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Abstract We generalize Buchert’s averaged equations (Gen Relativ Gravit 32; 105,
2000; Gen Relativ Gravit 33; 1381, 2001) to LRS class II dust model in the sense
that all Einstein equations are averaged, not only the trace part. We derive the relevant
averaged equations and we investigate backreaction on expansion and shear scalars in
an approximate LTB model. Finally we propose a way to close the system of averaged
equations.
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1 Introduction

Our universe is considered to be homogeneous and isotropic on the large scale leading
to the FLRW model. However, if we move to smaller scales, we can observe a strongly
inhomogeneous distribution of structures. If we want to deal with inhomogeneity
rigorously and at the same time keep a consistent connection with the FLRW geometry
we may consider an averaging formalism to smooth out the metric tensor and at the
same time average Einstein equations as well. The problem is that Einstein equations
are nonlinear and if we average them straightforwardly we do not obtain an averaged
metric tensor as a solution of averaged equations. Instead, we should consider an
additional term—the so-called correlation term, which can change the evolution of
a smooth metric tensor and lead to the so-called backreaction. This term arises due
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to the nonlinearity of Einstein equations. It does not need to satisfy the usual energy
conditions so it can possibly act as dark energy.

While building a rigorous averaging scheme we face the problem that the average
value of a tensor field is not well defined. There are several different approaches to
define averages of tensors. One of the most promising ones is the scheme by Zalalet-
dinov [1,2] where not only Einstein equations but also Cartan structure equations (and
their integrability conditions) are averaged. A theorem about isometric embedding
of a 2-sphere into Euclidian space is applied in the averaging method developed by
Korzyński [3]. In [4] Weitzenböck connection for parallel transport is used to define
the average value of a tensor field.

One of the most popular approaches to averaging is the one investigated by
Buchert [5,6], where only the scalar part of Einstein equations is averaged. Wilt-
shire used this approach to give an alternative explanation of cosmic acceleration
[7]. This theory was also applied to the cosmological perturbation theory [8–11]. For
observational issues see e.g. [12]. In this paper, we will generalize Buchert’s equa-
tions to the locally rotationally symmetric (LRS) class II dust family of spacetimes.
The LRS family was classified in [13,14] and recently in [15]. It contains e.g. LRS
Bianchi cosmologies, Kantowski–Sachs model or LTB model and its generalizations.
We will use the fact that this family is described by scalars to average the complete
set of Einstein equations, including constraints. Although the averaged constraints are
shown to be preserved during evolution the averaged system of equations is not closed
and additional information has to be supplemented.

In the past there have been many attempts to apply Buchert’s approach to the LTB
model. Papers [16] and [17] are comprehensive studies of Buchert’s formalism applied
to generic LTB models. For a treatment of Buchert’s equations inside LTB spacetime
see e.g. [18–25]. For an application of Buchert’s formalism to the structure formation
see e.g. [26–28].

Naturally, one can study inhomogeneities perturbatively on a homogeneous back-
ground and many important results are based on this approach. However, we should
be cautious about relying solely on a linear perturbative analysis when dealing with a
nonlinear theory. The effects of the correlation term indicate what kind of effects one
might be missing when using a simple approach. In this sense, rigorous averaging of
exact inhomogeneous spacetimes leading to standard cosmological models provides
a possibility to qualitatively estimate these effects.

The paper is organized as follows. In Sect. 2 we review the LRS family and its char-
acterizations, then we briefly mention Buchert’s equations. Next, we average equations
describing dust LRS class II family. After a short review of LTB metric in Sect. 5 we
investigate the backreaction in the so-called onion model. We proceed by attempting
to close the averaged equations and we finish with conclusion.

2 LRS family

Locally rotationally symmetric (LRS) dust spacetimes are defined by the following
features [13]: In an open neighborhood of each point p, there exists a nondiscrete
subgroup of the Lorentz group which leaves invariant the Riemann tensor and its
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covariant derivatives up to the third order. Therefore, in LRS spacetimes there exists
a preferred direction eμ (the axis of symmetry) at every point. The subgroup can be
one or three-dimensional. In the latter case, we can rotate the axis of symmetry and
spacetimes are everywhere isotropic—these are the FLRW models.

