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ABSTRACT
Building on the results of a previous paper, we compute for the first time a full first-order
perturbative solution for the angular coordinates in the restricted post-Newtonian two-body
problem with spin. The analytical integration of the angular coordinates, based on the theory of
the Weierstrassian functions, allows us to investigate thoroughly the spin–orbit and spin–spin
interactions, and to derive several new results. The application of our solution to a selection
of idealized physical systems of interest reveals a rich variety of dynamical behaviours driven
by purely relativistic effects. In particular, we highlight a new relativistic nutational motion
resulting from the combined spin–orbit and spin–spin interactions.
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1 IN T RO D U C T I O N

The problem of understanding the corrections that General Rela-
tivity imposes on Newtonian mechanics in the case of weak gravi-
tational fields (and low velocities compared to the speed of light),
also known as post-Newtonian (PN) gravitation, is one of the crucial
aspects of the local testing of Einstein’s theory of gravitation, and it
has been a matter of research for long time. In spite of these efforts,
however, our understanding of PN gravitation is still incomplete not
only at high PN orders, but also in terms of its actual foundations.

In particular, the first formulation of PN gravitation, given by
Lorentz and Droste (Lorentz 1937) and later by Einstein himself
(Einstein, Infeld & Hoffmann 1938), has been found to present
a series of shortcomings which require the reformulation of the
problem in some more sophisticated versions, like the ones proposed
by Damour, Soffel & Xu (1991) or by Blanchet (2006). This is
particularly true when rotating objects (which we will call spinning
objects, referring to spin as their proper angular momentum) are
considered, because it is not straightforward to define a notion of
spin which is completely consistent with Einstein’s theory. One way
to avoid this issue while preserving a more classical derivation of
the PN equations (at least at low PN orders) is to adopt a special
definition of the spin vector like the one proposed by Damour,
Jaranowski & Schäfer (2008) or the one given by Wu & Xie (2010).
In the following, we will also consider such definitions.

� E-mail: bluescarni@gmail.com

Regardless of the method used to arrive at the PN equations, one
is always faced with a formidable system of differential equations.
In recent years, researchers have frequently employed numerical
approaches for the solution of the PN equations at high orders
(including dissipative terms). A particular focus of this line of re-
search is the study of chaos in spinning compact binaries (Levin
2000, 2003, 2006; Schnittman & Rasio 2001; Cornish & Levin
2002; Hartl & Buonanno 2005; Wu & Xie 2007, 2008; Mei et al.
2013; Huang, Ni & Wu 2014). In a previous work (Biscani & Car-
loni 2013, from now on ‘Paper I’), we adopted a different approach
to the problem, aiming for an analytical solution to the 1PN two
spinning body problem. In Paper I, we obtained for the first time
an exact solution of the reduced problem using a modern perturba-
tion technique (commonly used in the field of Celestial Mechanics)
based on Lie series (Hori 1966; Deprit 1969).

Based on the theory of canonical transformation, the Lie series
perturbation method allows the determination of a quasi-unitary
(canonical) transformation able to bring a Hamiltonian with the
structure H0 + εH1 to a form which is easier to treat both analyti-
cally and numerically. In particular, in Paper I it was shown that it
is possible to solve exactly the averaged 1PN reduced two rotating
body problem in terms of Weierstrass elliptic functions.

The Weierstrassian functions are elliptic (and related) functions
introduced by Karl Weierstrass at the end of the 19th century (Whit-
taker & Watson 1927). Weierstrass’ formulation of the theory of el-
liptic functions is a (mathematically equivalent and lesser-known)
alternative to the more commonly encountered formulation of Ja-
cobi. Recently, the Weierstrassian formalism has been successfully
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applied to dynamical studies in General Relativity (see, e.g. Hack-
mann et al. 2010; Scharf 2011; Gibbons & Vyska 2012).

Using the Lie series perturbation theory and the mathematics
of the Weierstrassian functions, in Paper I, we carried out an initial
analysis of the evolution of the spin vector and the orbital inclination
of the secondary body. The aim of the present contribution is to
refine and expand these results. In particular, we will first show that
it is possible to simplify the result obtained in Paper I for the exact
solution of the variable H. Using this new simplified solution in
conjunction with the theory of the Weierstrassian functions, we will
then derive an exact solution for the angular variables. In addition,
we will show that our full treatment of the 1PN reduced two rotating
body problem is able to uncover previously unknown additional
effects due to the spin–spin and spin–orbit interactions.

With respect to numerical solutions of the relativistic equations at
high PN levels, it is clear that our approach deals with a considerably
simpler physical system. Our conclusions are necessarily limited to
contexts in which high PN terms can be discarded and in which
our idealized averaged dynamical system can be considered a good
approximation of the real one. In particular, our result on the integra-
bility of the averaged system relies crucially on the simplifications
adopted in our model (for instance, the fact that J2 is a constant of
motion). Because of this, we shall not discuss aspects such as the
chaoticity of the motion or the dynamical consequences of energy
dissipation via the emission of gravitational waves. On the other
hand, as frequently done in Celestial Mechanics, our first-order re-
sults could be used as a starting point for higher order analyses –
for instance, by using the resonant action-angle variables method
(see Morbidelli 2002, chapter 4).

This paper is organized in the following way. Section 2 is ded-
icated to a summary of the basic equations, the notation and the
results of Paper I. Section 3 deals with a strategy to simplify the ex-
act solution obtained in Paper I for the normalized z component of
the orbital angular momentum H. Section 4 illustrates the integra-
tion of the angular coordinates, which was not performed in Paper
I. Section 5 applies the new solutions found to some (idealized)
physical systems. Finally, Section 6 is dedicated to the conclusions.

2 A S U M M A RY O F T H E R E S U LT S O F PA P E R I

The starting point of our analysis in Paper I was the well-known
1PN Hamiltonian of the two-body problem with spin, which, after
reduction to the centre-of-mass frame, reads (Barker & O’Connell
1970, 1979; Damour 2001)

H = HN + εH1. (1)

Here, ε = 1/c2 is chosen as the ‘smallness parameter’ of our per-
turbation theory and

HN = 1

2

J2
1

I1
+ 1

2

J2
2

I2
+ p2

2μ
− GMμ

r
(2)

is the Newtonian Hamiltonian (representing the unperturbed prob-
lem). H1 expands as

H1 = HPN + HSO + HSS, (3)

where HPN is the PN orbital Hamiltonian, HSO the spin–orbit inter-
action term and HSS the spin–spin interaction term.

The structure of this Hamiltonian and, above all, the nature of the
spin vectors, have been a matter of debate in the past few years (see
Damour et al. 2008). More recently, Wu & Xie (2010) have proposed
a symplectic formulation of the spin vectors in terms of cylindrical-
like coordinates. In Paper I, we followed the interpretation of Barker

& O’Connell (1975, 1976, 1979) and Wex (1995) in identifying the
spins J i as the rotational angular momenta of spherical rigid bodies,
so that

J i = Iiωi , (4)

where Ii is the moment of inertia and ωi the rotational angular
velocity vector of body i.

The reduction of the Hamiltonian (3) to the restricted case in
which m2 � m1 and |J2| � |J1| reads

HN = 1

2

J2
1

I1
+ p2

1

2m1
− Gm1m2

r
,

HPN = m1

(
−1

8

p4
1

m4
1

− 3

2

Gm2

r

p2
1

m2
1

+ G2m2
2

2r2

)
,

HSO = 2G
r3

(
3

4

m2

m1
J1 + J2

)
· (

r × p1

)
,

HSS = G
r3

[3 ( J1 · n) ( J2 · n) − J1 · J2] , (5)

where J2 is now considered as a constant of motion that can be
dropped from HN. Without loss of generality, we oriented the refer-
ence system (now centred on body 2) in such a way that the constant
J2 is aligned to the positive z-axis, so that

J2 = (0, 0, J2) , (6)

with J2 = |J2|.
We then proceeded to express, via a canonical transformation, the

restricted Hamiltonian (5) in a set of action-angle variables for the
unperturbed problem consisting of the Delaunay arguments for the
orbital coordinates (Morbidelli 2002) and of the Serret–Andoyer
(SA) variables for the spin coordinates (Gurfil et al. 2007).

The Delaunay arguments (L, G, H; l, g, h) (where capital letters
indicate momenta, small capitals coordinates) can be introduced via
the following standard relations:

L =
√

Gm2a, l = M,

G = L
√

1 − e2, g = ω,

H = G cos i, h = �. (7)

Here a, e, i, M, ω and � are the classical Keplerian orbital elements
describing the trajectory of the secondary body m1 around the pri-
mary m2. The Keplerian elements are in turn related to the Cartesian
orbital momentum p1 and position r via well-known relations (e.g.
see Murray & Dermott 2000).

