∇X ′
B) annihilates scalar quantities.)

Now the scalar Eq. (11) is equivalent to the spinor equation

∇ A
A′ϕAB′ = i e Acϕc εA′ B′ + 1

2

(
m2 − e2 Ac Ac

)
φ εA′ B′ . (12)

If, on the other hand, we apply the procedure of spinor decomposition to covariant
derivatives Da = DAA′ in the Klein–Gordon Eq. (6), we arrive at somewhat more
elegant formula

D X ′
A DB X ′φ = 1

2
m2 φ εAB − i e φ φAB . (13)

Here, the Lorenz condition has not been imposed and Eq. (13) is manifestly gauge-
invariant.

Now we turn our attention to equations of gravitational field which is described
by the Newman–Penrose spin coefficients, the Weyl spinor ΨABC D , the Ricci spinor
ΦAB A′ B′ and the scalar curvature Λ = R/24. Equations for the spin coefficients follow
from the spinorial form of the Ricci identities [19]

�C DξA = ΨABC D ξ B − 2ΛεA(C ξD), �C ′ D′ξA = ΦABC ′ D′ ξ B, (14)

where ξA is chosen to be one of the basis spinors oA and ιA. The Weyl spinor and the
Ricci spinor satisfy the Bianchi identities

∇D
A′ΨABC D = ∇B′

(AΦBC)A′ B′ , ∇B B′
ΦAB A′ B′ = −3 ∇AA′Λ. (15)

Moreover, the Ricci spinor and the scalar curvature are related to the energy-
momentum tensor by the Einstein equations [20]

ΦAB A′ B′ = 4π T(AB)(A′ B′), 3Λ = π TXY ′ XY ′
. (16)

In order to obtain the energy-momentum tensor Tab we vary the action of the electro-
scalar field with the Lagrangian (4) with respect to the metric gab. This yields (cf.
[17])

Tab = 1

4π

[(
D(aφ

) (
Db)φ

) − 1

2
Fac F c

b − 1

2
gab L

]

= 1

4π

[(
D(aφ

) (
Db)φ

) + φAB φA′ B′ − 1

2
gab (Dcφ)

(
Dcφ

) + 1

2
m2 gab φφ

]
.

(17)
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where the factor (4π)−1 has been included for convenience. Using the Einstein equa-
tions (16) we find that the Ricci spinor and the scalar curvature are given by relations

ΦAB A′ B′ = (
D(A(A′φ

) (
DB′)B)φ

) + φAB φA′ B′ ,

Λ = 1

12

[
− (Daφ)

(
Daφ

) + 2 m2 φ φ
]
. (18)

To summarize, the unknown variables representing the matter fields are the potential
Aa governed by Eq. (8), the electromagnetic spinor φAB governed by (9) and the scalar
field satisfying (13). Corresponding Newman–Penrose projections are summarized in
the Appendix 7, Eqs. (73), (76) and (78). The components of the Ricci spinor and
the scalar curvature are given by (18) and their are listed explicitly in the Newman–
Penrose form in the Appendix 7, Eqs. (79) and (80). The Weyl spinor and the Ricci
spinor satisfy the Bianchi identities (15). Corresponding Newman–Penrose equations
[18,19] are listed in the appendix for the reference purposes.

3 Asymptotic behaviour of the fields

We are interested in a weakly asymptotically simple solution of the Einstein–Maxwell–
Klein–Gordon equations which is analytic1 in the neighbourhood of the future null
infinity I +. We employ the notation (M̂, ĝab) for the unphysical spacetime and
(M, gab) for the physical one, where, by assumption of weak asymptotic simplicity,
the two metrics are related by conformal rescaling

ĝab = Ω2gab. (19)

To proceed further we need to establish a coordinate system and the Newman–
Penrose null tetrad in a neighbourhood of I +. In accordance with [19] we introduce
coordinates xμ = (u, r, x2, x3), where x I , I = 2, 3, are arbitrary coordinates on
the 2-sphere, u is an affine parameter along null generators of I + and r is an affine
parameter along null hypersurfaces intersecting I + in cuts u = constant. Vector la is
chosen to be tangent to these null hypersurfaces and orthogonal to the cuts of constant
(both) u and r . Null vectors ma and ma are chosen so as to span the tangent space of
these cuts. Resulting null tetrad has the following properties.

– la and na are real and null vectors normalized by lana = 1. Vector ma and its com-
plex conjugate ma are null and complex, satisfying the condition mama = −1.
Remaining scalar products between these four vectors are all zero. Their compo-
nents with respect to the basis induced by the coordinates (u, r, x2, x3) read

lμ = (0, 1, 0, 0), nμ = (1, H, C2, C3),

mμ = (0, 0, P2, P3), mμ = (0, 0, P
2
, P

3
).