We will use the covariant 1 + 3 splitting of spacetime with the timelike vector field uμ

normalized by the condition uρuρ = −1 and the projection tensor hμν = gμν +uμuν .
In this section we will follow the article of van Elst and Ellis [15].

The preferred spacelike vector field eμ satisfies the following conditions:

eρuρ = 0, eρeρ = 1. (1)

Because of the defining property of the LRS spacetime, all covariantly defined
spacelike vectors orthogonal to uμ (acceleration u̇μ, vorticity ωμ, projected gradient
of density hσ

μ∇σ ρ, pressure hσ
μ∇σ p and expansion hσ

μ∇σ θ ) must be proportional to
eμ—if this condition does not hold, spacelike vectors will not be invariant under the
rotation about eμ.

u̇μ = u̇eμ, ωμ = ωeμ, (2)

hσ
μ∇σ ρ = ρ′eμ, hσ

μ∇σ p = p′eμ, hσ
μ∇σ θ = θ ′eμ. (3)

Dots denote covariant derivative along the flow vector uμ and primes denote covariant
derivative along the vector eμ. We define the magnitude of the spatial rotation k and
the magnitude of the spatial divergence a by

k := ∣
∣ηαβγ δ

(∇βeγ

)

uδ

∣
∣ , (4)

a := hα
β

(∇αeβ
)

, (5)

where ηαβγ δ is the totally antisymmetric Levi-Civita pseudotensor (η0123 = −√−g).
A similar rule works also for the spacelike tracefree symmetric tensors orthogonal to
uμ. Following [15] we introduce a tensor field eμν defined by eμ

eμν := 1

2

(

3eμeν − hμν

)

. (6)

Then we have the relations for the shear tensor and the electric and magnetic parts of
the Weyl tensor

σμν = 2√
3
σeμν, Eμν = 2√

3
Eeμν, Hμν = 2√

3
Heμν. (7)

Here we can see that the LRS spacetimes are characterized only by a finite set of scalar
functions.

For simplicity we will restrict our attention to the LRS class II dust models defined
by the relation k = ω = 0. One can also show that the magnetic part of the Weyl
tensor is equal to zero, H = 0. This family of spacetimes includes the LTB metric
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and its generalizations based on foliation by spacelike 2-surfaces with negative or zero
curvature scalar. The relevant evolution equations are

θ̇ = −1

3
θ2 − 2σ 2 − 4πρ, (8)

σ̇ = − 1√
3
σ 2 − 2

3
θσ − E, (9)

Ė = −4πρσ + √
3Eσ − θ E, (10)

ρ̇ = −ρθ, (11)

ȧ = −1

3
aθ + 1√

3
aσ, (12)

and the constraints

σ ′ = 1√
3
θ ′ − 2

3
aσ, (13)

E ′ = −3

2
aE + 4π√

3
ρ′, (14)

a′ = 2

9
θ2 + 2

3
√

3
θσ − 4

3
σ 2 − 2√

3
E − 1

2
a2 − 16π

3
ρ. (15)

If we take the time derivative of the constraints, we can prove that they do not change
with time.

3 Buchert’s equations

In this section we will review an averaging method developed by Buchert [5]. We
will consider only the dust case—for generalization to perfect fluid see [6]. This
approach uses 1+3 splitting of spacetime, which is well defined by irrotational dust
4-velocity. However, averaging is well defined only for scalars, therefore only scalar
part of Einstein equations is averaged. Given a scalar field A, the average value over
three-dimensional spacelike domain D is defined by

〈A〉D = 1

VD

∫

D
d3XJA = 1

VD

∫

D
d3 X

√

det gi j A, (16)

where J := √

detgi j , gi j is the metric of the spacelike hypersurface, Xi are the
comoving coordinates and VD is the proper volume of the three-dimensional domain
D. From this definition we can see that time derivative and averaging do not commute.
We have a commutation relation
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〈A〉·D = d

dt

⎛

⎝
1

VD

∫

D
d3XJA

⎞

⎠ = − V̇D
VD

〈A〉D + 1

VD

∫

D
d3 X

(

J̇ A + J Ȧ
)