The SA variables describe the rotational motion of a rigid body
in terms of orientation angles and rotational angular momentum. In
the SA formalism, the components of J1 read

J1 =
(√

|J1|2 − J 2
1,z sin h̃,−

√
|J1|2 − J 2

1,z cos h̃, J1,z

)
. (8)

In the SA variables set,
(|J1| , J1,z

)
are the generalized momenta,

and
(
g̃, h̃

)
are the conjugate coordinates.1 It can be helpful to think

of the SA variables as the rigid-body analogues of the Delaunay
variables (e.g. h̃ is the ‘nodal angle’ of the spin vector of the sec-
ondary body on the inertial reference plane). It can be shown how

1 The g̃ coordinate does not appear in the Hamiltonian (5) due to the spherical
symmetry of the bodies. In the SA formalism, the g̃ coordinate is a measure
of the orientation of the body with respect to the spin vector.
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Table 1. Summary and explanation of the symbolic variables appearing in the Hamiltonians (9) and (10).

Symbol Meaning Alternate expression

L Normalized square root of the semimajor axis
√Gm2a

G Norm of the orbital angular momentum r × p1 normalized by m1 L
√

1 − e2

H z component of the orbital angular momentum normalized by m1 Gcos i
G̃ Norm of spin J1 normalized by m1 |J1| /m1

H̃ z component of spin J1 normalized by m1 G̃ cos I

l Mean anomaly M
g Argument of pericentre ω

h Longitude of the ascending node �

h̃ Nodal angle of spin J1 –

f True anomaly –
I1 Inverse of the moment of inertia of body 1 normalized by m1 m1/I1

Gxy Norm of the projection of r × p1 on the xy plane normalized by m1
√

G2 − H 2

G̃xy Norm of the projection of spin J1 on the xy plane normalized by m1

√
G̃2 − H̃ 2

J2 Norm of spin J2 |J2|
r Distance between body 1 and body 2 –

m1, m2 Masses of the two bodies –
G Universal gravitational constant –

the SA variables correspond (after a trivial canonical transforma-
tion) to the symplectic spin variables defined in Wu & Xie (2010).
The correspondence is detailed in Appendix B.

After a further rescaling with respect to the mass of the secondary
body m1 (now a meaningless quantity as the secondary body is con-
sidered as a small particle), the final form of the restricted Hamil-
tonian (5) in Delaunay and SA variables reads

HN = 1

2
I1G̃

2 − G2m2
2

2L2
, (9)

H1 = −1

8

G4m4
2

L4
+ 1

r

2G3m3
2

L2
− 1

r2
3G2m2

2

+ G
r3

{
2J2H + 3J2G

2
xyH̃

2G2
+ 3m2H̃H

2
− J2H̃

+
(

3m2

2
G̃xyGxy − 3

2
J2

HGxyG̃xy

G2

)
cos

(
h̃ − h

)

+ 3J2

[
−1

2

G2
xyH̃

G2
cos (2f + 2g)

− 1

4

GxyG̃xy

G

(
1 − H

G

)
cos

(
2f + 2g + h̃ − h

)

+ 1

4

GxyG̃xy

G

(
1 + H

G

)
cos

(
2f + 2g − h̃ + h

)]}
. (10)

For convenience, we have summarized in Table 1 the meaning of
the symbolic variables appearing in the Hamiltonians (9) and (10).
We have to stress how in these expressions, r, Gxy, G̃xy and f have
to be regarded as implicit functions of the canonical momenta and
coordinates (rather than distinct quantities).

In Paper I, we then proceeded to the application of the Lie
series perturbation technique (Hori 1966; Deprit 1969), which
transformed the Hamiltonians (9) and (10) into the averaged
Hamiltonian

H′ = HN + ε (F0 + F1 cos h∗) + O (
ε2

)
, (11)

where

HN = 1

2
I1G̃

2 − G2m2
2

2L2
, (12)

F0 = 1

2

J2G4H̃∗m2
3

G3L3
+ 3

2

H 3J2G4m2
3

G5L3
+ 15

8

G4m2
4

L4

+ 3

2

HJ2G4m2
3

G3L3
− 3

2

H 2J2G4H̃∗m2
3

G5L3
− 3

2

H 2G4m2
4

G3L3

+ 3

2

HG4H̃∗m2
4

G3L3
− 3

G4m2
4

GL3
, (13)

F1 = −3

2

GxyHJ2G4G̃xy∗m2
3

G5L3
+ 3

2

GxyG4G̃xy∗m2
4

G3L3
, (14)

and

G̃xy∗ =
√

G̃2 − (
H̃∗ − H

)2
, (15)

H̃∗ = H + H̃ , (16)

h∗ = h − h̃. (17)

From equation (11) onward, it is understood (as it is common prac-
tice when working within the Lie series perturbation framework)
that the symbols

(
L, G, H, G̃, H̃

)
and

(
l, g, h, g̃, h̃

)
refer to the

mean momenta and coordinates (i.e. the new momenta and coor-
dinates introduced by the averaging canonical transformation). A
fundamental advantage of the Lie series perturbation method (with
respect, for instance, to the earlier von Zeipel method – see von
Zeipel (1916)) is that it is possible to write explicit transformation
formulae between the original variables and the averaged ones. This
is explained in detail, for instance, in Heimberger, Soffel & Ruder
(1990) for the relativistic artificial satellite problem. Here, however,
we are concerned with the secular dynamics of the system, and will
thus limit ourselves to work with the averaged variables.

After discarding the terms of order O (
ε2

)
, generated by the

Lie series transformation, equation (11) represents the final form
of the averaged Hamiltonian. Equation (11) was obtained after an
additional simple linear canonical transformation reminiscent of the
treatment of single-resonance dynamics in the N-body problem (see
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Figure 1. Representative plots of dH/dt as a function of H as described by equation (18). In the plot on the left (a) the quartic polynomial f4(H) has four
distinct real roots and the plot consists of two separate libration lobes, while in the plot on the right (b) the quartic polynomial f4(H) has two distinct real roots
and the plot consists of a single libration lobe.

Lemma 4 in Morbidelli & Giorgilli 1993), in which the average
generalized momenta become

(
L, G, H, G̃, H̃∗

)
and the average

coordinates become
(
l, g, h∗, g̃, h̃

)
.

The autonomous averaged Hamiltonian (11) has one degree of
freedom (all momenta, apart from H, are constants of motion), and
it is thus integrable in the sense of Liouville (Arnold 1989). The
equation of motion for the average momentum H can be derived via
Hamilton’s equations in the standard way, and it can be written as

dH

dt
= ±

√
f4 (H ), (18)

where f4(H) is a polynomial of degree 4 in H, whose coefficients
are functions of the constants of motion and of the initial conditions
of the system.

In Paper I, we showed how it is possible to integrate and invert
equation (18) to yield an explicit solution for H(t) via the Weierstrass
elliptic functions ℘ and ℘′. The solution for H(t) we presented
in Paper I is based on a formula by Weierstrass and reported in
Whittaker & Watson (1927), section 20.6, and it consists of a rather
complicated rational function of ℘ and ℘′:

H (t) = H0 + 1

2
[
℘ (t) − 1

24 f ′′
4 (H0)

]2 − 1
48 f4 (H0) f iv

4 (H0)

·
{

1

2
f ′

4 (H0)

[
℘ (t) − 1

24
f ′′

4 (H0)

]

+ 1

24
f4 (H0) f ′′′

4 (H0) ±
√

f4 (H0)℘ ′ (t)

}
. (19)

The Weierstrass function ℘ is a doubly periodic elliptic function
defined in terms of two parameters g2 and g3, called invariants –
which in our case are real quantities that can be expressed in terms of
the initial conditions and of the physical parameters of the system.
In case of real invariants, one of the two periods T of ℘ and ℘′
is a purely real quantity. In this respect, we can then consider ℘

and ℘′ as singly periodic functions on the real axis with period T.
We refer to Paper I and to classical references such as Abramowitz
& Stegun (1964), chapter 18, and Whittaker & Watson (1927) for
a more detailed description of the properties of the Weierstrassian
functions.

We will now show how it is possible to obtain a simplified form of
H(t) which will allow us to proceed to the integration of the angular
coordinates.

3 A S I M P L I F I E D F O R M O F T H E SO L U T I O N
F O R H

Our starting point is the observation that the coefficient of H4 in the
quartic polynomial f4(H) in equation (18) is always negative (see
eq. (C1) in Paper I). Thus,

lim
H→±∞

f4 (H ) = −∞. (20)

Additionally, for the radicand in equation (18) to be real (that is,
physically meaningful), the polynomial must assume positive values
in at least one interval of H. This means that f4(H) must have two or
four real roots (possibly of multiplicity greater than one). Here, we
will consider only the cases in which f4(H) has two or four distinct
real roots.2

Fig. 1 displays the evolution of dH/dt as a function of H in two
representative cases.