(20)

1 In order to calculate the Bondi mass, the analyticity is not necessary and weaker assumptions on the
differentiability of the solution could be imposed. In what follows we use the analyticity to argue that the
mass of the Klein–Gordon field must be zero.
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– There exists a spin basis (oA, ιA) such that

la = oAoA′
, na = ιAιA′

, ma = oAιA′
, ma = ιAoA′

. (21)

– Functions H, C I and P I are subject to the frame equations:

DH = − γ − γ , (22a)

DC I = 2π P I + 2π P
I
, (22b)

D P I = ρ P I + σ P
I
, (22c)

ΔP I − δC I = (γ − γ − μ)P I − λP
I
, (22d)

δH = −ν, (22e)

δP I − δP
I = (α − β)P I + (β − α)P

I
, (22f)

where we have used the standard Newman–Penrose notation

la∇a = D, na∇a = Δ, ma∇a = δ, ma∇a = δ. (23)

– Some of the spin coefficients get simplified:

ε = 0, κ = 0, μ = μ, ρ = ρ, π = τ = α + β. (24)

– In accordance with (19) we choose a spin basis in the unphysical spacetime

ôA = Ω−1 oA, ι̂A = ιA, ôA = oA, ι̂A = Ω ιA. (25)

Associated unphysical null tetrad then reads

l̂a = Ω−2 la, n̂a = na, m̂a = Ω−1 ma . (26)

We assume that unphysical spinors ôA and ι̂A are regular on I + which implies
that physical spinor oA = Ω ôA vanishes on I + while the spinor ιA remains
non-vanishing there.

– In the neighbourhood of I + we can use the conformal factor Ω as a coordinate
instead of r by setting dΩ/dr = −Ω2. The Newman–Penrose operators (acting
on scalars) then read

D = −Ω2∂Ω, Δ = ∂u − Ω2 H ∂Ω + C I ∂I , δ = P I ∂I . (27)

In particular, we have

DΩ = −Ω2, ΔΩ = −Ω2 H, δΩ = δΩ = 0. (28)
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In addition, by (25) we have

C I = O (Ω) , P I = O (Ω) . (29)

Next we establish the asymptotic behaviour of the spin coefficients under the
assumption that unphysical spin coefficients are regular on I +, i.e. they are of order
O (1). Under the conformal rescaling, the spin coefficients transform as

κ =Ω3 κ̂, τ =Ω τ̂ +δ̂Ω, σ =Ω2 σ̂ , ρ =Ω2 ρ̂+Ω D̂Ω,

ε = Ω2 ε̂, γ = γ̂ + Ω−1Δ̂Ω, β = Ω β̂, α = Ω α̂ + δ̂Ω,

π = Ω π̂ − δ̂Ω, ν = Ω−1 ν̂, μ = μ̂ − Ω−1 Δ̂Ω, λ = λ̂. (30)

These relations have been derived using the definitions of spin coefficients, the rule
for the transformation of the covariant derivative [19,21] and the behaviour of the spin
basis (25). Derivatives with the hats are operators associated with the unphysical spin
basis ôA and ι̂A. We assume the order O (1) for all unphysical quantities.

In the tetrad introduced above, coefficients ε and κ vanish and thus, by (30), their
unphysical counterparts ε̂ and κ̂ vanish as well. Moreover, by (28) we have

τ = Ωτ̂ = O (Ω), π = Ωπ̂ =O (Ω), α=Ωα̂ = O (Ω), β =Ωβ̂ =O (Ω) .

For the coefficients γ, μ and λ we find

γ = γ̂ − Ω H = O (1) , μ = μ̂ + Ω H = O (1) , λ = λ̂ = O (1) . (31)

The coefficient ν is apparently divergent on I −,

ν = Ω−1 ν̂ = O
(
Ω−1

)
, (32)

because of (25), but we will show that in fact ν = O
(
Ω2

)
. The coefficient σ is of the

order

σ = Ω2 σ̂ = O
(
Ω2

)
. (33)

Finally, for the coefficient ρ we have (see [19])

ρ = Ω2 ρ̂ − Ω = −Ω + O
(
Ω3

)
.

Let us now turn to the asymptotic behaviour of the matter fields. Appropriate con-
formal transformation of the four-potential Aa is Âa = Aa , so that the unphysical
electromagnetic spinor φ̂AB is

φ̂AB = ∇̂X ′(A ÂX ′
B) = Ω φAB .
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Assuming that the unphysical quantities are of the order O (1) near I +, for the
Newman–Penrose components of the potential we obtain

A0 = Aala = O
(
Ω2

)
, A1 = Aama =O (Ω) , A1 = Aama = O (Ω) ,

A2 = Aana = O (1) .
(34)

Similarly, for the electromagnetic spinor we find standard asymptotic behaviour in the
form

φ0 =φABoAoB =O
(
Ω3

)
, φ1 =φABoAιB =O

(
Ω2

)
, φ2 =φAB ιAιB = O (Ω) .

(35)

The spinor form of the Klein–Gordon Eq. (12) is genuinely not conformally-
invariant and so we have to prescribe the conformal behaviour of the scalar field on
the physical grounds. Natural requirement [1] is that the physical scalar field vanishes
at infinity, so we postulate

φ = Ω φ̂ = O (Ω) , (36)

assuming that φ̂ is regular on I +. Components of the gradient ϕa = ∇aφ then behave
according to the formulae [recall (27) and (29)]

ϕ0 = O
(
Ω2

)
, ϕ1 = O

(
Ω2

)
, ϕ1 = O

(
Ω2

)
, ϕ2 = O (Ω) , (37)

where the Newman–Penrose components of the field ϕa are defined by (75).
The Weyl spinor is conformally invariant with zero weight2:

ΨABC D = Ψ̂ABC D .