= −〈θ〉D 〈A〉D + 〈Aθ〉D + 〈

Ȧ
〉

D , (17)

where the expansion rate θ is related to the velocity of the fluid uμ according to the
definition θ = uμ

;μ. Next, in analogy with the FLRW spacetime we introduce the
dimensionless scale factor aD and the effective Hubble parameter HD

aD =
(

VD
VDi

) 1
3

, (18)

〈θ〉D = V̇D
VD

= 3
˙aD

aD
=: 3HD. (19)

VDi is the volume of the initial domain which is geodetically evolved into VD.
Now we have a formalism for averaging scalars. To obtain a scalar equation from
Einstein equations, we have to contract them with available tensors—i.e. gμν, uμ and
∇μ. After contracting we get the Raychaudhuri equation, the Hamiltonian constraint
and the continuity equation. Now we perform averaging and use the commutation rule
(17)

3
¨aD

aD
+ 4πG 〈ρ〉D = QD, (20)

(
ȧD
aD

)2

− 8πG

3
〈ρ〉D + 〈R〉D

6
= −QD

6
, (21)

∂t 〈ρ〉D + 3
˙aD

aD
〈ρ〉D = 0. (22)

〈R〉D denotes the average value of the spatial Ricci scalar, 〈ρ〉D means the average
density of the fluid and QD that shows possible backreaction (due to inhomogeneity
and anisotropy) is defined by

QD := 2

3

〈

(θ − 〈θ〉D)2
〉

D − 2
〈

σ 2
〉

D . (23)

The scalar σ 2 = 1
2σμνσ

μν is constructed from the shear tensor.

4 Averaging LRS class II dust spacetime

Now, we will generalize the above approach to LRS class II dust solutions. Originally,
Buchert considered spacetimes with a dust [5] or a perfect fluid [6] source. He did not
assume any symmetries or simplifications and his equations can be applied to a large
class of metrics. Here we will restrict to spacetimes with the special LRS symmetry.
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For this family we will generalize Buchert’s equations in the sense that all Einstein
equations are averaged consistently.

Given a preferred spacelike direction eμ, all the equations describing the LRS metric
are scalar. It means that we can perform averaging (which is covariantly defined for
scalars). We will define averaging over the spacelike domain D according to (16). In
order to obtain averaged equations we need to derive commutation relations for the
time and spatial derivatives (with respect to the preferred direction). For the LRS class
II spacetime it is possible to express derivative along the preferred direction e by the
formula e = √

g11∂1, where g11 is the metric function of a particular solution inside
the LRS class II spacetime. The most studied solution inside this class is the LTB
model, for which the square root of the metric function reads

√
g11 = R′√

1+2B
. We

will show the basic facts about the LTB metric in the next section. The commutation
rule between coordinate derivative and averaging reads

∂1 〈A〉 − 〈∂1 A〉 =
〈

A
∂1 J

J

〉

− 〈A〉
〈
∂1 J

J

〉

. (24)

For simplicity we will restrict to the class II LRS spacetime with the condition
p = 0 ⇔ ρ̇ = −ρθ (dust models) which includes LTB spacetimes and their gener-
alizations. For simpler notation we shall omit symbol D at the averaging bracket in
the rest of the paper (however we retain the symbols not defined as direct averages—
aD,QD). If we average the Eqs. (8)–(15) we obtain

〈θ〉· = −1

3
〈θ〉2 − 4π 〈ρ〉 + 2

3

(〈

θ2
〉

− 〈θ〉2
)

− 2
〈

σ 2
〉

, (25)

〈σ 〉· = − 1√
3

〈σ 〉2 − 2

3
〈θ〉 〈σ 〉 − 〈E〉 + 1√

3

(

〈σ 〉2 −
〈

σ 2
〉)

+1

3
(〈θσ 〉 − 〈θ〉 〈σ 〉), (26)

〈E〉· = −4π 〈ρ〉 〈σ 〉 + √
3 〈E〉 〈σ 〉 − 〈θ〉 〈E〉

−4π (〈ρσ 〉 − 〈ρ〉 〈σ 〉) + √
3 (〈Eσ 〉 − 〈E〉 〈σ 〉), (27)