The existence of real roots for f4(H) guarantees that we can always
express the solution H(t) in a simplified way. By choosing as starting
point of the integration of equation (18) one of the roots Hr of f4(H)
(instead of the arbitrary initial value H0), we have that f4(Hr) = 0,
and thus equation (19) simplifies to

H (t) = Hr + f ′
4 (Hr)

4
[
℘ (t − tr) − 1

24 f ′′
4 (Hr)

] , (21)

or, for notational convenience,

H (t) = Hr + A

℘ (t − tr) − B
, (22)

where A = f ′
4 (Hr) /4 and B = f ′′

4 (Hr) /24 are constants of motion,
and tr is the time at which H assumes the value Hr (where we have
chosen as origin of the time coordinate, t = 0, the time at which the

2 Roots with multiplicity greater than one are connected to the existence of
equilibrium points, as discussed in section 4.4.2 of Paper I.
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system is in the initial conditions). tr, the time of root passage, can
be computed by solving the elliptic integral∫ tr

0
dt = ±

∫ Hr

H0

dH√
f4 (H )

. (23)

Here, the ± sign has to be chosen in accordance with the initial
conditions of the system and with the choice of Hr among the roots
of f4(H).

We discuss in detail a concrete example of the computation of tr

in Appendix A.

4 IN T E G R AT I O N O F T H E A N G U L A R
C O O R D I NAT E S

We now turn our attention to the equations of motion for the co-
ordinates g, h� and h̃. In general, the equations of motion for the
coordinates (equations 32 in Paper I), are built from the partial
derivatives of the two components F0 and F1 of the Hamiltonian
and the cosine of the coordinate h�, which can also be expressed as
a function of F0 and F1 after inverting the Hamiltonian (11):

cos h∗ = H′ − HN − εF0

εF1
, (24)

where, from now on, we will denote with H′ the constant numeri-
cal value of the Hamiltonian (obtained by substitution of the initial
conditions into equation 11). Equation (24) thus represents the evo-
lution in time of cos h� via its dependence on H(t).

We will now show how all the equations of motion can be ex-
pressed as rational functions of the Weierstrass elliptic function
℘(t), and as such they can be integrated with the help of the Weier-
strassian functions σ and ζ , and the derivative ℘′ and the inverse
℘−1 of ℘ (the general theory of the integration of rational func-
tions of elliptic functions is outlined in Tannery & Molk (1893)
and Greenhill (1959, chapter 7). We will start with the detailed
computation of the solution for g; the solutions for the other two
coordinates will be formally identical.

The computations that follow are fairly complicated, and they
are best tackled with the help of computer algebra. In this paper,
we made extensive use of the free computer algebra system SYMPY

(SymPy Development Team 2014).

4.1 Solution for the g coordinate

The substitution of the expression for cos h�, equation (24), into the
equation of motion for dg/dt,

dg

dt
= ε

(
∂F0

∂G
+ ∂F1

∂G
cos h∗

)
(25)

(the third one in equations (32) of Paper I), results in a fairly com-
plicated expression. Two crucial simplifications occur:

(i) the square roots in the expression, originating from

Gxy =
√

G2 − H 2 (26)

and

G̃xy∗ =
√

G̃2 − (
H̃∗ − H

)2
, (27)

are either simplified between numerator and denominator, or they
are squared. The resulting expression for dg/dt will thus be free of
square roots and it will be reduced to a rational function of H;

(ii) the resulting rational function can be decomposed in a series
of terms which are either linear in H or rational functions of H of
degree one in the denominator.

After a full fraction decomposition, the final expression for dg/dt
as a function of H can be written as

dg

dt
= 
0

g + 
1
gH (t) + 1

G − H (t)

2

g + 1

G + H (t)

3

g

+ 1

G2m2 − H (t) J2

4

g, (28)

where 
i
g are constants whose full expressions are reproduced in Ta-

ble 2. Before proceeding, we will first discuss briefly the properties
of the right-hand side of equation (28).

4.1.1 Poles

The expression on the right-hand side of equation (28) clearly has
three potential poles: H = ±G and H = G2m2/J2. The first two
poles, H = ±G, correspond to a singularity in the coordinate system
– the angle g is not defined when the orbit is equatorial (which
corresponds to the condition H = ±G). This type of singularities is
common when working with Delaunay variables (Morbidelli 2002,
section 1.9.1).

The third pole, H = G2m2/J2, corresponds to the equilibrium
point discussed in section 4.4.1.1 of Paper I, and it derives from
the denominator on the right-hand side of equation (24) going to
zero. It is easy (although tedious if done by hand) to check that, for
H = G2m2/J2, 
4

g also goes to zero, so that the pole is actually an
indeterminate form of the type 0/0.

4.1.2 On the magnitude of the 
i
g constants

It can be noted by inspecting Table 2 how most, but not all, of the
terms composing the 
i

g constants are proportional to the small
parameter ε = 1/c2. The absence of the ε multiplicative constant
from some of the terms might lead to conclude that the evolution of
dg/dt in time is ‘fast’ (e.g. of the same order of magnitude of the
mean motion l).

Table 2. Full form of the constants appearing in the expression of dg/dt, equation (28).


0
g − 5H′

G
+ 5I1G̃2

2G
− 5G2m2

2
2 GL2 + 75G4εm4

2
8 GL4 − 21G4εm4

2
2G2L3 − J2G4H̃∗εm3

2
2G4L3


1
g

9J2G4εm3
2

2G4L3


2
g

H′
2 − I1G̃2

4 + G2m2
2

4L2 − 15G4εm4
2

16L4 + 9G4εm4
2

4 GL3 − 3J2G4εm3
2

2G2L3 − 3G4H̃∗εm4
2

4G2L3 + J2G4H̃∗εm3
2

2G3L3


3
g

H′
2 − I1G̃2

4 + G2m2
2

4L2 − 15G4εm4
2

16L4 + 9G4εm4
2

4 GL3 + 3J2G4εm3
2

2G2L3 + 3G4H̃∗εm4
2

4G2L3 + J2G4H̃∗εm3
2

2G3L3


4
g 2 GH′m2 − GI1G̃

2m2 + GG2

L2 m3
2 − 15 GG4ε

4L4 m5
2 + 3ε

L3 G4m5
2 − J2G4H̃∗ε

G2L3 m4
2
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In reality, each fast term is counter-balanced by a corresponding
fast term of opposite sign originating from the Hamiltonian constant
H′. For instance, if we consider the expression for 
0

g ,


0
g = −5H′

G
+ 5I1G̃

2

2G
− 5G2m2

2

2 GL2
+ · · · (29)

(where we have omitted terms of order ε), and we recall from
equation (11) that

H′ = 1

2
I1G̃

2 − G2m2
2

2L2
+ · · · (30)

(where again we have omitted terms of order ε), we can see how the
two fast terms in equation (29) (corresponding to the Newtonian part
of the Hamiltonian) cancel out with H′ and only terms proportional
to ε survive. Similar simplifications occur in all 
i

g constants, and
thus the evolution of dg/dt is slow (i.e. proportional to the small
parameter ε).

4.1.3 Reduction to simpler cases

Before proceeding to the solution of equation (28), it is interesting
to show how dg/dt reduces to simpler cases. We have already shown
in Paper I how the equation of motion for g reduces to the classical
Einstein precession when both spins are absent (section 4.1), and
to the Lense–Thirring effect when only the spin of the secondary
body is null (section 4.2). Both these results can be checked again
by direct substitutions in equation (28).

In section 4.3 of Paper I, we showed how in our formalism the
geodetic effect (i.e. the special case in which the central body is
not spinning, but the secondary one is) shows up as an equilibrium
point corresponding to the initial conditions

H = H̃ 2
∗ + G2 − G̃2

2H̃∗
, h∗ = π + 2 kπ. (31)

We also pointed out how this special configuration corresponds to
choosing the z-axis aligned to the (constant) total angular momen-
tum of the system, and how it results in the spin and orbital angular
momentum vectors precessing around z with the same rate. A result
which we did not highlight in Paper I is the effect of the geode-
tic precession on the g coordinate. After shutting off the J2 con-
stant and substituting the conditions (31) into equation (28), dg/dt
simplifies to

dg

dt
= 1

4G4L3

(
15G2G4εm4

2 + 9G4G̃2εm4
2 − 9G4H̃ 2

∗ εm4
2

)
. (32)

That is, the argument of pericentre g precesses with a constant rate
which depends on both the orbital angular momentum and the spin
state of the secondary body.

4.1.4 Integration of equation (28)

We now proceed to the integration by quadrature of equation (28)
to determine g(t). Before performing the computation, we can high-
light an important property of g(t).

Since H(t) is a periodic function (with a period T that can be
computed from the initial conditions of the system, as explained
in section 4.4.2 of Paper I), dg/dt will also be periodic with the
same period T. The integral of a periodic function is an arithmetic
quasi-periodic function, that is, g(t) satisfies the relation

g (t + T ) = g (t) + �g, (33)

Table 3. Terms in H(t) from equation (28) expressed via theU (t) function,
introduced in equation (34).

H(t) U (A, B, Hr; t − tr)
1

G−H (t) U
[

A

(G−Hr)2 , A+BG−BHr
G−Hr

, 1
G−Hr

; t − tr

]
1

G+H (t) U
[
− A

(G+Hr)2 , −A+BG+BHr
G+Hr

, 1
G+Hr

; t − tr

]
1

G2m2−H (t)J2
U

[
AJ2

(G2m2−HrJ2)2 , AJ2+BG2m2−BHrJ2
G2m2−HrJ2

, 1
G2m2−HrJ2

; t − tr

]

where �g is a constant (i.e. independent of t). Thus, the average
precession rate of g(t) will be �g/T.