Under certain weak assumptions it is possible to show [19] that Ψ̂ABC D vanishes on
I + so that smoothness shows it is of order O (Ω). Hence, for the Weyl tensor we
obtain usual asymptotic behaviour

Ψ0 =O
(
Ω5

)
, Ψ1 = O

(
Ω4

)
, Ψ2 =O

(
Ω3

)
, Ψ3 =O

(
Ω2

)
, Ψ4 = O (Ω) .

(38)

2 This depends on the conventions used. What is convention-independent is the behaviour of the Weyl tensor
Cabcd = ΨABC DεA′ B′εC ′ D′ . In the non-abstract index formalism, components of tensors are related to

components of spinors via van der Waerden symbols σ AA′
a which can have a conformal weight and thus

they affect the conformal weight of ΨABC D , as in, e.g. [22].
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Asymptotic behaviour of the components of the Ricci spinor can be found from Ein-
stein’s equations (79):

Φ00 = O
(
Ω4

)
, Φ01 = O

(
Ω4

)
, Φ11 = O

(
Ω2

)
,

Φ02 = O
(
Ω4

)
, Φ12 = O

(
Ω3

)
, Φ22 = O

(
Ω2

)
.

Behaviour of the scalar curvature Λ is found from (18) to be

Λ = O
(
Ω2

)
. (39)

This completes the discussion of the conformal behaviour of physical and geometrical
quantities used in the calculation.

4 Asymptotic solution

In this section we present the asymptotic solution of Einstein–Maxwell–Klein–Gordon
equations introduced in the Sect. 2. Let X be any Newman–Penrose scalar quantity
which is of the order O (Ωn). Then, assuming analyticity of the solution, we expand
this quantity into the series in coordinate Ω in the neighbourhood of I :

X =
∞∑

k=0

X (k) Ωn+k . (40)

Expanding all Newman–Penrose quantities3 in this way and using the field equations
we find the coefficients X (0), X (1), . . . in the leading terms of expansions (40).

At the first stage we employ the Ricci identities (81a), (81b), (81c), (81d) and (81r)
and the frame Eq. (22f) which yield the following expansions of the spin coefficients
ρ, σ, α and β:

ρ =−Ω−
(
σ (0)σ (0)+φ(0)φ(0)

)
Ω3 −

(
φ(0) φ(1) + φ(1) φ(0)

)
Ω4 + O

(
Ω5

)
,

(41a)

σ = σ (0) Ω2 +
(

σ (0)2 σ (0) − 1

2
Ψ

(0)
0 + σ (0) φ(0) φ(0)

)
Ω4 + O

(
Ω5

)
, (41b)

α = a Ω +
(
ðσ (0) + aσ (0)

)
Ω2 + O

(
Ω3

)
, (41c)

β = − a Ω − a σ (0) Ω2 + O
(
Ω3

)
, (41d)

3 By the Newman–Penrose quantities we mean five components Ψm , m = 0, . . . 4, six independent com-
ponents Φmn , m, n = 0, 1, 2, twelve spin coefficients, three electromagnetic components φm , m = 0, 1, 2,
four components of the potential Am , m = 0, 1, 1, 2, and the scalar field φ.
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π = τ = (ðσ (0))Ω2 + O
(
Ω3

)
, (41e)

where σ (0) is the asymptotic shear of Newman and Penrose [23,24] and

a = −cot θ

2
√

2
.

Operators ð and ð are defined by relations [19]

ðη = δ̂η + 2 w a η, ðη = δ̂η − 2 w a η, (42)

when acting on the scalar η of the spin weight w.
Now, the O

(
Ω2

)
terms in the Ricci identity (81g) give

m2 φ(0) φ(0) = 0,

where m is the mass of the scalar field. The coefficient φ(0) is the leading term in the
asymptotic expansion of the scalar field and in fact represents the radiative component
of the field. If we do not want to exclude the presence of the scalar radiation which is
expected to contribute to the Bondi mass-loss formula, we are forced to set m = 0. This
is in agreement with the fact that massive fields do not extend to I +, see [1,25,26].
Hence, in what follows we will consider only the massless scalar field.