〈ρ〉· = − 〈ρ〉 〈θ〉 , (28)

〈a〉· = −1

3
〈a〉 〈θ〉 + 1√

3
〈a〉 〈σ 〉 + 2

3
(〈aθ〉 − 〈a〉 〈θ〉)

+ 1√
3

(〈aσ 〉 − 〈a〉 〈σ 〉), (29)

〈σ 〉′ = 1√
3

〈θ〉′ − 2

3
〈a〉 〈σ 〉 + √

g11

(〈

σ
∂1 J

J

〉

− 〈σ 〉
〈
∂1 J

J

〉)

−
√

g11

3

(〈

θ
∂1 J

J

〉

+ 〈θ〉
〈
∂1 J

J

〉)

− 2

3

(√
g11

〈
1√
g11

aσ

〉

− 〈a〉 〈σ 〉
)

,

(30)
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〈E〉′ = −3

2
〈a〉 〈E〉 + 4π√

3
〈ρ〉′ + √

g11

(〈

E
∂1 J

J

〉

− 〈E〉
〈
∂1 J

J

〉)

−4π

√

g11

3

(〈

ρ
∂1 J

J

〉

− 〈ρ〉
〈
∂1 J

J

〉)

− 3

2

(√
g11

〈
1√
g11

aE

〉

− 〈a〉 〈E〉
)

,

(31)

〈a〉′ = 2

9
〈θ〉2 + 2

3
√

3
〈θ〉 〈σ 〉 − 4

3
〈σ 〉2 − 2√

3
〈E〉 − 1

2
〈a〉2 − 16π

3
〈ρ〉

+√
g11

(〈

a
∂1 J

J

〉

− 〈a〉
〈
∂1 J

J

〉)

+ 2

9

(√
g11

〈
1√
g11

θ2
〉

− 〈θ〉2
)

+ 2

3
√

3

(√
g11

〈
1√
g11

θσ

〉

− 〈θ〉 〈σ 〉
)

− 4

3

(√
g11

〈
1√
g11

σ 2
〉

− 〈σ 〉2
)

− 2√
3

(√
g11

〈
1√
g11

E

〉

− 〈E〉
)

− 1

2

(√
g11

〈
1√
g11

a2
〉

− 〈a〉2
)

−16π

3

(√
g11

〈
1√
g11

ρ

〉

− 〈ρ〉
)

. (32)

The underlined parts of the equations denote additional terms due to averaging. We can
recognize the well-known Buchert’s equation (25) with the kinematical backreaction
term and the mass conservation equation (28).

If we want to restrict the above equations to the LTB model (the line element is given
in the next section) we can substitute the following expressions for the magnitude of
the spatial divergence a, its average value 〈a〉D and the square root of the spatial part
of the metric J = √

detgi j

a = hν
μeμ; ν = 2

√
1 + 2B

R
, 〈a〉D = 4π R2

VD
, J = R′ R2 sin θ√

1 + 2B
. (33)

One can show that the averaged constraint equations (30)–(32) are preserved in
time. The key role in the calculation is played by the equation [15]

(

f ′)· = (

ḟ
)′ − 2√

3
σ f ′ − 1

3
θ f ′, (34)

and its averaged version. Now, we can take time derivative of the constraints (30)–(32).
Using commutation rules and Eqs. (8)–(15), a slow but straightforward computation
will show that the constraints do not evolve in time. The explicit computation for Eq.
(30) is shown in the Appendix.

All of Einstein equations are averaged now. It means that we can investigate not
only backreaction on the expansion rate but also on shear scalar or electric part of
the Weyl scalar. The problem is that the equations are not closed. We need additional
relations to close the system because for example 〈θ〉 is independent of

〈

θ2
〉

. In the
next chapters we will give some suggestions for closing the system of equations.
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So far we have not seen an analog of the Hamiltonian constraint. For example
Sussman [16] used three-dimensional curvature R instead of the function a. The
relation between three-dimensional curvature R and the magnitude of the spatial
divergence a reads [15]

R = −
(

2a′ + 2

3
a2 − 2K

)