The first step for the integration of dg/dt is the substitution of the
definition of H(t), equation (22), into equation (28). This substitution
yields a rational function of ℘(t − tr). For ease of notation, we can
introduce the function

U (α, β, γ ; t) = α

℘ (t) − β
+ γ, (34)

where it is implied that α, β and γ are constants. With this conven-
tion, we can express the terms in H(t) appearing in equation (28) as
specific instances of U (α, β, γ ; t). The correspondence is detailed
in Table 3.

The next step is the integration of U (α, β, γ ; t). The indefinite
integral of U can be expressed via the Weierstrassian elliptic and
related functions as (see Tannery & Molk (1893, section CXII) and
Gradshteı̆n & Ryzhik (2007, equation 5.141.4):

V (α, β, γ ; t) = ∫ U (α, β, γ ; t) dt (35)

=
∫ [

α

℘ (t) − β
+ γ

]
dt (36)

= α

℘ ′ (v)

[
2tζ (v) + ln

σ (t − v)

σ (t + v)

]
+ γ t, (37)

where v = ℘−1(β), and ζ and σ are the Weierstrass zeta and sigma
functions (Abramowitz & Stegun 1964, chapter 18).3 Although ℘−1

is a multivalued function, it can be shown that this formula is valid
for any choice of v.4

We are now ready to write the full expression of g(t) in terms of
the V function introduced in equation (35):

g (t) = g0 + 
0
gt +

4∑
i=1


i
g

[V i
g (t − tr) − V i

g (−tr)
]
, (38)

where we have introduced a compact notation for the various in-
stances of the V function appearing in the formula. The full form
of the V i

g terms is given in Table 4.
Equation (38) represents the final form of the solution for g(t). We

now turn our attention to the solution for the other two coordinates.

3 It must be noted that equation (37) is not valid when ℘′(v) = 0 (or, equiv-
alently, when ℘(v) is one of the roots of the characteristic cubic equation
associated with ℘’s invariants). In such a case, equation (37) must be re-
placed by the integral formula from Tannery & Molk (1893, section CXII
section 2). We will not consider the special case ℘′(v) = 0 here.
4 It should be noted, however, that the multivalued character of the complex
logarithm complicates the implementation of equation (37) by introducing
discontinuities in correspondence of the branch points. The issue is discussed
and addressed in Biscani & Izzo (2014), section A2.
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Table 4. Full form of the V i
g (t) terms in the solution for g(t),

equation (38). The function V (t) is introduced in equations
(35)–(37).

V1
g (t) V (A, B, Hr; t)

V2
g (t) V

[
A

(G−Hr)2 , A+BG−BHr
G−Hr

, 1
G−Hr

; t
]

V3
g (t) V

[
− A

(G+Hr)2 , −A+BG+BHr
G+Hr

, 1
G+Hr

; t
]

V4
g (t) V

[
AJ2

(G2m2−HrJ2)2 , AJ2+BG2m2−BHrJ2
G2m2−HrJ2

, 1
G2m2−HrJ2

; t

]

4.2 Solution for the h� and h̃ coordinates

As hinted earlier, the solution for h�(t) and h̃ (t) is formally anal-
ogous to the solution for g(t). We start by writing the equations
of motion for h� and h̃ after the full fraction decomposition with
respect to H(t):

dh∗
dt

= 
0
h∗ + 1

G − H (t)

1

h∗ + 1

G + H (t)

2

h∗

+ 1

G2m2 − H (t) J2

3

h∗ + 1

H (t) + G̃ − H̃∗

4

h∗

+ 1

H (t) − G̃ − H̃∗

5

h∗ , (39)

dh̃

dt
= 
0

h̃
+ 1

H (t) + G̃ − H̃∗

1

h̃
+ 1

H (t) − G̃ − H̃∗

2

h̃
, (40)

where the 
i
h∗ and 
i

h̃
constants are reproduced in full form in

Tables 5 and 6. Here, we can note how the expression for dh�/dt is
more complicated than the one for dh̃/dt , as h∗ = h − h̃ contains
information on both the orbital angular momentum and the spin of
the secondary body.

We can recognize in equations (39) and (40) the singularities
discussed in Section 4.1.1, and additional poles for H = H̃∗ ± G̃.
These poles are also arising from a singularity in the coordinate
system: for H = H̃∗ ± G̃ the spin vector of the secondary body is
aligned to the z-axis, and the h̃ angle is undefined. We can also verify
by substitution that, in the simplified cases of Einstein, Lense–
Thirring and geodetic precessions, the formulae for dh�/dt and
dh̃/dt collapse to well-known results (see sections 4.1, 4.2 and 4.3
in Paper I).

Table 7. Full form of the V i
h∗ (t) terms in the solution for h�(t),

equation (41).

V1
h∗ (t) V

[
A

(G−Hr)2 , A+BG−BHr
G−Hr

, 1
G−Hr

; t
]

V2
h∗ (t) V

[
− A

(G+Hr)2 , −A+BG+BHr
G+Hr

, 1
G+Hr

; t
]

V3
h∗ (t) V

[
AJ2

(G2m2−HrJ2)2 , AJ2+BG2m2−BHrJ2
G2m2−HrJ2

, 1
G2m2−HrJ2

; t

]

V4
h∗ (t) V

[
− A

(Hr+G̃−H̃∗)2 , −A+BHr+BG̃−BH̃∗
Hr+G̃−H̃∗

, 1
Hr+G̃−H̃∗

; t

]

V5
h∗ (t) V

[
− A

(Hr−G̃−H̃∗)2 , −A+BHr−BG̃−BH̃∗
Hr−G̃−H̃∗

, 1
Hr−G̃−H̃∗

; t

]

Table 8. Full form of the V i
h̃

(t) terms in the solution for h̃ (t),
equation (42).

V1
h̃

(t) V
[
− A

(Hr+G̃−H̃∗)2 , −A+BHr+BG̃−BH̃∗
Hr+G̃−H̃∗

, 1
Hr+G̃−H̃∗

; t

]

V2
h̃

(t) V
[
− A

(Hr−G̃−H̃∗)2 , −A+BHr−BG̃−BH̃∗
Hr−G̃−H̃∗

, 1
Hr−G̃−H̃∗

; t

]

Let us now proceed to the substitution of the expression of H(t)
into the equations of motion for h� and h̃, and to the integration by
quadrature via the V function defined in equation (37). The results
are

h∗ (t) = h∗,0 + 
0
h∗ t + ∑5

i=1 
i
h∗

[V i
h∗ (t − tr) − V i

h∗ (−tr)
]
, (41)

h̃ (t) = h̃0 + 
0
h̃
t + ∑2

i=1 
i
h̃

[V i
h̃

(t − tr) − V i
h̃

(−tr)
]
, (42)

where the V i
h∗ and V i

h̃
functions are reproduced in full form in

Tables 7 and 8.
Analogously to g(t), both h�(t) and h̃ (t) are arithmetic quasi-

periodic functions of t:

h∗ (t + T ) = h∗ (t) + �h∗ , (43)

h̃ (t + T ) = h̃ (t) + �h̃, (44)

where T is the period of H(t).
In the case of h�(t), we can derive an important result about the

constant of quasi-periodicity �h∗ . From equation (24), we know that

Table 5. Full form of the constants appearing in the expression of dh�/dt, equation (39).


0
h∗ − 9J2G4εm3

2
2G3L3 − 3J2G4G̃2εm3

2
2G5L3


1
h∗ −H′

2 + I1G̃2

4 − G2m2
2

4L2 + 15G4εm4
2

16L4 − 9G4εm4
2

4 GL3 + 3J2G4εm3
2

2G2L3 + 3G4H̃∗εm4
2

4G2L3 − J2G4H̃∗εm3
2

2G3L3


2
h∗

H′
2 − I1G̃2

4 + G2m2
2

4L2 − 15G4εm4
2

16L4 + 9G4εm4
2

4 GL3 + 3J2G4εm3
2

2G2L3 + 3G4H̃∗εm4
2

4G2L3 + J2G4H̃∗εm3
2

2G3L3


3
h∗ −J2H′ + J2I1

2 G̃2 − J2G2m2
2

2L2 + 15J2G4ε

8L4 m4
2 − 3J2G4εm4

2
2 GL3 + J 2

2 G4H̃∗εm3
2

2G3L3


4
h∗

H′
2 − I1G̃2

4 + G2m2
2

4L2 − 15G4εm4
2

16L4 + 3G4εm4
2

2 GL3 + 3J2G4G̃εm3
2

4G3L3 − J2G4H̃∗ε

G3L3 m3
2 + 3G4G̃2εm4

2
4G3L3 − 3G4G̃H̃∗εm4

2
4G3L3 + 3J2G4G̃3εm3

2
4G5L3 − 3J2G4G̃2H̃∗ε

2G5L3 m3
2 + 3J2G4G̃H̃ 2∗ ε

4G5L3 m3
2


5
h∗

H′
2 − I1G̃2

4 + G2m2
2

4L2 − 15G4εm4
2

16L4 + 3G4εm4
2

2 GL3 − 3J2G4G̃εm3
2

4G3L3 − J2G4H̃∗ε

G3L3 m3
2 + 3G4G̃2εm4

2
4G3L3 + 3G4G̃H̃∗εm4

2
4G3L3 − 3J2G4G̃3εm3

2
4G5L3 − 3J2G4G̃2H̃∗ε

2 G5L3 m3
2 − 3J2G4G̃H̃ 2∗ ε

4G5L3 m3
2

Table 6. Full form of the constants appearing in the expression of dh̃/dt , equation (40).