Assuming now m = 0 and φ(0) �= 0 and using all Ricci identities (81a)–(81r) and
the frame equations (22a)–(22f) we find the asymptotic expansion of remaining spin
coefficients:

λ = σ̇ (0) Ω +
(

1

2
σ (0) − ððσ (0)

)
Ω2 + O

(
Ω3

)
, (43a)

μ = −1

2
Ω −

(
ð

2σ (0) + σ (0)σ̇ (0) + Ψ
(0)
2 + 1

6
∂u(φ(0)φ(0))

)
Ω2 + O

(
Ω3

)
,

(43b)

γ =
(

aðσ (0) − aðσ (0) − 1

2
Ψ

(0)
2 + 1

6
∂u(φ(0)φ0)

)
Ω2 + O

(
Ω3

)
, (43c)

ν = O
(
Ω2

)
. (43d)

Components of the metric tensor with respect to the coordinates (u, r, θ, φ) are
given in terms of the metric functions H, C I and P I satisfying the frame Eq. (22).
Their asymptotic expansions read

H = −1

2
+

(
1

3
∂u(φ(0)φ(0)) − 1

2
Ψ

(0)
2 − 1

2
Ψ

(0)

2

)
Ω + O

(
Ω2

)
, (44a)

C2 = − 1√
2

(
ðσ (0) + ðσ (0)

)
Ω2 + O

(
Ω3

)
, (44b)
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C3 = i√
2 sin θ

(
ðσ (0) − ðσ (0)

)
Ω2 + O

(
Ω3

)
. (44c)

Similar expansions can be obtained for the components of the Ricci tensor and the
Ricci scalar,

Φ00 = φ(0) φ(0) Ω4 + 2
(
φ(1) φ(0) + φ(0) φ

(1)
)

Ω5 + O
(
Ω6

)
, (45a)

Φ01 = −1

2
ð(φ(0) φ(0))Ω4 + O

(
Ω5

)
, (45b)

Φ02 =
(
−φ

(0)
0 Ȧ(0)

1 + (ðφ(0) + ieA(0)
1 φ(0))(ðφ(0) − ieA(0)

1 φ(0))
)

Ω4 + O
(
Ω5

)
,

(45c)

Φ11 = − 1

4
∂u

(
φ0φ0

)
Ω3 + O

(
Ω4

)
, (45d)

Φ12 =
(

−φ
(0)
1 Ȧ(0)

1 + 1

2
φ̇(0)(ðφ(0) + ieA(0)

1 φ(0)) + 1

2
φ̇(0)(ðφ(0) − ieA(0)

1 φ(0))

)

Ω3 + O
(
Ω4

)
, (45e)

Φ22 =
(

Ȧ(0)
1 Ȧ(0)

1
+ φ̇(0) φ̇(0)

)
Ω2 + O

(
Ω3

)
, (45f)

Λ = 1

12
∂u

(
φ0φ0

)
Ω3 + O

(
Ω4

)
, (45g)

and for the components of the Weyl spinor,

Ψ0 = Ψ
(0)
0 Ω5 + Ψ

(1)
0 Ω6 + O

(
Ω7

)
, (46a)

Ψ1 = Ψ
(0)
1 Ω4 + Ψ

(1)
1 Ω5 + O

(
Ω6

)
, (46b)

Ψ2 = Ψ
(0)
2 Ω3 + O

(
Ω4

)
, (46c)

Ψ3 = Ψ
(0)
3 Ω2 + O

(
Ω3

)
, (46d)

Ψ4 = Ψ
(0)
4 Ω + Ψ

(1)
4 Ω2 + O

(
Ω3

)
, (46e)

where

Ψ
(0)
3 = −ðσ̇ (0), Ψ

(0)
4 = −σ̈ 0, Ψ

(1)
4 = ððσ̇ 0 (47a)

Ψ
(0)
1 = − 2 σ (0)

ðσ (0) + 2 a σ (0) σ (0) + (ð + a)(φ(0) φ(0)), (47b)

Ψ
(1)
1 = 3 φ

(0)
0 φ

(0)

1 − ðΨ
(0)
0 − σ (0)

ð(φ(0) φ(0)) + 1

2

(
φ(0)

ðφ(1) + φ(0)
ðφ(1)

)

+ 1

2
σ (0)

ð(φ(0) φ(0)) −
(
φ(1)

ðφ(0) + φ(1)
ðφ(0)

)

+ φ(0) φ(0)
(

3 e2 A(0)
0 A(0)

1 − ðσ (0)
)
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+ 3

2
i e

[
A(0)

0 φ(0)
(
ðφ(0) − φ(1)

)
− A(0)

1 φ(0)
(
ðφ(0) − φ(1)

)]
, (47c)

Ψ̇
(0)
2 = 2

3
φ̇(0) φ̇(0) + φ

(0)
2 φ

(0)
2 + ðΨ

(0)
3 − 1

6

(
φ̈(0) φ(0) + φ̈(0) φ(0)

)
+ σ (0) Ψ

(0)
4

+ e2 (A(0)
2 )2 φ(0) φ(0) + i e A2

(0)
(
φ(0) φ̇(0) − φ̇(0) φ(0)

)
. (47d)

For the components of electromagnetic spinor we find the following expansions:

φ0 = φ
(0)
0 Ω3 + φ

(1)
1 Ω4 + O

(
Ω5

)
, (48a)

φ1 = φ
(0)
1 Ω2 + φ

(1)
1 Ω3 + O

(
Ω4

)
, (48b)

φ2 = φ
(0)
2 Ω + φ

(1)
2 Ω2 + O

(
Ω3

)
, (48c)

where

φ
(0)
0 = −σ (0) A(0)

1
− ðA(0)

0 , (49a)

φ
(0)
1 = −ðA(0)

1
, (49b)

φ
(0)
2 = ðA(0)

2 − Ȧ(0)

1
. (49c)

5 Bondi mass

In this section we finally construct the expression for the Bondi mass. We adopt the
approach based on the asymptotic twistor equation as described in [19,27]. The twistor
equation reads

∇A′ (AωB) = 0. (50)

Spinor ωA can be written as a linear combination of the basis spinors,

ωA = ω0 oA + ω1 ιA.