, (35)

where K is the Gaussian curvature of the 2-D spacelike group orbits orthogonal to eμ

and uμ. The Hamiltonian constraint has the form

R = 16πρ − 2

3
θ2 + 2σ 2. (36)

The averaged Hamiltonian constraint is Buchert’s equation (21)

〈R〉 = 16π 〈ρ〉 − 2

3
〈θ〉2 + 2 〈σ 〉2

−2

3

(〈

θ2
〉

− 〈θ〉2
)

+ 2
(〈

σ 2
〉

− 〈σ 〉2
)

. (37)

5 LTB metric

The most important representative of the dust LRS class II family is the LTB spacetime.
In this section we will briefly review its properties.

The Lemaître–Tolman–Bondi (LTB) metric [29–31] is a spherically symmetric
exact solution of Einstein equations. It corresponds to an inhomogeneous dust with
the stress energy tensor

Tμν = ρuμuν, (38)

where uμ is 4-velocity of the dust with density ρ. For a recent review of LTB metric,
see e.g. [32,33]. The line element reads

ds2 = −dt2 + (R′)2

1 + 2B(r)
dr2 + R2(t, r)

[

dθ2 + sin2(θ)dφ2
]

, (39)

where B(r) is an arbitrary function and the prime denotes partial derivative with respect
to r . Function R(t, r) is a solution of Einstein equation

R2
t,r = 2B + 2M

R
+ Λ

3
R2. (40)

M = M(r) is another arbitrary function of integration. The energy density ρ is deter-
mined by the equation

4πρ = M ′

R′ R2 . (41)
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The function B(r) is related to the quasi-local spatial curvature [16] and M(r) is the
gravitational mass contained within a comoving spherical shell at a given r . Equa-
tion (40) can be integrated to yield

R∫

0

d R̃
√

2B + 2M
R̃

+ 1
3ΛR̃2

= t − tB(r). (42)

Here tB(r) is a third free function of r (called the bang time function). In the LTB
model, in general, the Big Bang is not simultaneous as in the FRW case, but it depends
on the radial coordinate r . The given formulas are invariant under a transformation
r̃ = g(r). We can use this freedom to choose one of the functions B(r), M(r) and
tB(r). For Λ = 0 the above equation can be solved explicitly. The evolution can be
elliptic (B < 0), parabolic (B = 0) or hyperbolic (B > 0).

6 Backreaction inside the LTB onion model

As an example of backreaction computation we consider an approximate LTB model
(the so-called onion model) investigated by Biswas et al. [34], who computed correc-
tions to the luminosity distance–redshift relation. It represents a spacetime with radial
shells of overdense and underdense regions. The function B(r) is nonzero (B(r) > 0),
so the evolution of the LTB model is hyperbolic. The metric function R(t, r) reads

R(t, r) :=
(

6

π

)1/3

t2/3r

(

1 +
(

81

4000π2

)1/3 (
1

2π

)

t2/3 1

r
sin2 πr

)

. (43)

The function B(r) is given as follows

B(r) = r

2π
sin2 πr . (44)

The density profile at the time t = 20 can be seen in Fig. 1. The density is computed
using the formula (41). The coordinates were chosen so that the function M(r) is given
by M(r) = 4/3πr3.

First, we investigate the backreaction term in Buchert’s equation (25). We numeri-
cally integrate the underlined part of equation (25) depending on the averaging scale
l. As one can see from Fig. 2, the backreaction normalized by 〈θ〉· is negative. It has
a peak for the averaging scale l ≈ 0.8 . The value of backreaction normalized by 〈θ〉·
is of the order of 10−4. The backreaction term (without normalization) is positive and
it leads to an increase of expansion. We can investigate also the backreaction terms in
other equations which do not appear in the Buchert framework and which can supple-
ment his equations. For example here we will show the result for backreaction in the
averaged evolution equation for shear (26) (specifically the whole underlined part of
the equation is considered). All results depend on the averaging scale l. As we can see
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r
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0.00010

0.00015

0.00020

0.00025

Fig. 1 Density profile at the time t = 20

l
2 4 6 8

0.0005

0.0004

0.0003

0.0002

0.0001

Fig. 2 Backreaction term 2
3

(〈

θ2
〉

− 〈θ〉2
)