0
h̃

2J2G4ε

G3L3 m3
2 + 3J2G4G̃2εm3

2
2G5L3


1
h̃

−H′
2 + I1G̃2

4 − G2m2
2

4L2 + 15G4εm4
2

16L4 − 3G4εm4
2

2 GL3 − 3J2G4G̃εm3
2

4G3L3 + J2G4H̃∗ε

G3L3 m3
2 − 3G4G̃2εm4

2
4G3L3 + 3G4G̃H̃∗εm4

2
4G3L3 − 3J2G4G̃3εm3

2
4G5L3 + 3J2G4G̃2H̃∗ε

2G5L3 m3
2 − 3J2G4G̃H̃ 2∗ ε

4G5L3 m3
2


2
h̃

−H′
2 + I1G̃2

4 − G2m2
2

4L2 + 15G4εm4
2

16L4 − 3G4εm4
2

2 GL3 + 3J2G4G̃εm3
2

4G3L3 + J2G4H̃∗ε

G3L3 m3
2 − 3G4G̃2εm4

2
4G3L3 − 3G4G̃H̃∗εm4

2
4G3L3 + 3J2G4G̃3εm3

2
4G5L3 + 3J2G4G̃2H̃∗ε

2G5L3 m3
2 + 3J2G4G̃H̃ 2∗ ε

4G5L3 m3
2
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cos [h�(t)] is a periodic function of t with period T. Consequently,

cos [h∗ (t)] = cos [h∗ (t + T )] (45)

= cos [h∗ (t)] cos �h∗ − sin [h∗ (t)] sin �h∗ . (46)

Thus �h∗ = 2 kπ with k ∈ Z. The geometrical meaning of this
result is that the angular distance between the two nodal angles h
and h̃ is, on average, constant modulo 2kπ .

5 A PPLICATION TO PHYSICAL SYSTEMS

We proceed now to the application of the results outlined in the pre-
vious sections to physical systems of interest. We must emphasize
how, in light of our initial assumptions, the systems considered here
are highly idealized. Indeed, our objective is not to produce accurate
descriptions of realistic physical models, but rather to highlight the
role that purely relativistic effects play in the dynamical evolution
of these systems, and to emphasize the novelties introduced by our
solution with respect to the classical results.

We will see that the various relativistic effects have different
sensitivities to the physical parameters and to the initial conditions
of the system. In particular, the interaction between the spin and
the orbital angular momentum of the secondary body is driven by
the relative magnitude of the two quantities. Similarly, the time-
scales over which the effects manifest themselves (and in particular
the period T of H(t)) are also wildly different in the examples
considered.

In order to avoid complications arising from the limited precision
of floating-point arithmetic on contemporary machines, the compu-
tations presented in the following sections were all performed with
the multiprecision PYTHON floating-point arithmetic library MPMATH

(Johansson et al. 2014).

5.1 Pulsar planet

As a first example, we revisit the case of a planet in close orbit
around a pulsar, which was the subject of an initial analysis in Paper
I. Pulsar planets are detected by precise measurements of anomalies
in the pulsation period of the host star. Although rarer than other
types of exoplanets, a number of pulsar planets have already been
discovered and studied (Wolszczan & Frail 1992; Ford et al. 2000;
Bailes et al. 2011).

In this specific case, we will study the dynamics of a pulsar planet
similar to PSR J1719-1438b (Bailes et al. 2011). The PSR J1719-
1438 system is composed of a millisecond pulsar and a smaller
planet-size object in close orbit around it. This object is a former
white dwarf companion to the main star that lost most of its matter
and was consequently reclassified as a planet. The planet is roughly
similar to Jupiter in mass, and its orbit around the pulsar has a
semimajor axis smaller than a solar radius. The physical parameters
and the initial conditions of our model are displayed in Table 9.

Before proceeding, we must emphasize the limitations of our
model in this specific scenario:

(i) the magnitude of the spin of the pulsar is not much larger than
the magnitude of the orbital spin, and thus we are in a limit case
with respect to the assumption that the spin of the pulsar is fixed;

(ii) the planet’s estimated density is similar to the density of
Jupiter, and thus we can expect that Newtonian figure effects will
play a considerable role in the real dynamics. Additionally, in pres-
ence of sufficiently extended bodies the effacement theorem that

Table 9. Physical parameters and initial conditions of the pul-
sar planetary system analysed in Section 5.1, inspired by the
PSR J1719-1438 system described in Bailes et al. (2011).

Star mass 1.4 M

Star rotation period 5 ms
Star radius 20 km
Planetary rotation period 9.9 h
Planetary radius 35 000 km
Planetary spin inclination 28.◦6
Longitude of the node of the planetary spin (h̃) 0◦
Argument of pericentre (g) 0◦
Orbital semimajor axis 600 000 km
Orbital eccentricity 0.1
Orbital inclination 45.◦8
Longitude of the orbital node (h) 114.◦6

allows us to treat the bodies as point particles may cease to be a
valid approximation (Damour 1987).

5.1.1 Modifications to the standard precession motions

The first step of our analysis is the quantification of the effects
of the spins on the standard precession motions. The precession
of the pericentre in absence of spin (i.e. the Einstein precession)
for this system can be calculated using standard formulae (Einstein
1916; Straumann 1984), and it amounts to 17.◦498 yr−1. If only the
spin of the central body is taken into account, the precession of the
pericentre is modified to 17.◦484 yr−1 (Bogorodskii 1959; Cugusi &
Proverbio 1978). In both cases, the precessions are linear – that is,
g(t) is a linear function of the time t.

If we consider the rotation of both the central star and of the
orbiting planet, then g(t) is given by equation (38). As explained
earlier, in our solution g(t) is a quasi-periodic function expressed in
terms of the Weierstrassian functions. The average precession rate
can then be computed as

ωg = g (T ) − g (0)

T
, (47)

where T is the period of H(t) (and the quasi-period of g(t)), which,
for this particular system, amounts to 41.177 yr. The numerical
value of ωg is 17.◦481 yr−1. This means that, on average, in this
specific system the full interaction between the spins and the orbit
alters the classical precession rates by a relative amount of roughly
10−4 (corresponding to a linear displacement of the pericentre of a
few tens of kilometres per year with respect to the classical results5).

Additionally, the full spin–orbit interaction overlays a periodic
modulation on to the average precession rate. The period of this
modulation is again T = 41.177 yr, and its amplitude is circa 0.◦025.
The plots in Fig. 2 provide a graphical visualization of the various
relativistic effects on the argument of pericentre.

A similar analysis can be undertaken for the longitude of the
ascending orbital node h. In absence of spins, the orbital plane
is fixed in space and h is thus constant. If only the spin of the
central body is taken into account, the orbital plane starts rotating
around the spin’s axis with a constant rate and h(t) becomes a
linear function of the time t. This effect is sometimes referred to
as Lense–Thirring precession (Thirring 1918), and, in this specific

5 For comparison, the decay of the orbital radius induced by the emission of
gravitational waves in the binary pulsar PSR J0737-3039 amounts to 2.6 m
yr−1 (Lyne et al. 2004).
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Figure 2. Evolution in time of the argument of pericentre g in the pulsar planetary system presented in Section 5.1. Panel (a) visualizes the standard Einstein
precession (i.e. the simplified case in which both spins are turned off). In this case, g is a linear function of time. Panel (b) plots the difference between the
Einstein precession and the quasi-periodic precession described by equation (38), where both spins are fully taken into account. Panel (c) displays the difference
between equation (38) and its average counterpart, highlighting the periodic modulation superimposed over the average precession rate (barely visible also in
panel b).

Figure 3. Evolution in time of the longitude of the ascending orbital node h in the pulsar planetary system presented in Section 5.1. Panel (a) visualizes the
standard Lense–Thirring precession (i.e. the simplified case in which only the central body is spinning). In this case, h is a linear function of time. Panel (b)
plots the difference between the Lense–Thirring precession and the full quasi-periodic solution for h(t) (which can be computed via the sum of equations 41
and 42), where both spins are fully taken into account. It can be recognized how, in panel (b), the local minima of the periodic modulation move progressively
to the bottom, due to the quasi-periodic character of the motion.

example, it amounts to 25.403 arcsec yr−1. In a similar fashion to g,
the full spin–orbit interaction modifies the average precession rate
of h to 25.399 arcsec yr−1, and thus the relative difference with the
classical precession rate is again of the order of 10−4. The periodic
modulation of h has an amplitude of circa 0.◦036. Fig. 3 provides a
graphical visualization of the relativistic effects on the longitude of
the ascending orbital node.