In the following we assume that the components

ω0 = −ιA ωA and ω1 = oA ωA

are regular on I +. Null vector ma has the spin weight 1 which, assuming εAB has
the spin weight zero, implies that the spin weights of oA and ιA are 1/2 and −1/2,
respectively. Consequently, the components ω0 and ω1 have spin weights −1/2 and
1/2.

Twistor equation is conformally invariant if the spinor ωA has conformal weight
zero, i.e.

ωA = ω̂A.
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In order to obtain explicit form of the twistor Eq. (50), we project it onto the spin basis
and arrive at

Dω1 = κ ω0 + ε ω1, Δω0 = −γ ω0 − ν ω1, (51a)

δω0 = −α ω0 − λ ω1, δω1 = σ ω0 + β ω1, (51b)

Dω0−δω1 =−(ε+ρ)ω0−(α + π)ω1, Δω1−δω0 = (β+τ)ω0+(γ + μ)ω1.

(51c)

In general spacetimes, these equations do not possess a non-trivial solution. Thus,
since we are interested in the Bondi mass which is defined at null infinity, we restrict
the twistor equation to I in what follows.

Quantities ω0 and ω1 are regular by assumption and hence can be expanded in the
neighbourhood of I into the series of the form

ω0 = ω0
0 + ω0

1 Ω + O
(
Ω2

)
, ω1 = ω1

0 + ω1
1 Ω + O

(
Ω2

)
. (52)

Using expansions of the spin coefficients and the Newman–Penrose operators, we find
that leading terms ω0

0 and ω1
0 satisfy relations

ðω1
0 = 0, ðω1

0 = −ω0
0, ω̇1

0 = 0, ω1
1 = 0, (53)

where the dot denotes differentiation with respect to the variable u.
Next we define the symmetric spinor [28,29]

u AB = 1

2

(
ω(A∇C ′

B)ωC ′ − ωC ′∇C ′
(AωB)

)
, (54)

and the associated two form

Fab = u AB εA′ B′ + u A′ B′ εAB . (55)

Now, following [19], we choose a null hypersurface Σ which extends to I + and
define S(Ω) to be the two surface Ω = constant in Σ . Hence, the hypersurface Σ

intersects I + at the two sphere S(0). In addition, we define

I (Ω) =
∮

S(Ω)

Fab lanb dS

and

I0 = lim
Ω→0

I (Ω) (56)

if the limit exists. The Bondi four-momentum Pa is then defined by the equation

I0 = Paka,

where ka = ωAωA′
.
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The induced volume form on the two surface S(Ω) is

(2)εcd = nalbεabcd = i (εC ′ D′oC ιD − εC DoC ′ ιD′) = O
(
Ω−2

)
.

Thus, in order to show that the limit I0 exists we have to show that the integrand
behaves as

Fablanb = O
(
Ω2

)
.

Direct calculation shows

Fablanb = ρ ω0 ω0 + μω1 ω1 + 	
(
π ω1 ω0 + ω1 δω0 − ω0δω1

)
.

Using expansions (41) and (52) we find

Fablanb = Ω 	
[
−ω0

0 ω0
0 − 1

2
ω1

0 ω1
0 + ω1

0ðω0
0 − ω0

0ðω1
0

]
+ O

(
Ω2

)
. (57)

By (53) we have

−ω0
0 ðω1

0 = ω0
0 ω0

0

and so

Fablanb = Ω 	
[
−1

2
ω1

0 ω1
0 + ω1

0ðω0
0

]
+ O

(
Ω2

)
. (58)

Using the commutator

[ð, ð]ω1
0 = −1

2
ω1

0

and asymptotic twistor equation (53) we find

ðω0
0 = −ððω1

0 = −ððω1
0 + 1

2
ω1

0

which implies

Fablanb = O
(
Ω2

)

and hence the limit I0 in (56) exists.
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Expanding the quantity Fablanb further we arrive at

Fablanb = Ω2 	
[
−2 ω0

0 ω0
1 − ω1

0 ω1
1 + μ1 ω1

0 ω1
0 + (ðσ (0)) ω1

0 ω0
0 + σ (0) ω0

0 ðω1
0

−σ (0) ω1
0 ðω0

0 + ω1
1 ðω0

0 + ω1
0 ðω0

1 − ω0
1 ðω1

0 − ω0
0 ðω1

1

]
+ O

(
Ω3

)
.