− 2
〈

σ 2
〉

in the evolution equation for expansion depending on

the averaging scale l and normalized by 〈θ〉·

l
2 4 6 8

0.0025

0.0020

0.0015

0.0010

0.0005

0.0005

0.0010

Fig. 3 Backreaction term 1√
3

(

〈σ 〉2 −
〈

σ 2
〉)

+ 1
3 (〈θσ 〉 − 〈θ〉 〈σ 〉) in the evolution equation for shear

depending on the averaging scale l and normalized by 〈σ 〉·

from Fig. 3—for small scales, the contribution of all backreaction terms in the evolu-
tion equation for shear normalized by 〈σ 〉· is negative with a peak around l ≈ 0.9 . For
larger scales the contribution is smaller and positive. The turning point is for l ≈ 1.2 .
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To be more precise, there exist regions where the backreaction changes the sign twice
for a very small increase of l. If we compare the backreaction with the time derivative
of the shear scalar, we can see that their ratio is of the order of 10−4 to 10−3. It means
that the backreaction plays a more important role in the averaged equation for shear
than in the averaged equation for expansion.

Note that we investigated only an approximate LTB model. Due to nonlinearity it is
not clear if the backreaction behavior shown above will be similar for exact solutions
(even when they are close to the onion model in some specific sense). We used this
non-exact model because it has suitable properties for investigation of averaging and
backreaction.

7 Averaged LRS dust class II equations

One of the most important equations in cosmology is the evolution equation for the
expansion scalar. In the averaged equation (25) we have independent variables

〈

θ2
〉

and
〈

σ 2
〉

. To obtain evolution equation for
〈

θ2
〉

we multiply (8) by 2θ . Then we perform
averaging and we obtain the equation

〈

θ2
〉· = −2

3
〈θ〉3 − 4 〈θ〉 〈σ 〉2 − 8π 〈ρ〉 〈θ〉 + 1

3

(〈

θ3
〉

− 〈θ〉3
)

+
(

〈θ〉3 − 〈θ〉
〈

θ2
〉)

− 4
(〈

θσ 2
〉

− 〈θ〉 〈σ 〉2
)

− 4π (〈ρθ〉 − 〈ρ〉 〈θ〉). (45)

In a similar way we derive an evolution equation for
〈

σ 2
〉

〈

σ 2
〉· = − 2√

3
〈σ 〉3 − 4

3
〈θ〉 〈σ 〉2 − 2 〈E〉 〈σ 〉 + 1

3

(

〈θ〉 〈σ 〉2 −
〈

θσ 2
〉)

−4

3

(

〈θ〉
〈

σ 2
〉

− 〈θ〉 〈σ 〉2
)

− 2√
3

(〈

σ 3
〉

− 〈σ 〉3
)

−2 (〈Eσ 〉 − 〈E〉 〈σ 〉). (46)

Now, we also need equations for e.g.
〈

θ3
〉

,
〈

θσ 2
〉

or
〈

σ 3
〉

(and of course an evolution
equation for 〈ρ〉 , 〈E〉 and 〈σ 〉 given in Sect. 4). We could obtain these evolution
equations by the same procedure. Thus we have an infinite number of equations for
the correlation terms. Here we need to adopt an ansatz. For example we can consider a
reasonable assumption that for a given order the correlation terms are negligibly small
and we can truncate the hierarchy to obtain a finite set of equations. We can also assume
that some terms are proportional to each other. In this approach the inhomogeneities
are modeled by different relations for correlation functions.

The question is what kind of spacetime may correspond to the given set of averaged
equations. We have started with scalar equations characterizing a LRS class II dust
spacetime (containing the LTB metric and its generalizations). By averaging we can
not leave this class, instead we may end up in a special subclass of LRS class II dust
models. We performed averaging of the evolution equation for expansion (25) and of
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the evolution equations for different products of expansion, shear, density and electric
part of the Weyl tensor. From this construction we can see that the averaged equations
contain an averaged LTB model, but generally not e.g. the homogeneous LRS Bianchi
cosmologies.