We turn now our attention to the study of the evolution of the
spin of the planet. If the spin of the central star is turned off, then
both the orbital angular momentum and the spin of the planet ro-
tate around the (constant) total angular momentum vector with a
constant angular velocity. This classical result is often referred to
as de Sitter precession (de Sitter 1916; Schiff 1960a,b). Cast into
SA variables, the de Sitter precession results in an evolution of the
angle h̃ which is either periodic or quasi-periodic, depending on the
geometry of the system.6

6 This duality of character is merely an artefact of the coordinate system.
From a geometrical point of view, the de Sitter effect is always a precession
around the total angular momentum. If the precession cone encompasses the

In our specific model, the de Sitter effect shows up as a
quasi-periodic evolution of the angle h̃, with an average rate of
8.◦7502 yr−1.7 This rate is modified to 8.◦7499 yr−1 once the full
solution from equation (42) is taken into account. Besides, the com-
plete spin–orbit interaction results in an additional quasi-periodic
modulation of the h̃ angle, which, over the course of 200 yr, reaches
a maximum amplitude of roughly 3.◦5. The geometric interpretation
of this result is that the full solution introduces an additional drifting
of the planetary spin with respect to the standard de Sitter preces-
sion, driven by the spin–spin interaction. The situation is visualized
graphically in the plots of Fig. 4.

We conclude this section with the inclusion of a plot of the three-
dimensional evolution in time of the orbital angular momentum

z-axis, then the precession shows up as a quasi-periodic evolution of h̃ with
a constant of quasi-periodicity of 2π. Otherwise, the evolution in time of h̃

is periodic.
7 It can be noted how, in the case of de Sitter effect, the period T of H(t)
coincides exactly with the period of the precession, as shown in section 5.4
of Paper I.
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Figure 4. Evolution in time of the longitude of the ascending node of the planetary spin h̃ in the pulsar planetary system presented in Section 5.1. Panel (a)
visualizes the standard de Sitter precession (i.e. the simplified case in which only the planetary body is spinning). In this case, h̃ is a quasi-periodic function of
time originating from the projection of the precession motion of the spin on to the invariant plane of the inertial reference system. Panel (b) plots the difference
between the de Sitter precession and the full solution for h̃ (t) (equation 42), where both spins are taken into account.

Figure 5. Three-dimensional plots of the evolution in time of the orbital angular momentum (panel a) and of the spin vector (panel b) of the secondary body
in the pulsar planetary system presented in Section 5.1. Both quantities are normalized by the mass of the secondary body and represented in SI units. The
evolution is followed for 10 periods of H(t), corresponding to circa 410 yr. The orbital angular momentum is subject to a secular drift modulated by a periodic
motion, while the spin vector draws a precession figure that slowly rotates in time. It can be noted how the precession cone includes the z-axis and thus the
evolution of the nodal angle (plotted in Fig. 4) is quasi-periodic (rather than purely periodic).

and of the spin vector of the planet, visualized in Fig. 5. The plot
displays the evolution of the two vectors, when the full interaction
between spins and orbit is taken into account.

5.1.2 Relativistic nutation in obliquity

In addition to the semiperiodic modifications to the standard rela-
tivistic precession rates presented in the previous section, our solu-
tion highlights an effect on the obliquity of the secondary body. We
recall that the orbital angular momentum vector (normalized by the
planet’s mass) is given by(√

G2 − H 2 cos h, −
√

G2 − H 2 sin h,H
)

, (48)

in Delaunay variables and, similarly, the normalized spin vector is
given by(√

G̃2 − H̃ 2 cos h̃, −
√

G̃2 − H̃ 2 sin h̃, H̃
)

(49)

in SA variables. We can then easily compute the cosine of the
angular separation θ between the two vectors via their dot product
as

cos θ =
√

G2 − H 2

√
G̃2 − (

H̃∗ − H
)2

cos h∗ + H
(
H̃∗ − H

)
GG̃

. (50)

We can then note how, since both H(t) and cos [h�(t)] are periodic
functions with period T, then cos [θ (t)] is also periodic with the
same period T. Fig. 6 displays the evolution in time of the obliquity
of the planet. The amplitude of the oscillatory motion amounts, in
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Figure 6. Evolution in time of the obliquity of the secondary body in the
pulsar planetary system presented in Section 5.1.

Table 10. Physical parameters and initial conditions of the
SMBH-pulsar system analysed in Section 5.2, inspired by the
S2 star orbiting Sgr A* (Sabha et al. 2012).

SMBH mass 4.3 × 106 M

SMBH spin parameter 0.99
Pulsar rotation period 5 ms
Pulsar radius 20 km
Pulsar spin inclination 28.◦6
Longitude of the node of the pulsar spin (h̃) 0◦
Argument of pericentre (g) 0◦
Orbital semimajor axis 600 au
Orbital eccentricity 0.8
Orbital inclination 45.◦8
Longitude of the orbital node (h) 114.◦6

this case, to circa 0.◦05. As far as we have been able to verify in the
literature, this is the first time that this purely relativistic nutation in
obliquity is reported.

5.2 Pulsar orbiting an SMBH

In this second example, we shall examine the dynamics of a pulsar
orbiting a supermassive black hole (SMBH). Stars in close orbit
around the SMBH at the centre of the Milky Way, Sgr A*, have
been recently discovered and studied (Meyer et al. 2012; Sabha et al.
2012), and, with the availability of next-generation instruments for
astrometry, they have become prime candidates for accurate tests of
the theory of General Relativity (Eisenhauer et al. 2011). Pulsars,
in particular, have the potential to provide novel tests of General
Relativity via accurate timing measurements (Liu et al. 2012).

In our model, the SMBH has a mass of 4.3 million solar masses,
and a spin parameter of 0.99.8 The orbiting pulsar is assumed to
have a diameter of 20 km and a period of 5 ms. The initial conditions
of its orbit are inspired by those of the S2 star (Sabha et al. 2012): the
semimajor axis is 600 au and the eccentricity is 0.8. The orientation
of the orbit in space has been chosen equal to that of the pulsar
planet described in 5.1. Table 10 displays the details of the setup of

8 Although it is established that Sgr A* is a spinning black hole, its spin
parameter is not well determined yet. Values from 0.2 to 0.99 have been
reported in the literature (Genzel et al. 2003; Aschenbach 2005; Kato et al.
2010; Liu et al. 2012).

our model. Although the relativistic effects are very strong in this
gravitational regime, the orbit of the star is still quasi-Keplerian (as
determined by direct observations), and we can expect low-order
PN expansions to remain a good approximation of the real motion
on sufficiently small time-scales.

We need again to point out the limitations of our model in this
scenario:

(i) the galactic centre is a rich environment, and thus the orbit of
the star around the SMBH is likely to be influenced substantially
by the presence of other masses;

(ii) we ignore the spin-quadratic contributions due to monopole–
quadrupole interaction (which for black holes are given, e.g. in
Damour 2001).

Our analysis starts with the quantification of the relativistic effects
on the orbit of the pulsar. The Einstein precession for this system
amounts to 0.◦029 72 yr−1. The inclusion of the spin of the SMBH
alters this value to 0.◦029 28 yr−1. The additional inclusion of the
spin of the pulsar in the model has a small effect: the average
precession rate is modified by a relative amount of circa 7 × 10−10.
The period of H(t) for this system is 24 600 yr, and the oscillation
of g with respect to the average precession rate has an amplitude of
circa 0.5 mas.

Regarding the Lense–Thirring effect, in this system the classical
precession of the orbital node amounts to 0.◦021 44 century−1. When
we take into account the full solution for h(t), the average preces-
sion rate is modified by a relative amount of circa 10−9, whereas
the periodic oscillations overlaid on the average precession motion
have an amplitude of circa 0.7 mas. The evolution of h in time is
visualized in Fig. 7.

Moving now to the analysis of the evolution of the spin of the
pulsar, the de Sitter effect for this system shows up as a preces-
sion of the nodal angle of the spin h̃ with an average rate of circa
0.◦014 86 yr−1. The inclusion of the central spin in the model modi-
fies this rate to 0.◦014 85 yr−1, and overlays additional quasi-periodic
variations whose amplitude increases in time (see Fig. 8). The rel-
ativistic nutation in obliquity for this system amounts to circa 0.◦8,
as visualized in Fig. 9. Lastly, we include a plot visualizing the
three-dimensional evolution of the orbital angular momentum and
spin vectors of the pulsar in Fig. 10.