(59)

Imposing (53) this simplifies to

Fablanb = Ω2 	
[
−ω0

0 ω0
1 + μ1 ω1

0 ω1
0 + (ðσ (0)) ω1

0 ω0
0 − σ (0) ω1

0 ðω0
0 + ω1

0 ðω0
1

]

+O
(
Ω3

)
. (60)

Next we have

	
[
−ω0

0 ω0
1 + ω1

0ðω0
1

]
= 	

[
(ðω1

0)ω
0
1 + ω1

0ðω0
1

]

= 	
[
ω1

0ðω1
0 + ω1

0ðω0
1

]
= 	

[
ð(ω0

1ω
1
0)

]

which vanishes on integration,

∮
ð(ω0

1ω
1
0) dŜ = 0,

because quantity ω0
1ω

1
0 has the spin weight −1. Thus,

I0 =
∮

	
[
μ1ω1

0ω
1
0 − σ (0) ω1

0ðω0
0 + ω1

0ω
0
0ðσ (0)

]
dŜ. (61)

Let us use Eq. (53) again to rearrange the third term of the integrand (61),

∮
ω1 ω0

0 ðσ (0) dŜ = −
∮

ð

(
ω1

0 σ (0)
ðω1

0

)
dŜ +

∮
σ (0) ω1

0 ð

(
ðω1

0

)
dŜ,

where the first integral on the right hand side vanishes because of the spin weight of
the argument of the ð operator. Next we expand quantity ω1

0 of the spin weight 1/2
into the series in spin-weighted spherical harmonics,

ω1
0 =

∞∑
l=0

l∑
m=−l−1

alm 1
2
Yl+ 1

2 , m+ 1
2
,

where the coefficients almare time-independent by (53). Since the operator ð (ð) acts
as the spin raising (lowering) operator, we can write

ðsYlm = cslm s+1Ylm, ðsYlm = dslm s−1Ylm,
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where particular form of coefficients cslm and dslm is not important. Applying ð on
ω1

0 and imposing (53) yields

ðω1
0 =

∞∑
l=0

l∑
m=−l−1

alm c 1
2 lm 3

2
Yl+ 1

2 , m+ 1
2

= 0.

Functions 3
2
Y 1

2 m vanish by definition while the orthogonality of spin-weighted spher-
ical harmonics implies

alm = 0 for l > 0.

The quantity ω1
0 then acquires the form

ω1
0 = a 1

2
Y 1

2 , − 1
2

+ b 1
2
Y 1

2 , 1
2
. (62)

Application of ð2 to this expansion immediately yields

ð
2
ω1

0 = ã − 3
2
Y 1

2 , − 1
2

+ b̃ − 3
2
Y 1

2 , 1
2

= 0. (63)

Hence,

∮
ω1

0 ω0
0 ðs dŜ = 0.

Finally, the last vanishing term in (61) is

∮
σ (0) ω1

0 ðω0
0dŜ = −

∮
σ (0) ω1

0 ð
2
ω1

0dŜ = 0

by (53) and (63).
Thus, we have found that the integral I0 exists and reduces to

I0 = 	
∮

μ1 ω1
0 ω1

0dŜ, (64)

where μ1 is O
(
Ω2

)
term in (43b) so that the integral reads

I0 =
∮ (

Ψ 0
2 + σ (0) σ̇ (0) + 1

6

∂

∂u
(φ0 φ0)

)
ω1

0 ω1
0 dŜ, (65)

where we have used

∮
ð

2s dŜ = 0.
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Now, (62) implies that the spin weight zero quantity ω1
0ω

1
0 can be expanded as

ω1
0 ω1

0 = α Y00 +
1∑

m=1

βm Y1m (66)

for some coefficients α and βm . Since the Bondi mass is a zeroth component of the four-
momentum, we set βm = 0 and α = 1 which corresponds to the timelike direction.
With this choice, we arrive at the expression for the Bondi mass of electro-scalar
spacetimes in the form

MB = 1

2
√

π

∮ (
Ψ 0

2 + σ (0) σ̇ (0) + 1

6

∂

∂u
(φ0 φ0)

)
dŜ. (67)

Corresponding mass-loss formula is found by taking the derivative of (67) with respect
to variable u and using Eqs. (47d) and (47a):

ṀB = − 1

2
√

π

∮ [
σ̇ (0) σ̇ (0) + φ0

2 φ0
2 + φ̇0 φ̇0 + i e A0

2

(
φ0 φ̇0 − φ̇0 φ0

)

+e2 A0
2 A0

2 φ0 φ0
]

dŜ. (68)

Clearly, the first three terms represent the mass-loss by gravitational, electromagnetic
and scalar radiation, while remaining terms represent the mass-loss by interactions
between electromagnetic and scalar fields.