In the above described approach we have evolution equations for averages of differ-
ent powers and products of the expansion, shear, density and electric part of the Weyl
tensor. The problem is that if we derive an evolution equation for the averaged nonlin-
ear terms, then more complicated terms appear in the relevant correlation terms [as is
evident in Eqs. (45), (46)]. If we want to close the system of equations we need to effec-
tively eliminate these higher-order terms. In general, we may express the “unwanted
terms” as a suitable function of the lower-order averaged terms whose evolution equa-
tion is known. This kind of ansatz does not need to make all higher-order correlation
terms necessarily vanish, it only serves to close the system of averaged equations
through the selected relations—these may be for example expressed as products of
the averaged terms of lower order.

8 Conclusion

We generalized Buchert’s equations for the LRS class II dust model. We used the
property that this family is characterized only by scalars and we employed a similar
technique for averaging. However, the system of averaged equations is not closed.
Buchert considered the so-called scaling solutions [35] to close the system of equa-
tions. In our work, we first investigated the influence of backreaction on the expansion
and shear scalars for an approximate LTB model which describes fluctuating radial
inhomogeneities. Then we proposed an infinite system of equations which supplement
the averaged equations for expansion. In this approach inhomogeneities are modeled
by the form of the correlation terms. Finally, we discussed how to close the system of
averaged equations.
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Appendix

In this appendix we will show the computations demonstrating that the averaged
constraint equations (30)–(32) are preserved in time. We start with an unaveraged
constraint (13) and perform straightforward averaging without using the commutation
rules which gives us

〈

σ ′〉 = 1√
3

〈

θ ′〉 − 2

3
〈aσ 〉 . (47)

Now we take time derivative of (47) and use the commutation rule (17). We obtain
the following expression
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〈

(σ ′)·
〉 − 〈θ〉 〈

σ ′〉 + 〈

θσ ′〉 = 1√
3

[〈

(θ ′)·
〉 − 〈θ〉 〈

θ ′〉 + 〈

θθ ′〉]

−2

3

[〈

(aσ)·
〉 − 〈θ〉 〈aσ 〉 + 〈θaσ 〉] . (48)

Now we need to commute prime and dot derivatives. This is done applying the com-
mutation rule (34)

〈

(σ̇ )′
〉 − 2√

3

〈

σσ ′〉 − 1

3

〈

θσ ′〉 − 〈θ〉 〈

σ ′〉 + 〈

θσ ′〉

= 1√
3

[
〈

(θ̇)′
〉 − 2√

3

〈

σθ ′〉 − 1

3

〈

θθ ′〉 − 〈θ〉 〈

θ ′〉 + 〈

θθ ′〉
]

−2

3

[〈

(aσ)·
〉 − 〈θ〉 〈aσ 〉 + 〈θaσ 〉] . (49)

Next, we apply the unaveraged evolution equations for θ, σ and a [(8), (9), (12)] and
we obtain the following expression:

− 2√
3

〈

σσ ′〉 − 2

3

〈

θ ′σ
〉 − 2

3

〈

θσ ′〉 − 〈

E ′〉 − 2√
3

〈

σσ ′〉 − 1

3

〈

θσ ′〉 − 〈θ〉 〈

σ ′〉 + 〈

θσ ′〉

= 1√
3

[

−2

3

〈

θθ ′〉 − 4
〈

σσ ′〉 − 4π
〈

ρ′〉 − 2√
3

〈

σθ ′〉 − 1

3

〈

θθ ′〉 − 〈θ〉 〈

θ ′〉 + 〈

θθ ′〉
]

−2

3

[

−1

3
〈aθσ 〉 + 1√

3

〈

aσ 2
〉

− 1√
3

〈

aσ 2
〉

−2

3
〈aθσ 〉 − 〈aE〉 − 〈θ〉 〈aσ 〉 + 〈θaσ 〉

]

. (50)

From the above expression we can see that several terms cancel each other. Moreover,
using constraint equations (13) and (14) to further simplify the above Eq. (50) it is
straightforward to see that the left hand side is equal to the right hand side. This means
that the constraint equation (30) does not change in time. In the same way it can be
shown that the constraint equations (31) and (32) are preserved in time, too.
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