It is clear from our analysis that this system behaves differently
from the pulsar planetary system described in the previous section.
The effect of the full solution on the orbit of the secondary body is
less pronounced in the SMBH-pulsar system (amounting to mod-
ifications of the order of 10−10–10−9 with respect to the classical
precession rates). On the other hand, the spin of the SMBH inter-
acts strongly with the spin of the orbiting star, and the effects of
the full solution are more evident on the evolution of the spin of
the pulsar. In particular, the amplitude of the nutation in obliquity
of the secondary body is one order of magnitude greater than in the
pulsar planetary system.

5.3 Jupiter-orbiting satellites

In the next example, we will examine the relativistic dynamics of
two spinning natural satellites in orbit around a Jupiter-like planet.
The first satellite is an Io-like object, whereas the second satellite is
an inner and smaller moon modelled after Metis. As usual, all the
bodies are assumed to be homogeneous spheres and the reference
plane is chosen perpendicular to the planet’s rotation axis. The two
satellites are considered separately and thus assumed not to interact
with each other.
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Figure 7. Evolution in time of the longitude of the ascending orbital node h in the SMBH-pulsar system presented in Section 5.2. Panel (a) visualizes
the standard Lense–Thirring precession (i.e. the simplified case in which only the central body is spinning). Panel (b) plots the difference between the
Lense–Thirring precession and the full quasi-periodic solution for h(t), where both spins are fully taken into account.

Figure 8. Evolution in time of the longitude of the ascending node of the spin of the pulsar h̃ in the SMBH-pulsar system presented in Section 5.2. Panel (a)
visualizes the standard de Sitter precession (i.e. the simplified case in which only the planetary body is spinning). Panel (b) plots the difference between the de
Sitter precession and the full solution for h̃ (t), where both spins are taken into account.

Figure 9. Evolution in time of the obliquity of the secondary body in the
SMBH-pulsar system presented in Section 5.2.

We will setup the dynamical system in two different ways. In the
first setup, we will choose a set of initial conditions similar to those
of the present-day Io and Metis. In particular, the two bodies are
tidally locked with the primary, they are moving on almost-circular
and almost-equatorial orbits, and their obliquities are almost zero.9

In the second setup, we will increase the rotation speed, eccentricity,
inclination, and obliquity of both bodies. The details of both setups
are presented in Table 11.

This system is an interesting subject of study because of Jupiter’s
mass and fast rotation, because of the close orbits of the two satel-
lites and because the system is accessible to direct observations.
Additionally, the second setup could yield useful results concern-
ing the dynamical evolution of the satellites before they settled in the

9 The obliquity of the Galilean satellites is not yet observed, but it is assumed
to be small (Bills 2005; Baland, Yseboodt & Hoolst 2012). The obliquity of
the inner moons of Jupiter is also assumed to be small (Thomas et al. 1998).
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Figure 10. Three-dimensional plots of the evolution in time of the orbital angular momentum (panel a) and of the spin vector (panel b) of the secondary
body in the SMBH-pulsar system presented in Section 5.2. Both quantities are normalized by the mass of the secondary body and represented in SI units. The
evolution is followed for 10 periods of H(t), corresponding to circa 250 000 yr.

Table 11. Physical parameters and initial conditions of the
dynamical system analysed in Section 5.3, consisting of a
Jupiter-sized central planet orbited by two natural satellites,
one similar to Io and the other similar to Metis.

Setup 1 Setup 2

Planet mass 1.9 × 1027 kg
Planet rotation period 9.925 h
Planet radius 70 000 km
Rotation period (Io) 42 h 21 h
Radius (Io) 1821 km
Obliquity (Io) 1◦ 10◦
Longitude of the spin node (Io) 0◦
Argument of pericentre (Io) 0◦
Eccentricity (Io) 0.0041 0.05
Semimajor axis (Io) 421 700 km
Inclination (Io) 0.◦5 20◦
Longitude of the orbital node (Io) 20◦
Rotation period (Metis) 7 h 3.5 h
Radius (Metis) 20 km
Obliquity (Metis) 1◦ 10◦
Longitude of the spin node (Metis) 0◦
Argument of pericentre (Metis) 0◦
Eccentricity (Metis) 0.0002 0.05
Semimajor axis (Metis) 128 000 km
Inclination (Metis) 0.◦5 20◦
Longitude of the orbital node (Metis) 20◦

almost-equilibrium position that they occupy today (see Murray &
Dermott 2000, chapters 4 and 5). The main limitations of our model
in this scenario are that the real satellites are not perfectly spherical
(especially Metis), and that the complex dynamical environment
around Jupiter is not taken into account.

5.3.1 Setup 1

For the Io-like object, the Einstein precession in the first setup
amounts to 0.◦0746 century−1 without Jupiter’s spin, and to 0.◦0675
century−1 with Jupiter’s spin. The Lense–Thirring precession

amounts to 0.◦002 34 century−1. The full solution modifies the av-
erage precession of the pericentre by a relative amount of circa
7.5 × 10−6 and the average Lense–Thirring effect by a relative
amount of 1.2 × 10−5. The period of H(t) is 1.066 Ma, and the pe-
riodic oscillation of the argument of pericentre with respect to the
average precession reaches an amplitude of about 0.◦001. Finally,
the nutation in obliquity has an amplitude of circa 0.◦05.

For the Metis-like object, the classical Einstein precession
amounts to 1.◦469 century−1, modified to 1.◦218 century−1 by the in-
clusion of the rotation of Jupiter in the model. The Lense–Thirring
precession amounts to 0.◦0838 century−1. The full solution alters the
values of the average pericentre and Lense–Thirring precessions by
a relative amount of circa 10−8. The period of H(t) is 59.13 ka and
the nutation in obliquity has an amplitude of about 0.◦1.

As discussed in Paper I, in this setup the two satellites are very
close to an equilibrium point, and thus the dynamical quantities are
subject to small variations in time.

5.3.2 Setup 2

In the second setup, the Einstein precession for the Io-like object
amounts to 0.◦0747 century−1 without Jupiter’s spin and to 0.◦0681
century−1 with Jupiter’s spin. The Lense–Thirring precession of the
orbital node amounts to 0.◦002 35 century−1. The full solution mod-
ifies the average precession rates by relative amounts of 1.5 × 10−5

(Einstein) and 2.3 × 10−5 (Lense–Thirring). The period of H(t)
is 1.057 Ma, and the nutation in obliquity has an amplitude of
circa 2◦.

For the Metis-like object, the classical Einstein precession
amounts to 1.◦473 century−1, modified to 1.◦236 century−1 by the
inclusion of the rotation of Jupiter in the model. The Lense–
Thirring precession amounts to 0.◦0841 century−1. The period of
H(t) is 58.24 ka and the nutation in obliquity has an amplitude of
almost 4◦.

It is clear that the geometric differences of this setup with respect
to the first one introduce appreciable variations in the dynamics.
The standard precession rates are modified slightly by the changes
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Table 12. Physical parameters and initial conditions of the
dynamical system analysed in Section 5.4, consisting of the
Earth–Moon system orbiting the Sun.

Star mass 1 M

Star radius 695 500 km
Star rotation rate 14.◦71d−1

Inclination of the Earth–Moon orbit 7◦
Semimajor axis of the Earth–Moon orbit 1 au
Eccentricity of the Earth–Moon orbit 0.017
Longitude of the node of the Earth–Moon orbit 90◦
Inclination of the Moon’s orbit 10◦
Semimajor axis of the Moon’s orbit 384 000 km
Eccentricity of the Moon’s orbit 0.055
Longitude of the node of the Moon’s orbit 0◦

in eccentricities and inclinations, whereas the differences between
the full solutions and the standard precession rates increase more
substantially. The period of H(t) is also modified noticeably and the
nutation in obliquity increases drastically by a factor of 40 for both
satellites.

5.4 The Earth–Moon system

In this last example, we will consider the relativistic dynamics of
the Earth–Moon system in orbit around the Sun. In this simpli-
fied model, the Earth–Moon system is considered as a point mass
equipped with a spin equivalent in magnitude to the orbital angu-
lar momentum of the Moon’s orbit around the Earth.10 We take as
reference plane the Sun’s equatorial plane (so that the Sun’s spin
is aligned to the z-axis). The model of the Earth–Moon system as
a Sun-orbiting gyroscope has been used to test the geodetic effect
with high accuracy via lunar laser ranging measurements (Dickey
et al. 1994; Williams, Newhall & Dickey 1996; Williams, Turyshev
& Boggs 2004). The setup of our model is detailed in Table 12.

The pericentre precession in this system amounts to 3.836 arcsec
century−1 without the Sun’s spin and to 3.835 arcsec with the Sun’s
spin. The Lense–Thirring precession of the ascending node amounts
to 0.33 mas century−1. The ‘spin’ of the Earth–Moon system modi-
fies the classical precession rates by a relative amount of about 10−6.
The period of H(t) is 67.58 Ma, and the nutation in obliquity (which
in this case is actually a nutation of the Moon’s orbital inclination
with respect to the inclination of the Earth–Moon system’s orbit
around the Sun) amounts to circa 6.5 arcsec. The instantaneous
geodetic precession rate at t = 0 is about 1.9 arcsec century−1,
which is close to the experimental measure quoted by Will (2006)
of 2 arcsec century−1.11

We can observe how our results for this model agree with known
results available in the literature. The time-scale in this system is
quite long, due to the relatively large distance from the Sun, and,
for the same reason, the modifications introduced by our solution
over the classical results are rather small.