The Bondi mass-loss formula can be brought into simpler form when we define

Duφ(0) = ∂uφ(0) + i e A0
2 φ(0), Duφ(0) = ∂uφ(0) − i e A0

2 φ(0),

so that Du is the projection of the gauge covariant derivative naDa restricted to I . In
terms of the operator Du , the Bondi mass-loss formula reads

ṀB = − 1

2
√

π

∮ [
σ̇ (0) σ̇ (0) + φ0

2 φ0
2 +

(
Duφ(0)

) (
Duφ(0)

)]
dŜ. (69)

This expression is manifestly gauge invariant and negative semi-definite. Hence, unlike
the conformal scalar field with indefinite “mass-loss” formula (3), in the case of
interacting electromagnetic and massless Klein–Gordon fields, the Bondi mass is either
constant or decreasing function of time. Alternatively, expression (69) can be rewritten
in terms of the four-potential Aa using the relation (49c):

ṀB = − 1

2
√

π

∮ [
σ̇ (0) σ̇ (0) + Ȧ(0)

1 Ȧ(0)

1
+ φ̇(0) φ̇(0)

]
dŜ. (70)

In the absence of electromagnetic field, formulae (67) and (69) reduce to expressions
(1) and (2) found in [1] for the massless Klein–Gordon field.

123



On the Bondi mass of Maxwell–Klein–Gordon spacetimes Page 19 of 23 1665

6 Conclusion

In this paper we have derived the spinor equations for the system of coupled gravi-
tational, electromagnetic and scalar fields and found the asymptotic solution of this
system in the neighbourhood of the future null infinity. The asymptotic solution reduces
to the well-known expansions for electrovacuum spacetimes [21,24] and our previ-
ous results on spacetimes with the scalar field sources [1]. Using this solution and
the solution of asymptotic twistor equation, we have arrived at the expression for the
Bondi mass of resulting electro-scalar spacetime, Eq. (67). This expression coincides
with (1).

The Bondi mass-loss formula has been derived and expressed in terms of the four-
potential (70) and in the gauge invariant form (69) which is manifestly negative semi-
definite. This last result shows that in the case of electro-scalar spacetimes, the Bondi
mass is a non-increasing function of time.
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7 Appendix 1: Field equations in the Newman–Penrose formalism

Four-potential Aa = AAA′ is a real vector field and its components with respect to the
spin basis will be denoted by

A0 = AX X ′oX oX ′
, A1 = AX X ′oX ιX ′

, (71a)

A1 = AX X ′ ιX oX ′
, A2 = AX X ′ ιX ιX ′

. (71b)

Similarly we introduce the Newman–Penrose components of electromagnetic spinor
φAB by

φ0 = φAB oA oB, φ1 = φAB oA ιB, φ2 = φAB ιA ιB . (72)

Potential Aa is governed by Eq. (8),

∇ A′
A AB A′ = −φAB .

Projections of this equation onto the spin basis are

D A1 − δA0 = (π − α − β)A0 + (ε − ε + ρ)A1 + σ A1 − κ A2 + φ0, (73a)

D A2 − δA1 = −μA0 + π A1 + (π − α + β)A1 + (ρ − ε − ε)A2 + φ1, (73b)

ΔA0 − δA1 = (γ + γ − μ)A0 + (β − α − τ)A1 − τ A1 + ρ A2 − φ1, (73c)

ΔA1 − δA2 = ν A0 − λA1 + (γ − γ − μ)A1 + (α + β − τ)A2 − φ2. (73d)
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The Lorenz condition ∇a Aa = 0 in the Newman–Penrose formalism acquires the
form

D A2 − ΔA0 − δA1 − δA1 = (γ + γ − μ − μ)A0 + (π − α + β − τ)A1

+ (π − α + β − τ)A1 + (ρ + ρ − ε − ε)A2 = 0.

(74)

Projections of the gradient ϕAA′ = ∇AA′φ will be denoted by

ϕ0 = Dφ, ϕ2 = Δφ, ϕ1 = δφ, ϕ1 = δφ,

ϕ0 = Dφ, ϕ2 = Δφ, ϕ1 = δφ, ϕ1 = δ φ
(75)

Now we can complete equations for electromagnetic field. Equation (9),

∇ A
B′φAB = ie

2

(
φ ϕb − φ ϕb

) − e2 φ φ Ab,

is the spinor version of Maxwell’s equations with four-current ja on the right hand
side. Projections of this equation onto the spin basis follow:

Dφ1 − δφ0 = (π − 2α)φ0 + 2ρφ1 − κφ2 + ie

2

(
φϕ0 − φϕ0

) + e2φφ A0, (76a)

Dφ2 − δφ1 = −λφ0 + 2πφ1 + (ρ − 2ε)φ2 + ie

2

(
φϕ1 − φϕ1

) + e2φφ A1, (76b)

Δφ0 − δφ1 = (2γ − μ)φ0 − 2τφ1 + σφ2 + ie

2

(
φϕ1 − φϕ1

) − e2φφ A1, (76c)

Δφ1 − δφ2 = νφ0 − 2μφ1 + (2β − τ)φ2 + ie

2

(
φϕ2 − φϕ2

) − e2φφ A2. (76d)

Dynamical equation for the gradient ϕAA′ is provided by Eq. (12)

∇ A
A′ϕAB′ = i e Acϕc εA′ B′ + 1

2

(
m2 − e2 Ac Ac

)
φ εA′ B′ . (77)

Projected on the spin basis, this equation is equivalent to any of the following four
scalar equations:

Dϕ1 − δϕ0 = (π − α − β)ϕ0 + σϕ1 + (ρ + ε − ε)ϕ1 − κϕ2, (78a)