6 C O N C L U S I O N S A N D F U T U R E WO R K

In this paper, we have presented for the first time a full solution
for the angular coordinates in the averaged 1PN restricted two-

10 The individual rotational spins of the Earth and the Moon are much smaller
than the orbital angular momentum of the system, and they are thus ignored.
11 In our model the parameters of the system are similar but not quite
identical to those of the real Earth–Moon system.

body problem with spin. Our results, based on the theory of the
Weierstrassian elliptic and related functions, take into account the
full spin–orbit and spin–spin interactions, and they provide a smooth
generalization of previous classical results which considered the
various relativistic effects in isolation.

The application of our results to several idealized physical sys-
tems of interest highlights how the effects on the trajectory of the
secondary body are, numerically, of order 1.5PN and higher (de-
pending on the initial setup and the parameters of the system), and
that they consist of periodic variations superimposed over a secular
evolution of the angles. Similarly, the evolution in time of the spin
vector of the secondary body is also quasi-periodic. Our solution
highlights the existence of a periodic nutation in obliquity for the
secondary body which, as far as we have been able to verify, has
not been reported before.

Some of the idealized physical system that we have studied are
at the limit of validity of our restricted model. The extension of our
results to the full two-body problem, to be tackled in an upcoming
publication, will allow us to study in detail systems – such as binary
pulsars – that cannot be adequately described in the restricted case.

Another topic that will be a subject of future research is the use
of our results to study the chaotic character of relativistic dynamical
systems involving spinning bodies. This will be accomplished by
incorporating higher order PN terms into the original Hamiltonian,
which will then be subjected to multiple Lie transformations beyond
the first order. The resulting transformed Hamiltonian will then
be analysed to study aspects such as integrability, chaotic motion,
resonances, etc. with standard techniques from Celestial Mechanics.
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A P P E N D I X A : C O M P U T I N G T H E T I M E O F
RO OT PA SSAGE

For this example, we will consider the case in which the polynomial
f4(H) in equation (23) has four distinct real roots. The factorization
of f4(H) can be written as

f4 (H ) = C (r0 − H ) (H − r1) (H − r2) (H − r3) , (A1)

where C > 0 is a scaling constant (so that the coefficient of H4

is −C < 0) and ri are the four real roots sorted in ascending order
(r0 < r1 < r2 < r3). Topologically, this case corresponds to Fig. 1 (a):
depending on the actual values of the initial conditions, the evolution
of dH/dt and H will be confined to one of the two libration lobes
depicted in the figure.

We now assume that the initial value of dH/dt (which can be
computed from the initial conditions) is positive, and that the initial
value of H is in the [r0, r1] interval (i.e. the motion is confined to
the left libration lobe). We choose, arbitrarily but without loss of
generality, Hr = r0 as the value for Hr. It is then clear that tr must
be negative as Hr was reached before the initial value H0,12 and that
the plus sign is to be chosen in equation (23) as the integration is
to be performed in the upper half of the plane. We can thus rewrite
the integral (23) as

tr = 1√
C

∫ Hr

H0

dH√
(Hr − H ) (H − r1) (H − r2) (H − r3)

= −1√
C

∫ H0

Hr

dH√
(Hr − H ) (H − r1) (H − r2) (H − r3)

, (A2)

where we have reversed the integration limits. This integral can
be computed using a known formula (Gradshteı̆n & Ryzhik 2007,
section 3.147.2) as

tr = − 2√
C (r3 − r1) (r2 − Hr)

F (φ, k) , (A3)

where F(φ, k) is an incomplete elliptic integral of the first kind,

F (φ, k) =
∫ φ

0

dα√
1 − k2 sin2 α

, (A4)

and

φ = arcsin

√
(r3 − r1) (H0 − Hr)

(r1 − Hr) (r3 − H0)
, (A5)

k =
√

(r3 − r2) (r1 − Hr)

(r3 − r1) (r2 − Hr)
. (A6)

The generalization of this example to other cases is straightfor-
ward:

(i) if the integration is to be performed in the lower half of the
plane because the initial value of dH/dt is negative, a sign change
is required;

(ii) if the integration is to be performed in the other libration lobe,
the root r2 can be chosen as Hr and the integral can be computed
using the formula Gradshteı̆n & Ryzhik (2007, section 3.147.6);

(iii) if the quartic polynomial has two roots, the integral can be
computed using the formula Gradshteı̆n & Ryzhik (2007, section
3.145.2).

12 Strictly speaking, tr can assume an infinite number of values, as H(t) is a
periodic function that assumes the value Hr an infinite number of times. By
choosing as tr the time of the last passage of H(t) through Hr, the calculation
of the integral (23) is greatly simplified.
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As an alternative to the use of elliptic integrals in Legendre form,
it is possible to compute the integral on the right-hand side of
equation (23) directly using the inverse Weierstrass elliptic function
℘−1 (see Whittaker & Watson 1927, section 20.6, and Hoggatt
1955).

A P P E N D I X B : C O R R E S P O N D E N C E B E T W E E N
SA VARIABLES AND SYMPLECTIC
CYLINDRICAL SPIN VARIABLES

As mentioned in Section 2, the nature of the spin vectors in PN
Hamiltonians has been a matter of debate in recent years. Whereas
classical references (e.g. Barker & O’Connell 1975) express the
PN Hamiltonians in a semi-Newtonian way in which the bodies are
considered as rigid spinning spheres (to the point of including the
kinetic energy terms of such rotating spheres in the Hamiltonian),
other authors (such as Damour 2001) derive the Hamiltonians as
classical limits of purely quantistic dynamical systems.

A key difference between these two approaches is that in the latter
case (the ‘quantum route’) the equations of motion generated by the
Hamiltonian for the spin variables are not Hamilton’s equations.
Indeed, the evolution in time of the spin vectors is given via a
cross product involving the partial derivative of the Hamiltonian
with respect to the spin vector itself (see equation 3.5 in Damour
2001). As noted in Wu & Xie (2010), the lack of symplecticity in
the quantistic formulation can be an obstacle for certain types of
applications (such as canonical perturbation theory and symplectic
numerical integrators – see, e.g. Zhong et al. (2010) and Lubich,
Walther & Brügmann (2010)).

In order to overcome this problem, Wu & Xie (2010) introduced
a set of cylindrical-like coordinates for the spin variables, and they
demonstrated that, in these coordinates, the Hamiltonian recovers
a completely symplectic structure (while still satisfying the equa-
tions of motion derived via the quantum route). In the cylindrical
coordinates of Wu & Xie (2010), the spins of the two bodies read

Si = χim
2
i Ŝi , (B1)

where the unit spin vectors are

Ŝi =

⎛
⎜⎝

ρi cos θi

ρi sin θi

kiξi

⎞
⎟⎠, (B2)

θ i are the longitudinal angles of the spin vectors, and

ρi =
√

1 − (kiξi)
2, (B3)

ki = 1

χim
2
i

. (B4)

In the Hamiltonian formulation, the θ i play the role of generalized
coordinates and the ξ i are their conjugate momenta. Explicitly, the
spin vectors read

Si =
(√(

χim
2
i

)2 − ξ 2
i cos θi,

√(
χim

2
i

)2 − ξ 2
i sin θi, ξi

)
, (B5)

where the χim
2
i are the magnitudes of the vectors (which are con-

served quantities) and ξ i their z components.
We recall now from equation (8) that the components of the spin

vectors in the SA formalism read

J i =
(√

|J i |2 − J 2
i,z sin h̃i , −

√
|J i |2 − J 2

i,z cos h̃i , Ji,z

)
, (B6)

where the h̃i are the nodal angles of the spins and play the role of
generalized coordinates, and the z components Ji, z are their con-
jugate momenta. In our Hamiltonian formulation, the magnitudes
of the spin vectors |J i | are also conserved quantities, due to the
spherical symmetry of the bodies. It can be easily verified that the
longitudes θ i are geometrically related to the nodal angles h̃i by the
simple relation

h̃i = θi + π

2
. (B7)

This is a trivial canonical transformation, and as such we can apply
it directly to the coordinate h̃i to obtain the alternative symplectic
formulation for J i :

J i =
(√

|J i |2 − J 2
i,z cos θi,

√
|J i |2 − J 2

i,z sin θi, Ji,z

)
, (B8)

which is clearly identical to (B5).
We have thus shown how our formulation of the spin variables in

terms of SA elements is equivalent to the formulation of Wu & Xie
(2010) in terms of cylindrical-like coordinates. Furthermore, this
result establishes an interesting link between the semiclassical and
quantistic formulations of the PN Hamiltonians with spin.

APPENDI X C : C ODE AVA I LABI LI TY

The PYTHON source code used to compute the results pre-
sented in this paper is available under an open-source li-
cense from the code repository: https://github.com/bluescarni/
restricted_2body_1pn_angular.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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