Dϕ2 − δϕ1 = −μϕ0 + (π − α + β)ϕ1 + πϕ1 + (ρ − ε − ε)ϕ2 − φ m2/2

+ e2φ
(

A0 A2 − A1 A1

) + ie
(

A1ϕ1 + A1ϕ1 − A0ϕ2 − A2ϕ0
)
,

(78b)

Δϕ0 − δϕ1 = (γ + γ − μ)ϕ0 − τϕ1 + (β − α − τ)ϕ1 + ρϕ2 − φ m2/2

+ e2φ
(

A0 A2 − A1 A1

) + ie
(

A1ϕ1 + A1ϕ1 − A0ϕ2 − A2ϕ0
)
, (78c)

Δϕ1 − δϕ2 = νϕ0 + (γ − γ − μ)ϕ1 − λϕ1 + (α + β − τ)ϕ2. (78d)
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The Ricci spinor is related to the electro-scalar fields by Einstein’s equations (16)
and is given by formula (18). The Newman–Penrose components of the Ricci spinor
read:

Φ00 = φ0 φ0 + (D0φ)
(
D0φ

) = φ0φ0 + ϕ0ϕ0 + e2 A2
0φφ + ieA0

(
φϕ0 − φϕ0

)
,

(79a)

Φ01 = φ0 φ1 + (
D(0φ

) (
D1)φ

) = φ0φ1 + ϕ(0ϕ1) + e2φφ A0 A1

+ ieφ A(0ϕ1) − ieφ A(0ϕ1), (79b)

Φ11 = φ1 φ1 + 1

2

[(
D(0φ

) (
D2)φ

) + (
D(1φ

) (
D1)φ

)]
(79c)

= φ1 φ1 + 1

2

[
ϕ(0ϕ2) + ϕ(1ϕ1) + ieφ

(
A(0ϕ2) + A(1ϕ1)

)

−ieφ
(

A(0ϕ2) + A(1ϕ1)

)
+ e2φφ

(
A0 A2 − A1 A1

)]
, (79d)

Φ02 = φ0φ2 + (D1φ)
(
D1φ

) = φ0φ2 + ϕ1ϕ1 + e2φφ A2
1 + ie

(
φ A1ϕ1 − φ A1ϕ1

)
,

(79e)

Φ12 = φ1φ2 + (
D(1φ

) (
D2)φ

) = φ1φ2 + ϕ(1ϕ2) + e2φφ A1 A2

+ ie
(
φ A(2ϕ1) − φ A(2ϕ1)

)
, (79f)

Φ22 = φ2φ2 + (D2φ)
(
D2φ

) = φ2φ2 + ϕ2 ϕ2 + e2φφ A2
2 + ieA2

(
φϕ2 − φϕ2

)
.

(79g)

6Λ = ϕ(1ϕ1) − ϕ(0ϕ2) + ieφ
(

A(0ϕ2) − A(1ϕ1)

)
+ ieφ

(
A(1ϕ1) − A(0ϕ2)

)

+ e2φφ
(

A1 A1 − A0 A2
) + m2φφ. (80)

The Ricci identities in the tetrad introduced in Sect. 3 simplify to the following set
of equations.

Dρ = ρ2 + σ σ + Φ00, (81a)

Dσ = 2 ρ σ + Ψ0, (81b)

Dα = ρ α + β σ + ρ π + Φ10, (81c)

Dβ = (α + π) σ + ρ β + Ψ1, (81d)

Dγ = 2 π α + 2 π β + π π + Ψ2 − Λ + Φ11, (81e)

Dλ − δπ = ρ λ + μσ + 2 α π + Φ20, (81f)

Dμ − δπ = ρ μ + σ λ + 2 β π + Ψ2 + 2 Λ, (81g)

Dν − Δπ = 2 π μ + 2 π λ + (γ − γ )π + Ψ3 + Φ21, (81h)

Dτ = 2 π ρ + 2 π σ + Ψ1 + Φ01, (81i)

Δρ − δτ = (γ + γ − μ)ρ − σ λ − 2 α τ − Ψ2 − 2 Λ, (81j)

Δσ − δτ = −(μ − 3 γ + γ ) σ − λ ρ − 2 β τ − Φ02, (81k)
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Δλ − δν = −(2 μ + 3 γ − γ ) λ − (3 α + β) ν, (81l)

Δα − δγ = ρ ν − (β + τ) λ + (γ − μ) α + (β − τ) γ − Ψ3, (81m)

Δβ − δγ = −μτ + σ ν + (γ − γ − μ) β − α λ − Φ12, (81n)

Δμ − δν = −(μ + γ + γ )μ − λ λ + ν π + 2 β ν − Φ22, (81o)

δα − δβ = μρ − λ σ + α α + β β − 2 α β − Ψ2 + Λ + Φ11, (81p)

δλ − δμ = π μ + (α − 3 β) λ − Ψ3 + Φ21, (81q)

δρ − δσ = (α + β) ρ − (3 α − β) σ − Ψ1 + Φ01. (81r)
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